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PREFACE

Let me begin with a caricature.
At school, "algebra" means equations. Later on, we discover that algebra is really about

structures, substructures and morphisms. Thus we leap from the most elementary first-order
logic to full-blown second-order logic, with barely a glance at what we are passing over. We
may, at some point, be exposed to mathematical logic and discover that it is worthwhile to take
some account of the way in which we define things; learning that if we concentrate on what can
be defined within a first-order language, then there is available to us a range of ideas and
techniques which we would not otherwisehave had. In other words, we can use model theory,
which is designed to handle that information which may be expressed in a first-order language.

That is a misrepresentation of modern algebra (and, indeed, of model theory): for instance,
we do encounter first-order quantifiers when we consider solvability of systems of linear
equations. Nevertheless, there is a rich seam of information which tends to be overlooked
because the relatively unfamiliar tools of model theory are required for its extraction.

There are places where algebra and model theory have interacted. Algebra provides much of
the raw material for model theory and a number of algebraic problems have been solved by
dragging them into the arena of model theory and tackling them there. But also, model theory has
the power to enrich algebra by fusing with it at certain points and at certain levels.

In particular, model theory provides tools which are potentially available to anyone
working with modules. This is not to suggest that every module-theorist should rush off to learn
model theory. For a start, model theory may have nothing to say about a particular problem.
And neither would one suggest that a ring-theorist who needs some group theory should become
an expert in groups.

There is a theorem which says that, in the context of modules, model theory is not very far
from algebra. It says, roughly, that any subset of a module which can be defined using equations,
inequations, and, or, ... and quantifiers, may be expressed rather simply in terms of solution
sets of systems of linear equations. This makes it quite plausible that model theory can say
something significant about modules. It also means that most of the fundamental ideas can be
expressed algebraically or model-theoretically, as one prefers. So, an algebraist who is willing
to take on board a few basic theorems from model theory should find most chapters of this book,
if not entirely plain sailing, then at least not unduly demanding (the excepted chapters are those
directly concerned with stability theory).

I have been rather neglecting the model-theorists* in my comments: so, what is in this
book for the average model-theorist? Those who are, or could become, interested in modules,
will find a great deal of material and many open problems. Even those without any specific
concern for modules should find something of interest. For modules seem to be a good source of
examples in stability theory: they are amenable, but non-trivial.

This book is meant to be an introduction to, and a reasonably comprehensive account of, the
interaction of model theory and modules. It started life as a set of lecture notes for a graduate
course at Yale in the autumn of '83. Those notes were enlarged upon and added to: the result was
a fairly hefty typed set of notes which enjoyed some limited circulation. A number of chapters
and sections have since been added. Some additions reflect new results: others are simply
sections which had not, at the time, been in a sufficiently well-worked form for circulation.
Almost all sections have been re-worked to some extent and, I hope, improved.

I have tried to make this book readable by algebraists and logicians; by graduate students
and established workers. Thus, the first few chapters are rather lengthier than they would
otherwise be, since I tend to include details of arguments which would be suppressed in a more
narrowly directed text. I introduce a number of examples in the first chapters, in which also
the exercises tend to be thicker on the ground. All this combines to swell the fairly elementary
Chapter 2 (Chapter 1 contains background material) to such a size that there may well be a
danger of losing some readers on the way through. So let me point out that the reader with some
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knowledge of either models or modules should be able to read through sizable portions of that
chapter rather rapidly. The pace does pick up in the later chapters; though I hope that I have
managed to avoid being at all obscure in proofs.

Let me describe briefly the nature of the various chapters. Chapter 1 is background.
Chapters 2 - 4 contain the core material, with Chapter 2 having an introductory character.
After Chapter 4, the reader's path may be guided more by his or her interests. Chapters 5 - 7
are concerned mainly with stability-theory and modules. Chapters 8 - 10 explore the
relationship between pp-types and pure-injective modules: these chapters contain many
important results, but the reader should find it possible, at least in the first instance, to use the
results without reading through the chapters in detail. Chapters 11 - 13 are mostly concerned
with modules over artinian rings, especially over Artin algebras. Chapters 14, 15, 16 and 17 are
relatively independent; the first three deal with particular aspects and special types of
modules; Chapter 17 is concerned with questions of decidability.

In addition to the main chapters and sections there are a few supplementary sections
scattered through the notes. At some point, because of limitations on time and space, I had to
draw a line around what I would include in these notes: this boundary is indicated by the topics of
some of those sections. The other supplementary sections contain material which has no obvious
home in terms of the chapter structure of the book.

A substantial part of this book was written, and the book itself was completed, while I held a
University Research Fellowship at the University of Liverpool.

University of Manchester,
October 1987.

My use of terms such as "algebraist" and "model-theorist" is for purpose of contrast only:
certainly I do not wish to harden perceptions of boundaries between parts of mathematics.
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INTRODUCTION

I assume that the reader knows what a module is: indeed, I take for granted a certain
knowledge of basic module theory. The reader who does not have this or who needs his or her
memory refreshed has a wide range of texts to choose from. On the other hand, I have tried to
cater for the reader who has no idea what model theory is about. So, the first section of the first
chapter is an introduction to the subject. I don't include any proofs there, but I do present the
definitions and try to explain the ideas. That section ends with the formal statements of some
results which I call on later. Despite the lack of proofs, the reader will not have to take too
much on trust and will, in any case, see many of the ideas being developed within the specific
context of modules. The second section of the first chapter introduces injective modules and may
simply be referred as the need arises.

Chapters 2, 3 and 4 form the core of the book and provide a common foundation for the more
specialised topics of later chapters. Especially in the second chapter, the pace is quite leisurely
and there are many exercises and illustrative examples. The central result of Chapter 2 is the
description of the definable subsets of a module ("pp-elimination of quantifiers"). Chapter 3
characterises modules of the various stability classes in terms of their definable subgroups.
Hulls of elements and pp-types are the building blocks of pure-injective modules: they are
introduced in the fourth chapter, together with a number of central ideas (irreducible pp-types,
unlimited components, the space of indecomposable pure-injectives).

Beyond this core, the reader's path may be guided more by his or her interest. Although the
later chapters are all inter-related to some extent, they do break into a number of more or less
coherent blocks. I give some general indication of their contents now: the section summaries
below are more specific.

Chapters 5, 6 and 7 delve more deeply into the stability-theoretic aspects of modules.
Stability theory is based on a very general notion of dependence and Chapter 5 describes that
notion in the context of modules (in the right context, it reduces to direct-sum independence of
hulls). Chapter 6 is concerned with the way in which pure-injective modules are built up
around realisations of types (belonging to orthogonality classes) by fitting hulls around them:
also in that chapter we produce irreducible types with certain prescribed properties. Chapter 7
is centered around a detailed analysis of modules of U-rank 1 and Vaught's Conjecture.

Chapters 8, 9 and 10 deal with the relationship between pp-types and their hulls. The idea
that pp-types generalise right ideals is taken much further in these chapters. Chapter 8 looks at
the lattice of pp-types, with the lattice of right ideals strongly in mind. Chapter 9 explores the
relation between types whose hulls have some direct summand in common. In Chapter 10 we
prove structure theorems under various finiteness conditions on the lattice of pp-definable
subgroups.

Modules over artinian rings, and especially over artin algebras, are considered in Chapters
11, 12 and 13. Rings of finite representation type and pure-semisimple rings are the topic of
Chapter 11. Chapter 12 interprets pp formulas and pp-types in terms of functor categories. In
Chapter 13 we consider pure-injectives over algebras of tame and wild representation type.

Chapters 14, 15 and 16 all deal with special kinds of modules. Projective and flat modules
are considered in Chapter 14. Dually, injective and absolutely pure modules are considered in
Chapter 15, along with existentially closed modules in universal Horn classes ("torsionfree"
classes). Chapter 16 begins by considering modules which have complete elimination of
quantifiers, then goes on to deal with modules over regular rings.

The final Chapter 17 gives some partial answers to the question: over which rings is the
theory common to all modules decidable?

I finish by indicating what I believe are currently the main unresolved questions.

Acknowledgements I would like to begin by thanking, for their useful comments, those who
attended the lectures at Yale on which these notes are based. Next, I thank Bernadette Highsmith
for the typing of the first version of these notes and Philipp Rothmaler for thoroughly reading
them and pointing out to me a number of minor, and some major, errors. I would also like to
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thank, for their comments, for useful discussion and for information that they have provided:
John Baldwin, Michael Butler, Sheila Brenner, No Herzog, Wilfrid Hodges, Angus Macintyre,
Anand Pillay, Francoise Point and Gabriel Srour.

Notations and conventions

I was a postgraduate student at Leeds and so my modules are usually right modules. Rings
always have a "1". Functions (apart from ring multiplications!) usually operate from the left,
and I do not normally put parentheses round the argument(s).

An "n-tuple" is an ordered sequence of n objects, and I can only apologise for the ugly word
which results when the "n" is dropped.

If X and Y are sets, then XY means the set of all functions from Y to X. If we are
working in a category C then the set of morphisms from an object X to the object Y is
denoted C(X,Y) or (X,Y). Beware that I use "<", "c" and their opposites to indicate strict
containment.

By, for example, K[X,Y], I denote the ring of polynomials with coefficients in K in the
commuting indeterminates X and Y: K(X,Y) denotes the ring of non-commuting polynomials.
If I am dealing with a factor ring of such a ring, then I use the convention that "x" and "y" are
the canonical images of X and Y.

In various contexts, I use the notation "(*)" to denote "generated by * ".
For definitions of notations, consult the appropriate index.

Internal referencing The book is composed of chapters, each of which has an introduction
followed by a number of sections. The chapter introductions say briefly what is in each section,
give some sort of overview of the chapter and indicate how it fits with the rest of the book. The
first few paragraphs of a section may say more. Probably the best (and most specific) overview
of the book may be obtained from the "Section Summaries" below.

Sections are referred to by "§m.n", meaning Section n of Chapter m, and by "§n", meaning
Section n within the same chapter. If "n" is a letter, then the section is one of the
supplementary sections.

Numbering of results is consecutive within each chapter: "m.n", where m and n are
integers, means result n in Chapter m.

Exercises and examples are numbered afresh within each section. The abbreviation "Ex" is
used for "Example"; "Exn" means Example n within the same section; "Ex.m.n/k" means
Example k in Section m.n. Similarly for exercises: "Exercise n" and "Exercise m.n/k".

There is an index of examples: included are those which appear many times (mainly, I list
places where they are developed, rather than simply used to illustrate a point), as well as those
to which I often refer.

Bibliography I have tried to make the bibliography comprehensive. When a bibliographic
reference "X" precedes the statement of a result, this means that the result, some significant
part thereof, or some special case, or even just the germ of the idea, is in X. If it is not the first
or second, then I normally use a qualifier such as "see" or "also": but these terms have other
uses (I use "see" for secondary sources: mainly standard texts). I am sure that I have not
managed to be consistent in this, so I can only apologise and urge the interested reader to consult
the works cited.

A reference to the bibliography has the form [abcxy;*], where "abc" is a short sequence of
letters, and "xy" gives the date. Usually, the letters are the first two or three letters of the
author's name, but there are some exceptions (e.g., if there are two or more authors): so if you
discover that you are attempting to find one of these exceptions, consult the list which follows
the bibliography.



Remarks on the development of the area

With more than a little trepidation, I will try to give the reader some idea of the origins of
the material in this book. This is not in any sense a history, but simply is an account of how the
area seems to me to have developed.

In its barest outline, the model that I have in mind is: little before 1970; a burst of activity
by a coherent group of people, linked through Yale; relative quiescence, though with important
developments; a number of people independently picking up the threads again in the late 70's;
these new strands gradually being brought together, with a mass of new results in the late 70's
and early 80's; consolidation of the core material since then, together with an opening up of new
lines of enquiry.

Like any model, that falls short of truth. For instance, the key pp-elimination of
quantifiers was proved in what I have characterised as a quiet period (on the other hand, this
result was not immediately exploited to the full).

The development has not been smooth and orderly. A number of results have been proved
independently (often in contexts which were not obviously related) or have been re-derived.
Also, in the mid/late seventies, a fairly small number of people independently began to work in
the area but, by and large, did not have an immediate influence upon one another, mainly because
of differing aims and backgrounds. For example, I received the (first version of the) preprint
[Gareoa] a number of months before I began to look seriously at it: indeed, I had received
preprints of [Gar79] and [Gareo] even earlier. My delay in looking at them may be explained
by the fact that I was working on the injective case, where one essentially has full elimination of
quantifiers: therefore, I needed little model theory and certainly no stability theory (indeed, I
did not even have to take account of the pp-elimination of quantifiers).

The earliest relevant result is Szmielew's proof that any formula in the language of abelian
groups is (effectively) equivalent to a boolean combination of sentences and formulas of a certain
prescribed form (and with clear algebraic meanings). This result was not established for
modules over an arbitrary ring until the mid-seventies.

During the 60's there were various algebraic developments, concerning the notions of
purity and algebraic compactness, which were to be useful later.

At the beginning of the 70's, a fairly coherent group of people, many of whom visited Yale
around then, worked on the model theory of modules. Probably the most influential paper to
emerge was that of Eklof and Sabbagh [ES71]: it was the starting point for my own work in the
area, and I am not alone in this. Other results from this period include Eklof and Fisher's re-
proof (and extension) of Szmielew's result, by use of structure theory for pure-injective
abelian groups; the attempt to extend the pp-elimination of quantifiers to arbitrary rings, by
Fisher and by Sabbagh; (a little later) Baur's work on (un)decidability and Fisher's work on
"abelian structures".

Let me now say a little about the latter work of Fisher. This was written up in [Fis75],
but that was never published, although the first part did appear in print somewhat later. It
contains many fundamental results, including the existence of hulls and the general
decomposition theorem for pure-injective modules. But, partly because it was not widely
circulated and partly because it was set in a very general context, this did not have the influence
that it should have had. For instance, the (importance of the) existence of hulls was generally
not appreciated by those who started later to work in the area. Also, the decomposition for pure-
injectives and the fact that they have local endomorphism rings had to be re-proved by
algebraists (more than once).

One aim of Fisher's work was to establish pp-elimination of quantifiers, but he was able to
obtain this, using "structural" arguments, only in very restricted circumstances. Baur tried a
more syntactic approach and succeeded in proving it. Independently, L. Monk proved the result
for abelian groups, and his argument works over any ring: there were also partial results by
Mart'yanov. With the pp-elimination of quantifiers to hand, the proofs of many of the earlier
results were much simplified, and other theorems which had been proved under special
hypotheses could now be proved in general. Nevertheless, the vigorous exploitation of this
result was not immediate.



xiv

Garavaglia, in a series of papers, was first to make full use of pp-elimination of
quantifiers. These papers have been the key to the further development of the subject.

Meanwhile, a number of other people had begun to work independently on the area. In
particular, there were independent contributions from Bouscaren, Kucera, myself and
Rothmaler (at least the first three either drawing their initial inspiration from, or being
significantly influenced by, Eklof and Sabbagh's paper [ES71]). Initially working in rather
different directions, as the aforesaid gradually took account of each others' approaches, the
central lines of thought became clearer. By now, others had joined in: Pillay in contact with
those already mentioned and, rather independently, some of those visiting Jerusalem during the
model theory year held there in 1980/81 - in particular, there was another approach by Srour
and a major contribution by Ziegler, the latter having been inspired by Garavaglia's paper
[Gar80a]. By now, the model theory of modules had become a unified area.

During this period there was other work either within, or relevant to, the area (see
below!), but that which I have mentioned above has had the most influence on the shape of the
"core material" of the subject. I should, finally, point to the more algebraic work of Gruson,
Jensen, Lenzing, Simson, Zimmermann and Zimmermann-Huisgen on pure-injective modules.
This work often overlapped what was being done by those already mentioned, but I think that it
has not yet been properly assimilated into the model theory of modules.

The core material of the area seems to be fairly settled now. The main current (1987)
interest lies in two directions: more detailed analysis of what goes on within pure-injective
modules, especially as it related to Vaught's Conjecture; connections with representation type of
algebras. But there are many relatively unexplored avenues and I would not hazard a guess as to
what the subject will look like in ten, or even five, years' time (nevertheless, I have, after
Chapter 17, indicated what I see as the main current open problems).
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Section summaries

§1.1 Background from model theory.
§1.2 Injectives, injective hulls and A-atomic types; finiteness conditions on the lattice of

right ideals and decomposition of injective modules (1.11, 1.12).

§2.1 pp-definable subgroups; examples.
§2.2 pp-types; group associated to a pp-type.

§2.3 Pure-injectives (2.8); E -pure- injectives (2.11).
§2.4 Neumann's Lemma (2.12); invariants; pp-elimination of quantifiers (2.13); criterion

for elementary equivalence (2.18).
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CHAPTER 1 SOME PRELIMINARIES

The two sections of this chapter are rather different in nature.
The first section is a brief review of some basic model theory. Those who are already

acquainted with this material will need only to glance at it for some conventions. On the other
hand, those who know nothing of model theory may find that I have been too concise (although I
hope not). The section does at least contain the essential definitions and results and I have tried
to explain the main points. A number of texts may be recommended to the reader who desires
more detail. The standard reference in model theory was, for some time, the book [CK73] of
Chang and Keisler; the book [Sac72] by Sacks is quite readable, although less comprehensive.
More specifically on model-theoretic algebra is Cherlin's [Che76]. All these are to be
recommended, as are the very readable articles by Barwise, Keisler, and Eklof (and, relevant
later, that of Macintyre) in the Handbook of Mathematical Logic [Bar77].

I would not recommend texts on logic in general, since these tend to begin with a very
careful treatment of first order logic, which is tedious and probably off-putting to most
mathematical readers.

The situation has changed recently, and I am now in the happy position of being able to
recommend some more up-to-date texts which either have appeared or are soon to appear. In
particular, as introductions (and a good deal more) to model theory, I recommend the books of
Poizat [Poi85] and of Hodges [Hods?]. The first of these also goes some distance into stability
theory. There are also a number of recent texts specifically on stability theory: for these see
the introduction to Chapter 3.

The second section introduces injective modules and describes some structure theorems for
them. I decided to place this section at this point, partly because it was with injective modules
that my own work began, and this has influenced my approach since (certainly it has influenced
my presentation in this book). But also, I feel that a reading of this section will allow one to
discern the shape of some of the main concerns of the book. It will be of use to some readers
because it gives a foretaste, in "purely algebraic" surroundings, of ideas seen later: in
particular, for those familiar with injective modules, it may illustrate and motivate some of
what is to come. Moreover, it will help one to appreciate both the similarities and the contrasts
between the purely algebraic (quantifier-free) and the general cases, and to understand the
effect of taking account of quantifiers. But the section certainly may be skipped and then
referred back to for definitions and results as the need arises.

1.1 fin introduction to model theory

An algebraist who has had some acquaintance with model theory may be surprised to see
barely an ultraproduct in the pages which follow. Partly, this is because we usually work
within a model of a complete theory. But also, ultraproducts provide specific realisations of
structures and elements, the existence of which is consistent: yet, usually all we need is the fact
that such realisations exist. This existence is embodied in the completeness theorem, in the
form which states that any (finitely) consistent set of formulas has a realisation in some
elementary extension (one may give a proof of this theorem using ultraproducts). So, when a
realisation of a type is required, I will normally call on this existence theorem, rather than
produce a specific ultraproduct. In any case, when we have realised a type in some (unspecified)
elementary extension, it will often be possible to cut that extension down to a more economical
one, should we wish to do so.

The descriptions given here of model-theoretic concepts will mostly be phrased in terms of
modules rather than more general structures: but I do not, at this stage, use any features
peculiar to modules.

Our model theory will be set within a certain context - for us here the context is that of
modules over some fixed ring (for others it might be groups, or ordered fields,...). The context
having been established, there is usually an obvious set of operations, relations and constants,
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from which one may construct the most basic terms and relations, using unknowns and
particular elements of particular structures,

For example, if our context is that of modules over the ring R, then we always have the
operation of addition of elements in a module and so we put the symbol "+" into our language.
Within each module there is a distinguished element: the zero for the addition, so we will have a
constant symbol "0" in the language. Then, for each element rER, we have the multiplication
by r, which is simply an endomorphism of the underlying abelian group of the module;
therefore we add to our language a function symbol for each element of the ring. Our modules
will be right modules and I will use the normal notation "(-)r" for this function symbol.

We want to be able to use our language to define natural subsets of structures. In the
context of fields, examples are the sets of those n-tuples which satisfy a given system of
polynomial equations - that is, the subvarieties of affine n-space. To be able to define such
subsets, we need some "unknowns" or variables: u, v, w,vo,v,,... ; often we will allow
ourselves to use parameters from a given structure in addition to these. With what we now have
to hand, we can build up terms: polynomials in the case of fields; R-linear combinations in the
case of R-modules. Thus a typical term in the module case may be brought to either the form
"0" or to the form "v,r,+v2r2+...+vrn" (or just 1, viri for short), where the ri are
elements of the ring and the vi are variables: if we were allowing parameters in the formulas,
then some of the variables might be replaced by (symbols for) elements from a certain module.

Having defined the terms, we may define the most basic formulas. I n modules there are no
special relation symbols (such as "5") to deal with and so we simply add "_" to our language,
then define the atomic formulas to be those expressions of the form to=t, where to and t,
are terms. In the module case such an expression may, of course, be simplified to one of the
form 1, viri=0.

Given an atomic formula ip such as that above and given any module M, one may consider
ip as defining the subset of Mn consisting of all n-tuples which satisfy it. This subset will in
fact be a subgroup, since it is the solution set for an R-linear equation. For example, if we were
working over the ring of integers then ip could be v6=0, in which case, the set defined by tp
would be the set of all elements of M annihilated by 6.

We will be interested in sets such as these but also in their boolean combinations: if ip and
W are two formulas (by adding dummy variables we can assume that they involve the same
unknowns) then the formula lpny,, read as "ip and ip", defines the intersection of the
corresponding definable subsets (in any module), and is termed the conjunction of ip and W
(e.g., v6=0 A v4=0 defines the set of all elements annihilated by 12). Repeated conjunction
will be denoted by use of "A" (in the same way that "E" is used for repeated addition). So now
we have expanded our notion of definable subset to encompass solution sets of systems of R-
linear equations.

If ip is a formula, then the complement of the subset it defines (in any given module) is
defined by the formula -np, which is read as "not ip" and is called the negation of LP (e.g.,
vs0 - being i(v=o)).

Since unions may be obtained by use of intersection and complement, it is not necessary to
introduce them separately, but it is useful to have a notation for them; so we write lpv .p, read
as "ip or y," and called the disjunction of ip and y,, for the formula i(-iip A -up) which
defines the union of the sets defined by ip and W.

The formulas which may be obtained from the atomic formulas by applying n and 1 (and
v) are the quantifier-free formulas (e.g., v6=0 A v2x0 A U3* 0). We see in that in
modules these define precisely the boolean combinations of solution sets of (systems of) linear
equations. These correspond to what are termed the "constructible" sets in algebraic geometry,
and in that case one need go no further on account of the Chevalley/Tarski Theorem (see
[vdD8?]) which says that the image of a constructible set under a morphism is again
constructible.

In modules (as in most contexts) life is not so simple (though I use the word with
trepidation!). The problem is that even the most straightforward morphisms between modules -
namely projections from one power of a module to another - may take a subset defined in the
above way to one which is not so defined.
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For example, suppose that we are working with modules over the ring, 71, of integers. Let
us consider 2 as a module and look at the subset of 71x71 consisting of all pairs (a,b) with
a=b2: this is just the subset defined by the quantifier-free formula vl=v22. If we project to
the first copy of 71, then the image of this definable subset is the set of all even integers, and it
is easily seen (7l is torsion-free) that this set cannot be defined by a quantifier-free formula.
In fact the natural way to define this set is to use an existential quantifier - for it is the set of all
elements of 7171 which satisfy the condition expressed by the formula 3u2 (1)1= V22).

Thus we are lead to expand our notion of formula by saying that if tp is a formula and if v
is a variable then 3v ip is a formula, read as "there exists v such that ip" (no matter if the
variable v does not occur (unquantified) in ip; for then the prefixing of the existential
quantifier simply has no effect). For example v1 = v22 becomes 3v2 (v1 = v22). As is usual,
we call "3v" an existential quantifier. The universal quantifier "Vv" ("for all v") need
not be introduced separately since by t.p and n3v nip define the same set. In terms of definable
sets, the existential quantifier corresponds to projection. For example, in the language of fields,
the formula 3v (vw=1) defines, in any field K, the projection to the first coordinate of the
subset {«p : up=1} of K2.

Finally we say that a formula is an expression built up from our atomic formulas using
n, n, 3 (and v, V, -*, H as derived symbols: ip-*tp ("tpimplies tp") being nipvy; ipHtp
being (gyp By the language LR will be meant the set of all these formulas.

Any formula tp may be brought to an equivalent formula in normal form which has the
shape: a string of quantifiers followed by a quantifier-free formula which latter is called the
matrix of ip - a singularly appropriate term in modules, as it turns out!

A word on reading formulas: "n" has first priority; then "n"; then "v"; then and
"H "; then "3" and "b'". Thus, for example nip v tp means (nip) v W. Brackets and spacing
will be used to increase readability.

Given a formula ip, one commonly displays those variables which may be substituted for -
these are called the free or unquantified variables - and one writes tp(v), ip(v1, v2 ), ip(u),...
as appropriate. For example, the formula wr=v has both variables v,w free; the formula
3w (wr=v) has only v free. The formula Vv(vr=0) A 3w (ws=v) has only u free but
also, that variable occurs free only in the second conjunct so, when we substitute an element for
u in the formula, it is only the last occurrence which is substituted for. This is in accordance
with a common-sense reading of the formula, which recognises that the first conjunct is a
sentence - an expression with no variables free, which makes sense as it stands and so in any
given module is either true or false. This is in contrast with the second conjunct, which
requires a value to be assigned to its free variable before it becomes a statement. The
replacement of "v" in its first two occurrences by some other variable would not, in any
essential sense, change the formula and would be good practice: indeed such inessential changes
which increase readability will often be made without comment.

Given a formula ip(u), a module M, and a tuple a in M and which matches u, we write
Mkip(a) if 5 lies in the subset defined by ip. A number of points are to be made. The subset
defined by ip is of course a subset of Mn, where n=Z(u) (by Z(u) is meant the length of the
tuple u): this subset is usefully denoted .p(M). Assumptions such as the matching of a and U
for length normally will not be made explicit and may be assumed. In saying that the tuple 5 is
in M, I mean that the entries of 5 lie in M. One may regard ip(a) as a formula which
involves the entries of a as parameters (the entries of 5 replace occurrences of entries of
u), and so may read "Mktp(o)" as "M satisfies .p(5)" (also: "a satisfies i.p in M") for, if
ip(a) is read in a common-sense way, then we see that a lies in tp(M) iff the sentence ip(a)
is true in M. Similarly, if 6 is a sentence - that is, a formula with no variables occurring
free - then one writes Mk6, saying that M satisfies 6, if the sentence 6, when interpreted
(read) in M, is true. If 1) is a, possibly infinite, set of formulas (a type, for instance), then
define 4'(M)= fl{ip(M): tpEp}.

Example 1 Let us take the ring to be the ring of integers: then the modules are just the
abelian groups. Although the language for 71-modules strictly contains that for abelian groups
(which has just 0 and +), nevertheless any formula in the first language clearly is equivalent



Chapter 1: Preliminaries a

to one in the second language (multiplication is just repeated addition) and so the two languages
are "equivalent".

Here are some properties of a 2-module which may be expressed by a sentence or a set of
sentences:
(i) M has an element of order 2: M1= 3v (v2=0 A V* 0).
(ii) M is torsion-free: Mk{VV (un=O4u=0):nE2,nmo} (if I is a set of sentences

then we write M F F to mean M k a for each a E 1).
NO M is divisible: Mk{Vu3w(u=wn): nE7l,n#0}.

There is a point which is sometimes lost sight of by those to whom these ideas are
unfamiliar. The range of the quantifiers 3u, Vu is over module elements only and, in
particular, not over elements (rather, function symbols) of the ring. Of course the ring itself is
a module, but the roles of its elements as members of this module and "as" function symbols of
the language are quite distinct.

As illustration, consider the property of being a torsion module. The obvious way of writing
this - VV 377 (77 x 0 A un = 0) - is not an expresssion of our language. Lest, one be tempted to
increase the expressiveness of the language one should be warned that in general, the more one
can express in a formal language the worse-behaved is the language: it is not enough to know
that some property may be expressed formally, one must be able to make effective use of that
information.

It will be shown below that there is no (less obvious) way of expressing "torsion" in this
language.

I have already alluded to the possibility of enriching the language by adding in constant
symbols for parameters (i.e., particular elements of a particular module). For instance, one
may have an element a and a set 8, both in the module M, and it may be that we are
interested in the relation between a and B. This relation could be described by specifying
those subsets, definable with parameters in B (one says definable over 8), to which a
belongs. One treats this formally by adding to the language a set of constants (or rather constant
symbols) which are to be interpreted as the corresponding elements of B. In practice, we make
no notational distinction between the constant symbols and the elements they are to represent. If
the original language is denoted L then this expanded language is denoted L8.

The idea which is described next is a key one. Its centrality is one distinction between
stability theory and more classical model theory (though it is of course important in the latter).
It is also well-suited to applications in algebra since it, in some way, generalises the notion of
isomorphism type of the substructure generated by a set of elements.

Given a tuple a in the module M and a subset B=_M, we will define the type of a over B
(in M) to be the collection of all those subsets of M which are definable over 8 and which
contain a. This gives the right picture but we must be careful here since, by subsets of M, I

mean subsets of Mn, where n is the length of a (we allow n to be infinite): thus, for
example, if a is a sentence then we regard the subset of Mn defined by a to be the whole of
Mn if a is true in M, otherwise a defines the empty set.

Exercise 1 Show that the type of or in M over B forms an ultrafilter in the boolean algebra
consisting of all subsets of Mn (77= 1(07)) definable over 8, ordered by inclusion. Recall that
an ultrafilter in a boolean algebra B is a non-empty subset of B which is closed under finite
intersections, is upwards closed, does not contain the zero 0 of B (that is a filter) and, for
every X E B, contains either X or its complement (but not, of course, both).

One may also define types to be syntactic objects as follows. Rather than concentrating on
the definable subsets, we consider the formulas used to define them, and say that the type of a
in M over B is: tpM(a/8)={ tp(U,b) : Mkip(a,b) where ip is a formula and b is in 8 ).
We will blur the distinction between these two ways of defining types by using "ip(U,b)" both
for the formula and for the set p(M,b) which it defines (assuming that "M" is clear from
context). Note that different formulas may define the same set.
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I should perhaps be a little more explicit in the definition just above. Suppose that the
tuple a is (aa)«<p: choose and fix a corresponding sequence of variables v=(ua)a<p
(since I allow a to be infinite and even uncountable, the language may have to be expanded with
extra variables). Then tpM(o/B) is to be regarded as a set of formulas in this fixed sequence of
variables, with ua always corresponding to a«. So, where in the definition one has
Mkip(o,b) and one actually means Mk p(a« ,...,aak,b) for suitable ai,...,ak, the formula to
be put into tpM(o/8) is p(u« ,...,vak,b).

When the context makes M clear or superfluous it may be dropped as a superscript. We
may drop set brackets from 8 if appropriate. When B is empty or (0) (clearly in modules
one has tp(-/O) =tp(-/0)) we write tpM(o) and simply refer to the type of 5 (in M).

The first sections of Chapter 2 are largely devoted to exploring, in the context of modules,
the sort of information that a type may contain.

Suppose that M <M' is an inclusion of modules. We say that this embedding is an
elementary one and write M<M' if, for every (finite) 5 in M, one has tpN(o)=tpM'(o).
One also says that M' is an elementary extension of M or that M is an elementary
substructure of M'. Since, by definition, the type of a in M includes all sentences true in
M, one has, if M<M' that, in particular, M and M' are elementarily equivalent - that
is, they satisfy exactly the same sentences of the language - and we write MeM'. Easy examples
(such as 2:2<:2) show that even if M<M' and M-M', it need not be the case that M is an
elementary substructure of M'. The elementary embeddings between structures give the most
natural category of structures, since they preserve both the definable subsets (if M <M' and w
is a formula, perhaps with parameters from M, then ip(M)=Mnip(M')) and those pairs of
formulas which define the same subsets (that can be expressed by a sentence - in fact every
sentence may be read as such a statement).

The (complete) theory of a module M is the set, Th(M), of all sentences of the language
which are true in M. In general a theory is any consistent set, T, of sentences of the
language: consistency means that no formal contradiction may be deduced from T
(equivalently, from any finite subset of T). A model of the theory T is any module M which
satisfies all the sentences in T: one writes MkT. Any theory of the form Th(M) is complete
in the sense that, for every sentence 6, either a or -16 lies in the theory.

One theory which will always be assumed to be in the background (included in any theory
considered) is the set of axioms for R-modules. Given the ring R, one may set down the axioms
(sentences) stating that (?, + , 0) is an abelian group (a finite set of sentences) and that the
elements of R act to form a ring of linear maps under pointwise addition and composition (can
be taken to be a finite set of sentences if R is finite, but not otherwise). (Exercise: write these
down.) The theory of R-modules certainly is not complete: Vu (u=0) is a sentence which is
true in the zero module but false in any non-zero module, so neither it nor its negation lies in
the deductive closure (set of logical consequences of) this theory (usually I don't distinguish
between a set of sentences and its deductive closure). Most of our work will be with complete
theories.

Let us summarise:
Th(M)={ a : 6 is a sentence and Mka );
Mod(T)=( M : MET) is the set of models of T;

MET iff N6 for each GET.
I F 1k - "1) proves 'P" - means that every formula in 'Y is a logical consequence of the set of
formulas T.
If C is a class of modules, write CET if each member of C satisfies each sentence in T.

Also, one says that a class is axiomatisable or elementary if there is a, possibly infinite, set
of sentences T such that the class is exactly the class of models of T. A class is elementary iff
it is closed under ultraproducts and elementary substructures.

An absolutely central result is the compactness/completeness theorem which links syntax
(formal consistency) with semantics (existence of a model). It says that if T is a theory (a
formally consistent set of sentences in some first-order language) then T has a model.
Reflecting our concentration on complete theories, will be our use of this theorem in the
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following form (obtained as a corollary by adding in new constant symbols corresponding to the
entries of u).

Suppose that 4(u) is a set of formulas consistent with the complete theory T (by this is
meant that, if is any finite subset of 4(u), then any, equivalently
every, model of T satisfies 39 At', Lpz(v): that is, the intersection of the corresponding
subsets, Lpz(M), is non-empty"). Then, given any model M of T, there is an elementary
extension M' of M and there is a in M' such that M'k 4(5): we say that M' contains a
realisation of CO.
Example 2 Take R=71 and let T be the complete theory of the module M= ®(7ln : n>-2)
where 7Ln=7l/n7L is the abelian group of integers modulo n - notice that M is a torsion
module.

Consider the set of formulas 4(v) = ("un x 0" : n ->1 } which says that "u" is a torsionfree
element. Any finite subset of 4 is clearly equivalent to a single formula, vno mo, where no
is the lowest common multiple of the integers appearing (we can be looser than this: take n, to
be the product of the integers appearing and note that consistency of vn1s0 certainly implies
consistency of the subset). Then certainly MI= 3v (uno x 0 ), since a generator b (say) of
71ne+1 satisfies bno m 0. Thus 4(u) is consistent with T. So, by the
compactness/completeness theorem, there is an elementary extension M' > M and an element
aEM' with M'k 4(a). Since anm0 for each n>-1, a is a torsionfree element of W. Since
M itself is torsion, one sees that it really was necessary to go to a proper elementary extension,
in order to realise the set 1. I have also justified my earlier claim that "torsion" is not a
property which can be axiomatised in this language: for M=_M'.
Exercise 2 Show that "all elements are n-torsion" is axiomatisable for any given n.

The compactness/completeness theorem is relevant also to the notion of type introduced
earlier. Let T be complete and suppose that R= Mk T. A (complete) 1-type over A (T is
understood) is a set, p(v), of formulas in the expanded language LA with at most the variable
v free, which is consistent (i.e., finitely satisfied in M) and which is a maximal such
consistent set. In terms of definable subsets, a 1-type over A is just an ultrafilter in the
boolean algebra of subsets (of M) definable over A. In order to specify the type p(v), it is of
course enough to give a subset of p(v) whose deductive closure, modulo the axioms of T, is
p(u) (i.e., give a filter base).

One may see that the set, 4(u), in the example above does not generate a complete type in
this way: given n32 it is consistent to add to 4(u) a formula saying that v is divisible by
n, but it is also consistent to add the negation of this formula (exercise!): thus the deductive
closure of 4 is not maximal consistent (it is a filter but not an ultrafilter).

In the same way one may define n-types (types in n free variables) and even I-types
for any index set I (such as an ordinal).

The notation SnT(A) is used for the set of n-types over q (the "T" is dropped when
convenient) and SIT(A) is used for the set of I-types over A. Actually, the set S. T(/1)
comes equipped with a natural topology which has, as a basis of clopen sets, the
OLP=( pESnT(A) : tpEp ) for ip a formula. (Thus, types may be thought of as neighbourhood
systems, of actual or potential points, in the topology which has the definable sets as its clopen
sets.) This space may be seen (exercise) to be a totally disconnected Hausdorff space which, by
the completeness/compactness theorem, is compact. At most points, I will consider SnT(A)
simply as notation for a set but, for some purposes, the topology is used explicitly. The notation
ST(A) is used for SnT(A) when n is fixed but unspecified. A notation for all the types in
finitely many free variables is DT(A)=U(SnT(A): nEw, n_>1).

If A=-B(=MkT) then one may say more (define a finer topology) using elements of B as
parameters than using just those of A, and there is indeed the obvious restriction map
qr-4 qt/1, which is a continuous surjection from S(B) to S(A) (here qtA is just gnLA).
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If gES(8) is such that qrA= p, then we say that q is an extension of p to 8. Every type
over A has at least one extension to a type over B.

The import of the completeness theorem here is this. The two ways in which types have
been introduced are equivalent: a set of formulas in LA is a type (modulo T) iff it is the type
of a tuple in some model (of T, containing A). There is another way of seeing types: as orbits,
under the automorphism group, of a saturated model (see below).

A module M is weakly saturated if, for every nEw, every type of SnT(0)
(=SnT(O)) is realised in M (here, T is the complete theory of M). Given an infinite
cardinal K, the module M is said to be K-saturated if for every A=-M with IAI<K the model
M is A-saturated: that is, every type in S1T(A) is realised in M. Saturation is a kind of
compactness property of models. It is a fact that, given A M kT, there is an elementary
extension, M', of M which is A-saturated (hence, exercise, there is one which is K-
saturated): it may also be supposed that M' is A-homogeneous, in the sense that any two n-
tuples have the same type over A iff they lie in the same orbit of the group, AutAM', of
automorphisms of M' which fix A pointwise. Beware that there are a number of more or less
strong notions of "homogeneity": that above is what I will mean by the term. More generally,
say that M is K-homogeneous if, whenever a and 5 are (matching) sequences of elements
from M, of length strictly less than K and with the same type, then there is
f EAutM (=Auto M) with fa=b. If M is any module and K any cardinal, then there is a K-
saturated, K-homogeneous elementary extension of M. By the unadorned term homogeneous, I
mean (=0-homogeneous).

One has that !'t0-saturated implies weakly saturated but (exercise) not conversely. Also, if
a<K, then a K-saturated module realises all a-types over sets of cardinality strictly less than
K

A model is prime if it elementarily embeds in every model: a model is atomic if every 77-
type realised in it is isolated (in the space Sn(o)).

Finally, the reader should be introduced to the monster model. This is a model so saturated
that all "small" situations may be found within it. To be a little more specific, one chooses a
cardinal K which is very large (and has very large cofinality) - say an inaccessible if such
exists, or simply a cardinal much larger than any we may care about. Let the monster model
M be any K-saturated model of the complete theory we are working with. All work is then
assumed to take place inside M. Thus, in saying that M is a model of T, one implies that M is
embedded as an elementary submodel of M. There may also be non-elementary embeddings of M
in M, but then the image of such an embedding would not be counted as a model - it would only
be algebraically isomorphic to a model. Similarly, if A is a set (of parameters) then A is
supposed to be a subset of M and, in particular, A comes equipped with its type in M. The
monster model perhaps takes a little getting used to, but it is very convenient: an alternative is
a more category-theoretic approach (see §5.4).

Since M is extremely saturated, equivalence of "situations" is equivalence under the action
of the group of automorphisms of M. Thus two tuples have the same type over A iff there is an
automorphism of M, fixing A pointwise, taking one to the other. Also, if f is an
automorphism of M and A=_M then there is induced a homeomorphism S(q)) S(fA) given
by pH fp={ tp(U,fa) : tp(u,a) E p(u) ). Clearly c realises p iff fc realises fp.

I finish this section by stating, for ease of reference, some of the basic theorems (look for
them in the texts mentioned at the beginning of the section). They are stated for the particular
case of modules. By the cardinality of T is meant its cardinality as a set of formulas: so if
IRI=K then ITI=max(K, )t,).

Theorem 1.1 (Completeness theorem) If T is a theory and if 6 is a sentence, then
6 is true in every model of T iff T proves 6. o
Theorem 1.2 (Compactness theorem) If k is a set of sentences, then ' has a
model iff every finite subset of I has a model. In particular, if every finite
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subset of the set of formulas ''(U) is satisfied in the module M, then there is an
elementary extension of M and there is 3 in that extension such that 1(a) holds.
0

Theorem 1.3 (Upwards and Downwards Lowenheim-Skolem Theorems) (a) If K 3 ITS is
a cardinal and if M is a module of cardinality no more than K then M has an
elementary extension of cardinality K.

(b) If ITI_< K, if IMI_> K and if A is a subset of M of cardinality no more than
K, then there is an elementary submodule of M which contains A and is of
cardinality K. 0

Theorem 1.4 (Joint embedding property for complete theories) If M and M' are
models of the complete theory T, then there is a model of T which contains both M
and M' as elementary substuctures. 0
Theorem 1.5 (Saturated extensions) If M is any module then M has a K-saturated,
K-homogeneous elementary extension. 0

Theorem 1.6 (Prime models) Suppose that T is a countable complete theory. Then
the space of types, SnT(0), either is countable or has cardinality 2o. A model M
of T is the prime model of T iff every type realised in M is isolated. The
theory T has a prime model iff every formula extends to an isolated type (that is,
iff the isolated points are dense in S0T(0) for each nEw). In particular, if T is
countable with only countably many n-types for each nEw, then T has a prime
model. 0

1.2 Injectiue modules and decomposition theorems

On almost any page of this book, the reader will be able to find the term "pure-injective
module" (=algebraically compact module). These modules play a very significant role in the
model theory of modules: in some sense they are "typical" - see 2.27. They are generalisations
of injective modules and their properties reflect this. Indeed, in appropriate categories they
become precisely the injective objects.

Mc-), N A module E is injective if any diagram as given may be
completed as shown (solid arrows show given morphisms; circling

01

arrows denote commutative polygons). This is easily seen to be
equivalent to the condition that E is a direct summand in every

E V containing module (exercise - use pushouts or the homomorphism
extension property).

A module M over the ring R is said to be divisible if, whenever c is a right non-
zero-divisor, or right regular, element of R (i.e., for all rER, cr=O implies r=o),
the module M satisfies the sentence by 3w (v= we ). That is (exercise), M is injective over
embeddings of the sort cR, ) R with c a right regular element of the ring. Thus divisibility
is an elementary property (one which may be axiomatised in our formal language) and also
injectivity implies divisibility. For commutative domains, the converse - that divisibility is
enough for injectivity - holds iff R is a Dedekind domain. Therefore, for such rings,
injectivity is an elementary property. One of the results of [ES71] is that injectivity is an
elementary property iff R is right noetherian (i.e., has the ascending chain condition - acc
- on right ideals).
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Example 1 Take R=71. The (direct-sum-) indecomposable injective modules are the module
Q of rationals and, for each prime p, the Prefer group 71poo. The latter may be described as
the limit (union) of the sequence of natural embeddings
71p, ) 71p2+72p3C 4... 47lp7' )... (nEw, n.>1). Note that Q is torsion-free and
71poo is a p-group with elements of unbounded finite order.

It has long been known (see [Kap54; p74]) that every injective abelian group is a direct
sum of copies of these groups.

Example 2 Recall that R is semisimple artinian iff it is a finite product of full matrix
rings (of various sizes) over (various) division rings Di: say R= X,", Mn,(Di). Over such a
ring, every module is injective and, conversely, this property of the modules characterises the
semisimple artinian rings.

It is well-known (see any treatment of these rings) that every module over such a ring is a
direct sum of indecomposable (injective) modules and there are, up to isomorphism, exactly n
(as above) indecomposables: to each simple component ring Mni(Di) of R there corresponds
the (simple) minimal right ideal (row) of this matrix ring.

An embedding M-1---.> M' is essential if, for all morphisms M'---- > M", if gf is monic
then so is g. So, for example, if M'=fMeM, for some M1# O then, taking g to be the
projection from M' to fM, one sees that f is not essential - in fact this is the antithesis of an
essential embedding. An essential embedding may be thought of as one where the codomain sits
"tightly" over the image of the morphism.

It is easy to check (exercise) that, with notation as above, f is essential iff, for every
nonzero m'EM', there are mEM and rER such that m'r=fms0 (this relation means that
if m' is sent to zero by a morphism then so must be the element m'r of M). That is, f is
essential iff for all nonzero m'EM' one has m'R n fMs0. For example, the (canonical, or
indeed, any) embedding 2 , ) Q is essential.

The module E is an injective hull (or envelope) of M if E is a minimal injective
extension of M: that is, E is injective and, if MSE'SE with E' injective, then E'=E. If
the context requires one to be more accurate, one says that the embedding M, E is an
injective hull.

Theorem 1.7 [Ba40], [EcSc53] Every module M has an injective hull,
M< ) E(M). This module is unique up to M-isomorphism (that is, if E' also is an
injective hull of M then there is an isomorphism between E' and E(M) which
fixes M pointwise). The inclusion M' E(M) is a maximal essential extension
of M (that is, the inclusion M' ) E(M) is essential and, if E(M)--' M' is not
an M-isomorphism, then the composition M) M' is not essential). o

Example 3
(i) Take R=7L. Then: E(71p,)=71poo; E(26=22 e:Z3)=22ooe2Z300;

E(71)=Q=E(7l(p)), where 71(p) is the localisation of 2 at the prime p -
T(p)=(m/nEQ : ptn ).

(ii) Take R=714 to be the ring of integers modulo 4. Then: E(714)=714; E(722)=714.

It is in general the case that E(M(D N)=E(M)e((N), where the equality sign is
interpreted in the natural way (namely as Than be chosen to be"). The hulls introduced later
will not commute with direct sums, unless these sums are understood in the right category.
This is because they are defined with respect to a certain surrounding context. What will be
seen later is that which remains after the special features of the injective ("quantifier-free")
case have been subtracted.

The next result says that two injectives, each embeddable in the other, are isomorphic.
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Theorem 1.8 [Bu65] Suppose that ip: M' N and V:#---> M are embeddings
between injective modules. Then M = N.

Proof We have N=X®Lp(M)=X®ip(I,(N)®M')
(say)= X®(LPW)(X)®(wW)Lp(M)®Lp(M')=X®(tpi)(X)®(Lpy,)2(X) e... ®(Lp.)n(X)®....
Set Y to be the submodule (ipip)(X) ® (ipip)2(X) ®... ®(Lptp)n(X) e ... of Lp(M). We may
write ip(M) as E(Y) e Z say. Note that E(Y) X ® E(Y) (take the first factor out from the
injective hull). Then as required. n

In these notes we will be concerned not just with types, but with parts of types consisting of
certain kinds of formulas. In the injective case, the formulas of interest are the A-atomic
ones. These are the conjunctions of atomic formulas. In the context of R-modules, a formula
e(u) is A-atomic iff it has (or is equivalent to one of) the form A,_, ti(u)=o where
ti(u)=0 - a typical atomic formula - is a linear equation (possibly involving parameters) with
unknowns from U. In other words, a A-atomic formula is a matrix equation of the form
xH=o, where H is a rectangular matrix with entries in R and x is a row of free variables
and parameters (and 0 is a zero tuple).

A A-atomic type is a consistent set of A-atomic formulas - namely one with every finite
subset having a solution (to require maximal consistent as in the definition of type would be
inappropriate). If o is in M and 8=_M then the A-atomic type of a over B is
tpo(a/B)={ e(U) : e(v) is a A-atomic formula and Mke(a) ) (we need not mention M, since
truth of quantifier-free formulas does not depend on context).

Essential embeddings were defined above, both in terms of morphisms and in terms of
elements. Now we see how they are defined in terms of A-atomic types.

Proposition 1.9 The embedding i:M'--' M' is essential iff, for all aEM', the
A-atomic type, tpo(a/M), of a over M is maximal with respect to inclusion in
the set, (tpo(a1/M) : a1EM1, M, any extension of M), of all possible A-atomic
types over M.
In particular, every element of E(M) has maximal A-atomic type over M.

Proof It is immediate from the element-wise reformulation of the definition of "essential"
that, if aEM', then the em bedding is essential. Suppose that a1EM,>M is
such that tpo(a1/M) = tpo(a/M).

Define M+oR-M+a1R by: frM=idM; fa=a1. This is well-defined since, if
m+ar=0 (where mEM, rER) then "m+vr=0"Etpo(a/M) and so, by assumption,
"m+vr=0" E tpo(a1/M) - that is m+a1r=0, as required.

Now fj is monic so, since j is essential, f must be monic.
Let "ur+m=0"Etpo(a1/M): that is, suppose a,r+m=0. Then f(or+m)=0 so, since f

is monic, ar+m=0. In other terms "vr+m=0" E tpo(a/M). Hence tpo(a/M)=tpo(a1/M)
and maximality of tpo(a/M) is established.

4# Suppose that one has i:M - M' and M' s-> M" with fi monic. It must be shown that
f is monic.

Let aEM'. If "vr=m"Etpo(a/M) then, from ar=m (really, "=i.m"), one deduces
fa.r=m. Thus tpo(fa/M) tpo(a/M) (here I am identifying M, iM, and fiM - such
identifications are convenient and commonly will be made: indeed, this one is implicit even in
the statement of the result). By maximality of tpo(a/M) it follows that
tpo(fa/M)=tpo(a/M).

In particular, if fa= 0 then "v=O" is in this A -atomic type, and so a=0. Thus f is
indeed monic, so i is essential, as required. 13
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Exercise 1 Show that the statement of 1.9 holds also for tuples in place of single elements. (It
is quite typical that the properties of 1-tuples are not essentially different from those of longer
tuples.)

Lemma 1.10 The class of injective modules is closed under direct products and
direct summands but is not, in general, closed under direct sums.

Proof The first statement is an easy generality. For an example establishing the second
statement, see Ex.16.2/2 for instance. o

Theorem 1.11 [Mat58; 2.5] The following conditions on the ring R are equivalent:
(i) R is right noetherian;
(ii) every direct sum of injective R-modules is injective;
(iii) every injective module has an essentially unique decomposition as a direct sum

of indecomposable injective submodules. o

This theorem links a finiteness condition on the lattice of right ideals with a decomposition
property in a certain class of modules. Theorems of this sort are a major theme in these notes.

The rather peculiar phrase "essentially unique" occurs in the theorem. The point is that if
one has some decomposition M= ®IMi, where the Mi are indecomposable, then it is almost
always the case that there are other ways of decomposing M as a direct sum of indecomposables:
M= ® JN j say (for example, in the 2-plane there are many choices for pairs of coordinate
axes). "Essential uniqueness" means that one may infer the existence of a bijection tt:1-> J
such that Mi - N'rti for each i E 1.

The kind of decomposition appearing in 1.11 is rather strong. Since a direct sum of
injectives is not in general injective, one might reasonably ask when an injective module may be
expressed as the injective hull of a direct sum of indecomposable injectives. It is worth noting
that, in such a decomposition, any finitely many factors may be separated out as direct
summands, so the adding of "injective hull of" is perhaps not a great leap in complication. In
[Pop73] these are called KRSG-decompositions ("Krull-Remak-Schmidt-Gabriel) and one has
the following theorem generalising 1.11 (although, by working in appropriate categories, one
may obtain 1.12 as a corollary of the general version of 1.11).

Theorem 1.12 [Mat58; 2.4 Remark (2), 2.7], [War69a; Thm3], [Gab62] The
following conditions on the ring R are equivalent:
(i) every right ideal, I, of R may be written as the intersection of two right

ideals, the first of which is n-irreducible, the second of which strictly contains
I;

(ii) every injective R-module has an indecomposable direct summand;
(iii) every injective R-module E has the form E((D Ei), where the Ei are

indecomposable (injective) direct summands of E. This decomposition is
essentially unique.

These conditions are satisfied if every R-module has Gabriel dimension so, in
particular, if R has Krull dimension. o

For the above result, see [Pop73; §§5.3, 5.5]; also, for Krull and Gabriel dimension, see
[GR73], [GR74]. Krull dimension is a finiteness condition on the lattice of right ideals of the
ring (see §10.5). It will also be seen (§4.3) that every injective module has the form
E(®iEi)9Ec where the Ei are indecomposable injectives and Ec has no (nonzero)
indecomposable direct summands. (The zero module will be counted as indecomposable or not
(usually not), depending on which convention simplifies any particular statement.)
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The reader is likely aware of decomposition theorems similar to Matlis'. There are
generalisations to 1-injective modules (see Ex3.2/2). There are similar results for: modules
over rings of finite representation type (Chpt.11); finitely generated modules over right
artinian rings (Chpt.11); projective modules over right perfect, left coherent rings (Chpt.14).
Another example is abelian groups of bounded exponent: any abelian group of exponent n may
be written as ® { 7l pk I n) for suitable cardinals Kp k.

All of these, bar the finitely generated modules over right artinian rings (which require a
different sort of treatment), will be derived as special cases of Garavaglia's decomposition
theorem 3.14 for totally transcendental modules.

That theorem, generalisations of it, and detailed analyses of the indecomposable factors
which occur, constitute one main strand which runs through these notes. It is a strand which
weaves together model theory and algebra. A major motivation for such decomposition theorems
is that they should be stepping stones towards a good understanding of the structures under
consideration.

Before finishing this section, I will say just a little about indecomposable injectives
themselves, for one should have some knowledge of the building blocks, as well as of the ways in
which they may be put together.

Suppose that E is an indecomposable injective and let a be a non-zero element of E. The
A-atomic type of a is determined by its annihilator ann(a)={ rER : ar=0 ) - a right ideal
of R. Since E is indecomposable it is not difficult to see, using E(M(D N)=E(M)®E(N), that
ann(a) is n-irreducible in the lattice of right ideals: that is, if ann(o)=SnK, where J,
K are right ideals, then either ann(a)=J or ann(a)=K. Conversely, if I is a n-irreducible
right ideal, then the injective hull of 1+1 (in, say, k1/I) - an element whose annihilator is
exactly I - is indecomposable. Furthermore, with aE E as above, if b is any non-zero
element of E then, by 1.9, the elements b and a are very closely linked. These points will be
generalised and expanded upon below.
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CHAPTER 2 POSITIVE PRIMITIVE FORMULAS AND THE SETS THEY
DEFINE

If K is an algebraically closed field then the sets of n-tuples which may be defined by
positive quantifier-free formulas are precisely the sub-varieties of affine n-space. The
Chevalley-Tarski theorem says that every definable subset of affine n-space is a boolean
combination of such sub-varieties (is "constructible"). The point is that the existential
quantifiers introduced by projection may be eliminated: one says that algebraically closed fields
have (complete) elimination of quantifiers.

For comparison one may consider the theory of groups. Here the definition of a subset may
require arbitrarily large numbers of alternations of quantifiers, and there seems to be no hope
of understanding the shape of a general definable set.

Modules are definitely closer to algebraically closed fields than to groups in this regard.
For modules have a relative elimination of quantifiers: it turns out that every definable subset
of a module is a boolean combination of "pp-definable" cosets. A pp-definable coset is simply the
projection of the solution set to a (not necessarily homogeneous) system of R-linear equations.
Therefore, such a coset is definable by a formula with only existential quantifiers prefixing a
conjunction of atomic formulas (a "positive primitive" formula): we say that modules have pp-
elimination of quantifiers. It is this fact which brings the model-theoretic and algebraic aspects
of modules close together.

This description of the definable subsets is the key to the model-theoretic analysis of
modules.

The reader should know that the pace of this chapter is rather leisurely so as to
accommodate a wide variation in readers' backgrounds. A number of examples are introduced
and many of these are developed further in the text. There are also quite a few exercises: many
are straightforward and are designed to give the reader a chance to test his or her understanding
of what may be unfamiliar material.

The first section is devoted to the sets defined by positive primitive formulas. Since they
are projections of solution sets of systems of linear equations, these sets are subgroups and
cosets of such subgroups. It is unusual for every subgroup of a module to be (so) definable, but
the set of pp-definable subgroups of any given module does form a sublattice of the lattice of all
subgroups of the module. A recurring theme in these notes is the effect of various finiteness
conditions which may be imposed upon the lattice of pp-definable subgroups. There are a
number of examples at the end of the section.

The second section concentrates on pp-types. These are descriptions of where (actual or
potential) elements lie, in the sense that they specify precisely those pp-definable cosets to
which such an element belongs. Associated to each pp-type is a certain (possibly infinitely)
definable subgroup which is a measure of the amount of information in the pp-type (the extent to
which it ties down an element). Although pp-types are simply the pp-parts of complete types we
will see later that, associated to them, are certain concepts and constructions which do not
depend on any over-theory. (For instance, it turns out (§2.6) that complete theories of modules
are built up from a common pool of "components". Moreover, the "building blocks" for
(sufficiently saturated) models of the various theories are copies of the "hulls" of pp-types
(§4.1).)

The notion of pure embedding (the pp-analogue of elementary embedding) and the
polynonymous pure-injective modules provide the subject matter for the third section. In these
notes the typical morphism between modules is a pure embedding and, although the pure-
injective modules are not (except in one sense) typical modules, they are the ones whose
structure is the most clear-cut. We see the first example of an equivalence between a finiteness
condition on the lattice of pp-definable subgroups and an algebraic structural condition (2.11).

The key result - pp-elimination of quantifiers - which allows us to begin to understand the
definable subsets of modules, is established in the fourth section. The section opens with
Neumann's Lemma (2.12) - a result used many times to prove consistency of a type. Then it is
shown that: any first-order statement about a module is equivalent to declarations about values
of indices of various pp-definable subgroups, one in another; within any given module, every
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definable subset is a finite boolean combination of pp-definable cosets. It follows that every type
is determined by its pp-part (2.20).

A crop of rather immediate consequences is reaped in the fifth section. These include a
number of results which were obtained, but with considerably more labour, before the tools of
the fourth section were available. In particular it is seen that: the direct sum and direct
product of any family of modules are elementarily equivalent (2.24); two modules are
elementarily equivalent iff each embeds purely in a module elementarily equivalent to the other
(Exercise 2.5/3); any pure embedding between elementarily equivalent modules is an
elementary one (2.26).

Modules ("representations") have their origin in the idea of investigating a group, ring or
other structure by studying its action on various vector spaces or abelian groups. Thus it is
often the category of modules, rather than individual modules in isolation, which is of interest.
It is fortunate, therefore, that we may readily compare and relate modules which are not
necessarily elementarily equivalent. In fact there is a natural ordering (§6) on complete
theories of modules, under which there is even a "largest" such theory (2.32), with all
complete theories of modules being "components" of this one.

Frequently it is a technical advantage to assume that we are dealing with a class of modules
which is closed under product. The fact that this often entails no real loss in generality is
another outcome of the considerations in this section and of §4.4.

Our most useful source of examples is the theory of abelian groups. The concepts and
results that we need are given in a supplementary section. One purpose of that section is to
allow the reader to verify, without difficulty, any unsupported statements which I make in the
course of using abelian groups as examples. The section also includes: the particularly simple
form that pp formulas take over a principal ideal domain (2.711); the complete classification of
indecomposable pure-injectives over discrete rank 1 valuation domains (2.713) and, indeed,
over any ring all of whose localisations at maximal primes are fields or discrete rank 1
valuation domains (2.7110); the relevant local/global principle (2.718, 2.719). There is also
the result that every module over a commutative ring is an elementary substructure of the
product of its localisations at maximal primes (2.715).

Finally, there is a supplementary section in which I indicate what has been done on modules
in languages other than the finitary first-order one which is used throughout these notes.

2.1 pp formulas

The formula ip (=ip(u)=ip(ui,...,un)) is pp (short for positive primitive) if it is
equivalent to one of the form 3w1....,wl A,i, (E;", virij + 1k t, wkskj = 0) with
rtJ,skjER. This formula may be re-written using matrix notation as:

( r» - - -
rim'\

3wj,..., wl (u1 ... un w1 ... w1)
rni - - - rnm
S11 . . . Sim = 0

\ e11 . . . elm l
Here, as elsewhere, " 0 " denotes a zero matrix of appropriate size. I n a more compact notation,

this becomes 39 (v w)H=0 where the matrix H has a natural block decomposition (S)
say. So yet another way of expressing this pp formula is "3w (UR=-wS)" where R,S are
the above matrices.

If we are allowing parameters from a set A in our formulas then a pp formula is as above,
except that the zeroes on the right hand side of the equation(s) may be replaced by elements of A
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(actually, by linear combinations of elements of A, but there is no harm in assuming, if
convenient, that our sets of parameters are modules).

Algebraically, a pp formula expresses solvability of a system of linear equations. Put in
terms of definable sets, a pp formula defines an image under projection of the solution set for a
system of R-linear equations (the system is homogeneous if there are no extra parameters).

In most parts of these notes I will use pp formulas rather than the corresponding matrices.
Those who are not very comfortable with this approach may easily translate everything said into
terms of matrices and solution sets. In fact such (occasional) translation is a useful exercise
since it often reveals what "purely algebraic" situation is being generalised. For instance, the
representation 3W (UR=-OS) suggests that one may think of pp formulas as generalised
divisibility statements.

I will now give some examples of pp formulas and, whilst doing so, I will take the
opportunity to establish some terminology.

Example 1

(i) Annihilator conditions: if rER then the formula yr=0 is satisfied by an element a of a
module M iff r annihilates a (i.e., ar=0).

(ii) Divisibility conditions: if rER then the formula ip(v) = 3w (v=wr) (which in matrix

notation is 3w (v w).
t-r =0 issatisfiedby a E M - Ml=ip(a) - iff a is divisible

by r in M - that is, iff there exists b E M with a=br.
In this second example it matters very much what module M is being considered. For

instance, the element 2 is divisible by the ring element 2 in the abelian group 2! of
integers, but this element is not divisible by 2 in the group 27 of even integers. It is
this kind of dependence on context which makes consideration of conditions expressed by pp
formulas more subtle than the "purely algebraic" ( =quantifier-free) conditions
exemplified by (i).

(iii) Tuples of elements tend to display behaviour no more complicated than that of single
elements (for some explanation of this see §10.T). So, generalising (i), we may let
rl,...,rn be elements of the ring and consider the pp formula
Lp(v1,...,vn) e It=', viri=0, which expresses a generalised annihilator condition. In

another notation, if a=(a1,...,an) is an n-tuple from or in M (that is, whose entries
lie in M) then Mkip(a) iff a.rT=0 where r=(r1...rn) and "T" denotes transpose.

The use of the word "equivalent" in the first sentence of this section is somewhat ambiguous.
It could mean equivalent modulo the particular complete theory under consideration, or it could
mean equivalent in all modules (i.e., modulo that theory common to all R-modules). In fact the
term will normally, but not always, be intended in the former sense: whenever there is some
danger of ambiguity I will be more explicit.

Our first result establishes a simple but fundamental property of pp formulas.

Lemma 2.1 (Linearity of pp formulas) Suppose that ip(U) is a pp formula. Then:
(i) Tp(0) holds;
(ii) ip(a) and tp(b) implies ip(a-b);
(iii) if rEC(R) - the centre of R - then ip(a) 4 sp(ar), where

an)r=(a,r,...,anr) (it is enough that r commute with all the elements
of R appearing in ip).

Proof This is an easy computation which should be performed by the reader (in his or her
choice of notation). o
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If we think in terms of definable sets, then the first two parts of 2.1 are obvious, since they
simply state that for any module M the set defined by tp is a group - and this is clear since
tp(M) is a projection of the solution set of a homogeneous system of linear equations (and that is
a group). Having observed 2.1, we turn to the subsets defined by pp formulas.

Corollary 2.2 Let tp=tp(i), kp=w(U) be pp formulas, let l=1(u) be the length of
U and let M be any module.
(i) tp(M)=(0EMI: Mktp(a)) is a subgroup of Ml (in fact it is an (EndM,C(R))-

sub-bimodule of Ml via the diagonal action).
tp(M) is termed a pp-definable subgroup of M or, more accurately, a
subgroup of Ml pp-definable in M.
(In [Zim77] these are termed "endlich matriziell" and in [GJ73] they are called
"subgroups of finite definition".)

(ii) Suppose that we substitute specific values, a, for the last l-k variables in
U. Then the set tp(M,a)={TEMk : Mktp(T,a)) which is defined by the resulting
pp formula (with parameters) is either empty or is a coset of the subgroup
tp(M,0) of Mk: a pp-definable coset.
If M' >M is an elementary extension, then every coset of tp(M',0) which
intersects Mk non-trivially has the form T+tp(M',0) for some TEMk, and
the intersection of this coset with Mk is just T+tp(M,0): in particular, the
coset is pp-definable over (i.e., using parameters from) M.
Therefore if a pp formula defines a subgroup then that subgroup may be
defined by a pp formula without parameters.

(iii) The poset of subgroups of Ml pp-definable in M is a sublattice of the lattice
of all subgroups of Ml: in particular the former lattice is modular.

The intersection and sum are given by:
LP (M) n y,(M)=(tpAy,)(M)
tp(M)+ip(M)=(tp+-w)(M) where we define (ip+yi)(v) to be the pp formula
3u 3w (tp(u) A V(9) A v=u+w ).

(iv) tp(M,0) n tp(M,b), if non-empty, is a coset of (tpAW)(M, (where
l(a)=l(b)=Z(0)).
tp(M,a)+ip(M,b) is a coset of (tp+v)(M,0), provided both tp(M,a) and
p(M,b) are non-empty.

Proof (i) In view of 2.1, the only point to check is that pp-definable subgroups are stable
under endomorphisms of the module.

Therefore let fEEnd(M) and suppose that aEtp(M). Take tp(U) to have the form
3w,,...,wl virij + Gka, wkskj = 0). From Mktp(a) one deduces the existence of
b in M with A,'^, (1,,_ airi j + Ek L,

bkskj
= 0 ). Applying f to this conjunction of

equations yields A j=, (Et", fai.rij + Ek , fbk.skj = 0). Hence fa E T(M) as required.
(ii) Supposing tp(M,a) to be non-empty, take two elements T, T' in it. From tp(T,0)

and tp(T', o), 2.1 yields Conversely if To E tp(M, o) then from tp(T, 07) A tp(TO, o),
2.1 yields tp(T+T0,0). Thus tp(M,a) is indeed a coset of tp(M,o).

Let TEtp(M',0)nMk. Then bEtp(M',0) iff T-FE tp(M',0) iff 5 ET+tp(M',0), and note
that this last coset is just tp(M'-T,0) (with an obvious abuse of notation). Also, since M is an
elementary substructure of M', certainly M n tp(M'-T,0)=tp(M-T,0).

The last statement follows (for one may take T to be 0).
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a+b

anb

(iii) Surely it is clear that Lpnlp, resp. Lp+y,, defines the intersection,
respectively the sum, of ip(M) and y,(M).
Recall that a lattice (with operations "n" and "+") is modular if the
identity an(b+c)=(anb)+c holds whenever a>c. The point is that,
for any a,b in the lattice, the intervals [a+b,b] and [a,anb] are
isomorphic via the map

(iv) The argument is, by (ii) and (iii), just elementary group theory: let me consider the
second part only.

Take mLI),mW such that +ip(M,0) and yV(M,b)=m, +y,(M,0). Then it is
trivial to verify that ip(M,a)+ W(M,b)=mp+mW+(ip(M,0)+yi(M,0)). o

v=v
Example 2 Let R=71 and take M to be 712 ®719. The
lattice of pp-definable subgroups is as shown: beside each
subgroup is a pp formula which defines it (the formula is not

v6= o / v9=0 uniquely determined by the subgroup: for example the
formulas v6=0 and 31u define the same subgroup). Clearly
all the orouos shown are DD-definable: to see that there are no

v2=0 v3=0 more, use the fact (2.2(i)) that a pp-definable subgroup is
closed under endomorphisms.

v=o

The next example shows that a pp-definable subgroup need not be a submodule. The one
after shows that if p(v,0) is pp then it need not be the case that every coset of ip is defined by
tp(v,a) for some suitable choice of parameters or (here I am using the device of identifying a
formula with the set it defines).

Example 3 If the base ring is commutative then, by 2.2(i) every pp-definable subgroup is a
submodule. The simplest non-commutative rings are the simple artinian rings - full rings of
matrices over division rings. For example take R to be the ring of 2x2 matrices over some
field K and take M to be the ring, regarded as a right module over itself. Let e be the
matrix with "1" in the (1,1)-position and zeroes elsewhere. Consider the formula

Lp(v) _a 3w (v=we,,). Then Lp(R)=
K

K 0
0 )=

{
a
b 0

0:
a,bEK} - this is a left, but not a

right, ideal of R.
Example 4 To see that not every coset of ip(M,0) need be expressible in the form Lp(M,b)

for some b, take R=71, T=Th(712( a)) and let Lp(v,y) be v=y2. Then Lp(M,o)=o for any
MIT (for 0 is the only element divisible by 2).

Now, if aEMIT is non-zero, (a)=a+tp(M,0) is defined by the formula v-a=o but by
no formula of the form Lp(v,b) - for that would imply that a=b2=0.

We will be interested not just in the pp-definable subgroups, but also in arbitrary
intersections of them: such a subgroup consists of the common solutions to a possibly infinite
set of pp conditions and so is not necessarily definable in the sense that we have used the term.
We say that a set defined by possibly infinitely many formulas is /A-definable. The /A-pp-
definable subgroups are almost, but not quite, as well-behaved as the pp-definable ones (they
are considered in [Zim77]).

Corollary 2.3 Let $(U),'1'(U) be sets of pp-formulas; set Z=Z(v) (we allow the
possibility that Z is infinite), and let M be any module.

/ \
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(i) The set VM)=(5EM1 : MkLp(a) for all tpE'') is a subgroup of Ml which is
closed under the action of End(M).

(ii) If VU)=W,07) is a set of pp-formulas, possibly with parameters, then
VM), if non-empty, is a coset of I(M,0).
If M<M' then every coset of 1(M',6) which intersects "M" has the form
VM'-T,6) for some c in M, and the intersection of this coset with M is
just '(M-c,0).

(iii) 1(M)n'Y(M)=(' u`Y)(M);
T(M)+'Y(M)s(I+`k)(M), with equality if M is pure-injective (see §3), where
4P +T=(Lp+yW : ipEA1, ipEAY'), where AIP denotes the closure of under
(finite!) conjunction.
Similar statements hold for cosets.

Proof (i) Since '(M)=11 {ip(M) : LpE'') this part is clear from 2.2(i).
(ii) The proof is just as for 2.2(ii).
(iii) The truth of the first statement should be clear, as should be the inclusion in the

second (e.g., ''(M)+b =_ (I+`Y)(M)). Therefore, suppose that M is pure-injective, and let
0E ('P+k)(M). Then the set of pp formulas a=U1+U2) is
finitely satisfied in M (see below). Since M is pure-injective we may appeal to 2.8 below,
which provides us with a solution b,c in M (that is Mk0(b,c)). Then we have a=b+c
where and cE'(M), as required. a

Exercise 1 In the proof just above, I asserted that the set 0 of formulas is finitely satisfied
in M. Similar situations will be encountered many times so, for those not familiar with this
sort of argument, let me give the details (and some notational conveniences) on this occasion and
leave it to the reader to provide similar arguments in future.

A typical finite subset of 0 has the form:
(TV...,Lpn)U(W11--XPm)U{a'=U1+U2) where T,,...,ip77 E1, and or"U1,U2

are finite subsequences of 5, U U2 respectively. To say that 0 is finitely satisfied in M is
to say that, for every such finite subset, the sentence
3wJ,w2 (n,", tpi(w,) A A,:, W j(w2) A 07"=w1+w2) is satisfied in M, where our original
sequences O',U1,U2 have been expanded to a",wJ,w2 so as to include all the variables
appearing free in the various ipi,w j and where enough "coordinates" have been included so that
writing a"=w1+w2 makes sense. Moreover our usual conventions are in force, so writing
ipi(w1) implies that every free variable of ipi appears in wl but not conversely. One may
note that if we show satisfaction of this sentence then, certainly, we will have shown
simultaneous satisfaction of the original finite set of formulas.

Set tp= At:, ipi and v= As', y, j. Then what has to be shown is that the sentence
3w1,w2 (ip(w,) A tp(w2) A 5"=w1+w2) is satisfied in M. But this (for all lp,lp and finite
subsequences of a) is exactly what it means for o to be in 4 + )(M), and so are done.

Two points to note from all this are: our useful abuses of notation when dealing with
infinite sequences of variables and parameters; in proving that a set is consistent (or finitely
satisfied in a given module) one often replaces it and/or a typical finite subset with a (larger)
set whose consistency implies that of the first.

Example 5 This next example shows that the inclusion in 2.3(iii) may be proper. Take the
ring to be the ring 7l of integers and let T=Th(7l). Choose integers p,q with greatest
common divisor 1 (p,q* ±1). Let '(v)=(pnly: nEw) and `'(v)=(gnly: nEw).

Since 7Lpn+7Lgm=7l for all m,nEw, one has that 1 lies in ('+1k)(7l) (by definition of
this sum) since 1 satisfies each formula (pnl v, A qml v2 A 1=v,+v2 ). Yet

T(7L)+'Y(7l)=0, since no non-zero integer is infinitely divisible by p or by q.
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(Here the notation "I" (divides) has its usual meaning: alb iff there is c with ac=b.)
We must go to a (pure-injective) elementary extension of 71 before we find an element in

"l)" and one in " 1 " which add together to give 1. Let me describe such elements (making some
use of later results). Suppose that p=2 and q=3. The pure-injective hull, 2, of 2 is an
elementary extension of 71 and is the pure-injective hull of ®7l(p) where the sum ranges
over all primes p. Split off the first two summands, to write 71 as 71(2) ® 71(3) a X, where
X is the hull of the sum over all primes but 2 and 3. Then the element 12Z may be written,
with respect to this decomposition, as (1,1,x) for some xEX. Take a to be the element
(0,1,x) and let b be (1,0,0). Then a is divisible by every power of 2 and b is divisible by
every power of 3, and a+b = 1, as required.

Exercise 2 Show the following.
(i) Every pp-definable subgroup of RR is a left ideal.
(ii) Every finitely generated left ideal of R is a pp-definable subgroup of RR.

I n particular, if R is left noetherian then the pp-definable subgroups of RR are
precisely the left ideals of R (= the ideals, if R is commutative).

(iii) If R is weakly saturated and if every left ideal of R is right pp-definable deduce that R
is left noetherian. (Actually weakly saturated is far from necessary: for example the
condition that R be left coherent can replace it - see 14.16.)

(iv) Generalise the above, replacing RR by an arbitrary module.
Exercise 3 Characterise the rings over which every pp-definable subgroup in every module
is a submodule.

There now follows a long list of examples which are frequently used to illustrate various
points (and consideration of which has often suggested general results). Background concerning
the abelian groups is in §2.71.

Example 6 v=v v=v .\
(i) R=71, M=Zn (= 71/7177, nmo). I /

l v2-0 l v4=0

+

v2-0 v3=0

v=0 v2=0 \ /
24 v=0

26
718

The pp-definable subgroups of M are just its subgroups (for example, by Exercise 2(ii)
above). So one has, for instance, the above lattices of pp-definable subgroups.
Beside each pp-definable subgroup, I have given a pp formula which serves to define it. In

general, such a formula is far from unique. For example, in the case of 7l4 the formulas
v2=0 and 2kv (i.e. 3w (v=w2)) are equivalent, defining the same subgroup.

On the other hand, for M=712 ®714 the subgroup lattice
V=V

has the first shape opposite, whereas the lattice of pp-

v4= 0 definable subgroups is just the chain shown, as the reader
may easily verify (using 2.711, some of our more general

X1 v2=on2Iv results proved later or just 2.2(i)).\I/ In particular, rather different groups (or theories) may

v-0 have isomorphic lattices of pp-definable subgroups.
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Exercise 4 Find the lattice of pp-definable subgroups of 22 $ 2 8 (it is not
simply a chain - note that a new factor emerges - cf. Ex7(i) below).

(ii) R=21; M=72(p) - the localisation (m/n : m,nE7l, ptn) of the
module 2 at the prime p.

Once again (by Exercise 2(ii) above) the pp-definable subgroups of M are
just the Z(p)-ideals (there are far more 2(p)-ideals in the elementary
extension 2(p) of 2(p), though there are "no more" pp-definable
subgroups). Thus, for each nEw, we have the pp-definable subgroup
consisting of all those elements which are divisible by pn; together with the
zero subgroup these give all the pp-definable subgroups.

Thus there is a single infinite descending chain (opposite) of order type w+1.

NO R=72; M=Qd (the rationals regarded as an abelian group).
Then Q has only the trivial pp-definable subgroups: itself and 0 (to prove this consider
its endomorphism ring).

V=V (iv) R=2; M=7lpoo (the Prefer group of type p, p being a prime: one
may think of 7lpoo as the limit (union) of the system of canonical embeddings

I 7lp92p2 +21p3 'j... or as the multiplicative group of all pn-th
upn=0 roots of unity for nEw).

Yet again, the subgroups of M all are pp-definable. They are: the whole
group M and, given any nEw, the set of all elements of order dividing pn
(of course in any proper elementary extension of M there will be subgroups
- for example M itself! - which are not pp-definable).

I vp3=0 Thus there is a single infinite ascending chain of order type w+1.

(v) R=K[X]/(X)2=K[x : x2 =0] where K is a field and (X) is the ideal generated by X. I

will use J for the Jacobson radical (x) of R, where x is the image in R of X. Take
M=R.

V=V
Once again, invoking Exercise 2(ii) (note that R is commutative noetherian)
one has that the pp-definable subgroups are just the ideals. There are only

l xIv three of these: R itself; the Jacobson radical J = (x), which may be defined
for example by "xiv" or by "vx=0"; and 0.

V=0

(vi) R=K[X,Y]/(X,Y)2=K[x,y:x2=y2=xy=yx=0] where K isafield. Take M=RR.
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Yet again, the pp-definable subgroups are just the ideals. If K is
infinite then there will be infinitely many ideals of K-dimension 1.
The only ideal of K-dimension 2 is the Jacobson radical and this may
be defined by (v=v1x+v2y) or more simply by vx=0. The
ideals of K-dimension 1 are parametrised by the projective line
P(K)=Ku{oo) over K where, for kEP(K), weset Ik=(x+yk)
(100=(y)), this ideal being definable by (x+yk)Iv. (It should be
noted that commutativity of the ring has been used heavily.)

(vii) R=K[Xn: nEw]/(Xn: nEw)2=K[xn (nEw): xixj=0 (i,jEw)] where K is a field.
Take M=RR.

Now, in this case not every ideal is pp-
definable: for example the reader may try in

J I vain to define (xn : n is even). It is left as

/)(\/ A\ /\

i ; . , dim 2

(infinitely generated, so there is no choice
but to define it by an annihilator condition),
the pp-definable subgroups are the finite-
dimensional K-subspaces of R (that all of

\ ^XVA* 711% them are pp-definable is easy to see, but the

V dim 1 converse requires some work).

0

(viii) All the preceding examples have been over commutative rings. The simplest non-
commutative examples are: R a division ring; M an R-vectorspace. Then M is simply a
direct sum of copies of RR. By 2.1 it is clear that if ip(v) is a pp formula with one free
variable, then ip(R) is either R or 0. It then follows by 2.10 (a direct proof is not
difficult) that ip(M) is either M or 0. The situation for pp formulas in more than one
free variable is not much more complicated.
Somewhat more interesting behaviour is displayed by simple artinian rings - that is,
rings of the form Mn(D) where D is a division ring and Mn(D) denotes the ring of nxn
matrices over D. Take M=RR.
Then the pp-definable subgroups are easily seen to be just the left ideals - the sums of
columns of Mn(D).

Exercise 5 Compute the lattice of pp-definable subgroups of 22 4924 19 2 8 and that of

2E (2) $ 2(3) %2(5) (cf. the example below).

an exercise (perhaps better left until some
neneral results are availahle since a direct
verification 1s rather tedious, alternatively,
see [Z-HZ78; Thm5]) to show that, apart

\I \\V \/ dim n from R, 0 and the Jacobson radical J
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Example 7 (1,1) V=V

(1,2) 04=0

(2,2) v4=0A412U/ \
u2=0 (2,4) (0,2) U4=0 A21U

(0,4) v2=OA41U

(ii) The module is
theabeliangroup 7L(e)

(y(e)= 2)® (a))
U=U

(0,0) U=0

(1) Z4®a8
At each node is an element
which generates the

corresponding pp-definable
subgroup under the action
of the endomorphism ring.
If an element lies below
another then there is a
morphism taking the higher
to the lower.

(1,1)

The second diagram gives the 0 1) ft\ s)

210 310\ / \
'41U flu 910`

121U ,elU

The first diagram shows
the top of the lattice of
pp-definable subgroups.
The lattice continues
down, with the zero
subgroup at the bottom.

2.2 pp-types

VWI UIIIOIGJ VI CIGI IICIIIJ w Illl

pp-type generated by the
corresponding pp formula. (4,1) (2, 3) (1,9)/ \ / \ /

/ (4,3) (2,9) \

/ /

3)
(2,0)

(0 ,

Along the bottom, are the \ / /
coordinates of elements
which have infinitely

generated pp-types.

The infinitely generated
pp-types shown are exactly

5 the irreducible ones

(o,o) / (see 44.4).
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A partial pp-type is the specification of a filter of pp-definable cosets (a filter in the poset
of all pp-definable cosets, ordered by inclusion). In terms of formulas, we say that p(U) is a
partial pp-type if it is a set of pp-formulas, possibly with parameters, which is consistent
modulo whichever theory is being considered. Here "v" may be a tuple of arbitrary length. As
in the first definition, I will usually make the tacit assumption that partial pp-types are
deductively closed: closed under finite conjunction (intersection) and implication of pp formulas
( "upwards closed"). In contrast with complete types, we do not require that a (partial) pp-type
be an ultrafilter in the poset of pp-definable cosets. A partial pp-type which has no extra
parameters is a filter of subgroups, so certainly is realised (by the zero tuple). To be
inconsistent, a deductively closed set of pp-formulas must contain two formulas which define
different cosets of the same subgroup.

In the definition of partial pp-type a context (complete theory) is implicit but we will see
that pp-types and their associated structures have an existence outside such a specified context
(cf. §4.1) and we should think of them as being associated with the category of modules itself (cf.
Chapter 8).

If c is in M and if 4=_M then the pp-type of c in M over A is the filter consisting
of those cosets, pp-definable over A, to which c belongs: ppM(c/A)={tp(v,o) : tp(U,a) is
pp, a is in A, and Mktp(c,a)). One may also consider ppM(c/A) to be the corresponding set
of formulas. If A is empty or (0), we write simply ppM(c). If M can safely be omitted we
may do so.

If p is a type then the set of pp formulas in it - p ={tp : tp is pp, tpE p) - is the pp-
part of p, and is a typical pp-type (so ppM(c/A) is a pp-type).

(0,9) (4,0)
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It is pp-types, rather than partial pp-types, that we will be interested in. We have to make
the distinction, because a partial pp-type need not be the pp-part of a complete type (see
Ex 16.1/2).

The pp-type of an element (or tuple) "contains" (information which gives) the annihilator
of that element, but in general it contains much more: in particular it carries information
about how the element sits within the containing module. It will be seen that, nevertheless, pp-
types may usefully be thought of as generalised right ideals (at least in their role as
annihilators). This point of view is a useful one, both for seeing what should be true and for
suggesting how to prove it. It is very much from this perspective that these notes have been
written.

Exercise 1 Let cEM and set p=ppM(c). Show that (rER : "vr=o"Ep(v)) is the
annihilator of c. Suppose further that #,< M. Interpret the right ideal
(N:c)=( rER : crEN) in terms of ppM(c/N).
Example 1 Let R be the ring of integers and take M=712. Let n be a non-zero integer.
Since every element of 71 is torsionfree, there are no non-trivial annihilator conditions ( _
quantifier-free pp formulas) in pp72(n). What pp72(n) does contain is a precise description of
the extent to which n is divisible. So for each integer m dividing n, pp72(n) contains the
formula "mjv" (that is, -3w (v=wm)): all this information is of course summed up in the
single formula "nkv" E pp72(n). Since 71 is torsionfree it follows easily from 2.711 that there is
essentially no more information in the pp-type of n. Thus the formula "nlv" "generates" this
pp-type.

It is immediate that if n' also is an integer, then pp72(n) pp72(n') iff mmW; moreover
pp72(n)=pp72(n') iff n=±n'.

Observe that pp-types contain only "positive" information. In particular, from the fact that
pp72(n) is generated by (implied by) a single formula it does not follow (and it is in fact false)
that the full type tp72(n) is isolated (implied by a single formula).
Example 2 Let R be the ring of integers and take the module M to be the localisation, 2(p),
of :2 at the prime p. Let q(v) be the pp-type generated by ( pn1v : n E ca ). It is easy to check
(see Example 1.6(ii)) that q is not "generated" by any single formula (that is, the filter q is
not principal = generated as a filter by a single element). Now, although the element 0
satisfies this pp-type (and is in fact the only element of 2(p) to do so) it is consistent that
there is a non-zero element whose pp-type contains (so is) q - for the set q(v)u {v: 0) is
finitely satisfied so is consistent. Therefore there is an elementary extension of 71(p) which
contains a non-zero element divisible by every power of p (and hence by every prime power,
since divisibility by the others is part of the theory of 7l(p)). It follows that a copy of the
rationals, Q, splits off in such an elementary extension. As an easy consequence of some later
results it then follows that 7l(p)(D Q} is an elementary extension of 7l(p).

A pp-type, p, in finitely many free variables is finitely generated if there is a single
pp-formula tpE p (equivalently a finite number of formulas in p - replace them by their
conjunction) such that p is equivalent to p, in the sense that every formula in p is a
consequence of ip. There is of course a context implicit here: ip proves p modulo some
(usually complete) theory. This is a point to watch: it may make sense for p (regarded as a set
of formulas) to be a pp-type in more than one theory, but it may well happen that p is finitely
generated modulo one theory but not modulo another. Thus, being finitely generated is not in
general an intrinsic property of a pp-type. If one prefers to think in terms of a filter of pp-
definable cosets, then changing the context in which a pp-type is regarded may result in some
identifications and, conversely, some scissions, of cosets.
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Example 3 Take R-21; T=Th(212®214); c=(1,0),d=(0,2) both in 712®214. Now, c,d
both have order 2 but, whereas pp(c) is generated by the formula "v2=0", the element d is
also divisible by 2 and, in fact, pp(d) is generated by 3w (v=w2).

Thus elements with the same annihilator (quantifier-free type) may well be differentiated
by their pp-types.

In analogy with the notation ST(A) for complete types over A we use the notation S+(A)
for the set of all pp-types (pp-parts of complete types) over A. If we wish to be specific about
the over-theory and /or the number of free variables then we may display these. In §4 the exact
connection between S(A) and S+(A) will be established: for the moment one notes that there
is a surjection S(A)-*S+(A) given by p H p+ - it will be shown (2.20) that this map is
a bijection.

In our picture of a pp-type as a filter of definable cosets we are making an implicit
identification of formulas with the sets they define. This convention is extremely useful and will
be employed frequently. The reader unaccustomed to this convention may feel rather
uncomfortable with it on account of the question: "definable in which model?". Essentially, it
does not matter which model is chosen, so long as it contains all parameters mentioned and, when
infinite sets of formulas (such as types) are discussed, the model should be supposed to be
sufficiently saturated that it contains witnesses for the (partial) types which are being
considered. For definiteness one may assume that, unless otherwise indicated, "definable subset"
means definable subset of the monster model.

Associated with any filter of pp-definable cosets is the filter of corresponding pp-definable
subgroups. The intersection of these subgroups - a , -pp-definable subgroup - is a good
algebraic measure of that filter. Let us introduce some notation. If p is a pp-type we set
p,(p)={tp(v,0) : Lp(u,y) is a formula without parameters which is represented in p), where
we say that the formula ip(u,y) is represented in p if ip(u,a)Ep for some a. We allow
ourselves to consider g(p) either as a set of formulas or as a filter of subgroups, as
convenient. Set G(p)=1l g(p) to be the intersection of all these subgroups. Clearly G(p)
will be pp-definable (in the monster model), rather than just i -pp-definable, iff p is
finitely generated. On those few occasions when we are taking account of the model in which our
formulas are being interpreted, we use an appropriate superscript: thus gM and GM. These
notations are extended to complete types, p, by setting (,'(p)=g(p+), etc.

Exercise 2
(i) Show that if pES+(A), if M is 1.41+ -saturated, and if GM(p) is pp-definable then p

is finitely generated. Give an example to show that one needs some kind of saturation
assumption on M.

(ii) Improve on (i) by showing that ITI+-saturation is enough.
Exercise 3 (For those who know what a definable type is: see [Pi83; §1] or [Poi85; §11.b],
for instance.) Show that if pES+(A) then there is 8=_A with IBk5ITI and with p the
definable extension (with the obvious meaning for incomplete types) of prB to A.

Lemma 2.4 Suppose that M is weakly saturated and let pESn(0). Suppose that
H is a subgroup of Mr' which is pp-definable in M. If H>GM(p) then HEq(p).

Proof Let ip be app formula defining H (that is, Lp(M)=H). By 2.2(ii) it may be supposed
that Lp has no parameters. Consider (p) as a set of pp formulas. If this set did not entail lp

then G,(p) u {-lp) would be a consistent set of formulas - so would extend to at least one type
gESn(0). By hypothesis there would then be a in M realising q. But that would be a tuple
lying in g(p) but not in H - contrary to hypothesis. Thus (some finite subset of) (,(p)
entails Lp and so IpEG,(p) (G,(p) being a filter). G

It follows that if p and q are (pp-)types then G(p) > G(q) iff g(p) - (,'(q).
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That some saturation hypothesis on M is required in 2.4 (as in other situations where we
need witnesses to infinite sets of formulas) is illustrated by the example which follows.

Example 4 Take 71 for the ring and 71(p) for the module. For p take the type over 7l(p)
of any element of i(p)\71(p) (see §2i). Since 71(p) is algebraic over the element 1, what is
essentially the same type may even be found over (1).

For every 77E W there is some formula of the form pnl v-a in p(v), so "pnJv"Ec(p).
Since (l n 71(p) pn = 0, it follows that GM(p)=o.

Yet the formula v=0 does not lie in G,(p). For otherwise, p would have to contain a pp
formula ip(v,o) with .p(M,o)=o: so ip(M,a), being a coset of i.p(M,0), would be a singleton
(c) say. Thus p would contain the formula v= c and c would be the sole realisation of p in
any model. On the other hand the model 2(p) satisfies 3vtp(v,5), since its elementary
extension 7l(p) satisfies this. So the only possibility is that cE' (p) - in contradiction to our
choice of p.

The last few lines of argument in the example above are standard. A type is said to be
algebraic if one of the definable sets constituting it is finite: if (as in the argument above) one
of the sets constituting a type is a singleton, then the type is said to be 1-algebraic. By an
argument similar to that above, one shows that if p ES(q) is algebraic and if M=_ A is any
model then M contains each one of the finitely many realisations of p. An element is said to be
algebraic over the set A if its type over A is algebraic and is said to be definable over A
if its type over A is 1-algebraic. If M is a sufficiently saturated model containing A, then an
element is algebraic iff its orbit under Aut,gM is finite.

For example, if we are working in the (complete) theory of algebraically closed fields of
some specific characteristic then "algebraic over" has its usual meaning: "definable over" is
less interesting since, in this context, it reduces to "being in the subfield generated by".

Recall that if p is a type over A and if 82 4, then a type q over B is an extension of
p if q=p (equivalently, if p is the set of all formulas in q with parameters from A).

Lemma 2.5 Suppose that pES(A): let gcS(8) be any extension of p to 824.
Then G(p),>G(q). Furthermore G(p)>G(q) iff there is some pp formula t.p(U,y)
represented in q such that the group ip(u,0) does not correspond to any pp
formula represented in p.

Proof Since q extends p, any formula represented in p certainly is represented in q, so
the first inclusion is clear. The second statement follows since G(p)>G(q) iff 1 (p)<G,(q)
(by 2.4). o

Exercise 4
(i) If p is a type with G(p)=0 then p defines a single element. The converse is false

(exercise) - a defining formula may require negations.
On the other hand, if p is algebraic then one may show (say, using 2.16 and 2.12 below)
that G(p) is finite. Note also that "being algebraic over" is more general than "being a
term in". For take M=Q and A=(1). Since one has unique division in Q, every
element of Q) is algebraic over 1.

(ii) One may well have q=p with G(p)=G(q), yet with some pp formula represented in q
but not in p (for a given coset may be defined by many different pp formulas using a
variety of parameters).

The group G(p) itself turns out not to be the best invariant of the pp-type p, for it may
be that one cannot avoid expanding q(p) when extending p to a type over a model. Rather we
look at the connected component G0(p)= fl go(p) where, regarded as a filter of subgroups,
to(p) is the set of pp-definable subgroups H such that there exists GEg(p) with the index
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[G:GnH] finite: G0(p)=fl(H: there is 6Eg(p) with G/GnH finite)=fl (H: there is
GEG,(p) with H<G and [G:H] finite).

In general we will say that a group H has finite index in the group G if the index
[G:GnH] is finite. We say that a /A-pp-definable subgroup is connected if there is no pp-
definable subgroup of finite index in it (in the sense just defined).

To see that the connected component is well-defined we need first to note the following. If,
in some model M, the index of the pp formula y, in the pp formula p is finite - equal to n
say - then in every M'=M one has [ip(M'):tp(M')nip(M')]=n. This follows since "[Lp:yi]=n"
- that is [ip(M):W(M)]=n - is/ expressed by the sentence:

3Ui,...,Un (ntaLP(Ui) A At.,:, IIV(Ui-Uj) A VU (Lp(U) 4 VL=1W(U-Ui)))
Thus we may write "[tp: p]= n" without ambiguity: note that if y, is not contained in ip then
that expression will be taken to mean that the index of WWAlp in ip is n.

Lemma 2.6 Let p be a type or pp-type. Then:
(a) G,o(p) is a filter of pp-definable subgroups;
(b) G0(p) is a connected /m-pp-definable subgroup;
(c) if p is a type over a model M then G0(p)=G(p).

Proof (a) To see that 40(p) is upwards closed, let GEG,(p), let H be a pp-definable
subgroup of finite index in G and let K be a pp-definable subgroup containing H. Since g(p)
is upwards closed, the group G+K lies in it. By modularity one has
[G+K:K]=[G:GnK]<[G:H]<w -so K is in G,(p).

To show that go(p) is closed under
G1 /G2 intersection, let GJ,G2 be in it and take pp-m/ \ definable subgroups H1,H2 with, say,

H G nG2
1

H
2 [G,:H,]=m and [62:N2]=n for some integers

I <n m,n. Then H,nH2 has finite index in
G1nH2 G,nG2 E (',(p) since, by modularity (see the

diagram), one has [G1n62:G1nH2]<[G2:H2]
Hi nH2 andand [G,nH2:H1nH2]<[G1:H1].

(b) Let p(U) be any pp formula not in I',0(p). Consider the following set `Y(w) of pp
formulas with w=(Un)nEw where l(U7)=l(u) for all n:

(ip(U7): ipEG,o(p) and nEw)u{1W(un-um): m,nEw, m#n).
Informally, `P says that there are infinitely many elements in G0(p) lying in pairwise
distinct cosets of y,. So to show that ip has infinite index in G0(p) it will be enough to show
that `Y is consistent.

If this were not so, then some finite subset of `Y would be inconsistent. But it is easy to see
that inconsistency of such a finite subset can amount to no more than the assertion that there is
ip in the filter go(p) such that the index [ip:W] is finite. But that would be enough to place W
in go(p) - contrary to choice of W.

Thus G0(p) is indeed connected.
(c) It must be shown that if the set of parameters over which p is defined is a model then

G(p) is connected. It will be sufficient to show that if GEG,(p) and if H is pp-definable of
finite index in 6 then HEg(p). Since GE (;(p), there is a pp formula, ip'(U,O), in p with
Lp'(M, 0) = G.

Set ip(U) to be Lp'(U,0) and let the pp formula W(U) define H: also let n be the index of
H i n G. Then the sentence: 3U1,..., Un (A; tp(Ui) A V U (ip(U) 4 V ; W(U-U1)) holds in the
monster model, so also holds in M. Thus there are in M such that
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i.p(M)= U, 07f+4i(M). Also, since ip'(v,o) is in p, M satisfies 3v ip'(U,a): say b is in
M n ip'(v, a).

Let c be any realisation of p. Then ip'(c-b, 0), that is ip(c-b), holds. So, for some
i E U,..., n), one has W(c-b-071). Thus V(U) E (,'(p), as required. o

Exgmple 5
(i) If p is a type over 0 then G(p) is just the subgroup defined by p+.
(ii) Take R=2 and T=Th(M0=Z4(ko)). Let p(v)ES,(M0) be the type which says u2=0

and vmm for each mEMo - the type of any element of order two which is not in Mo. Let
q(v) E S1(Mo) be given by vxm for each mEMo and (v-a)2=0 for some element
a E Mo of order 4. Thus q is the type of an element of order 4, which lies outside MO
but which differs from the element a E Mo only by an element of order 2 (so a
realisation of q is not "completely independent" of Mo). Note that these are indeed
descriptions of complete types p,q over Mo (consider automorphisms: if two elements
satisfy say, q, then there is an automorphism (of the monster model) taking one to the
other).
Then G(p)=G(q)=M2 even though p*q.
It is not difficult to see (use 2.23) that, in this example, if G> H are pp-definable
subgroups then [G: H] is infinite. So for any type p' one has G0(p')=G(p').

Exercise 5 Let R be any ring and let a,b E R. Show that ppR(a) S ppR(b) iff bE Ra.
Hence ppR(a)=ppk(b) iff Rb_Ra.

2.3 Pure embeddings and pure-injective modules

Most of the concepts and results introduced in this section belong in a much more general
context: but these notes are about modules, so I confine the discussion to that case.

When one takes a "purely algebraic" viewpoint, an embedding is simply a morphism which
preserves annihilators. But here we are interested in pp-types rather than in annihilators
(= A-atomic types) and so a morphism which merely preserves annihilators and does not keep
track of pp-types is often too weak for our purposes. For example, the canonical injection
22+714 strictly increases the pp-type of the non-zero element of 712 (since its image is
divisible by 2). We will single out those morphisms which preserve pp-types.

Let us note first that all morphisms are non-decreasing on pp-types.

Lemma 2.7 Let M-)M' be any morphism and let 5 be in M. Then
ppTM(5) ppM (fQ).

Proof This is clear since (by the proof of 2.2(i)) if Mkip(o), with Lp pp, then M'kip(fa)
("morphisms preserve pp formulas"). a

In particular, if M=_M' is an inclusion of modules and if 5 is in M, then
ppTM(a) s ppM'(a) (here I have identified elements of M with their images in M' - I seldom

(need to) distinguish between embeddings and inclusions). This embedding is said to be pure if
for every finite tuple a in M one actually has ppM(a)=ppM'(a), and in that case one writes
M<; M'. The notation "- <. -+" will occasionally be used.

The definition of purity may be re-phrased as follows: M <; M' iff for every pp formula ip
and 5 in M one has Mkip(a)44M'ktp(a). Otherwise said, M is pure in M' iff every finite
system of linear equations with coefficients in R and parameters from M and with a solution
in M' already has a solution in M. We also say that M is pure in M', and the terms pure
submodule and pure extension are used in the obvious ways.
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Example 1
(i) If M is a direct summand of M' then M is pure in M' (given a solution in M', project

it to M).
(ii) 22 is not a pure submodule of 24 (this was noted above). In particular, notice that there

are essentially two different embeddings of 22 into 712 ®2, (exercise: how many are
thereof 24 into 714 (D718? - take "different" to mean "not conjugate by an
automorphism").

NO Often we will encounter pure but non-split embeddings - the split embeddings are simply
the extreme case of pure embeddings. I point out just two examples now. The first is the
canonical embedding of the localisation 2(p) into its completion (see §2.71) 7l(p). As for
the second: a module is said to be absolutely pure if every embedding of it into any other
module is a pure embedding. Such modules are not in short supply: every module over a
(von Neumann) regular ring (see Chapter 16) is absolutely pure and, unless the ring is
actually semisimple artinian, there will be some which are not injective.

Exercise 1 If M is pure in M' and if M'/M is finitely presented, then M is a direct
summandof W. Indeed, an embedding MM' is pure iff M is a direct summand of every M'
with MS/1'<M" and M'/M finitely presented (see [Laz69; 2.4], also see [Ri79; §1.F] for
other equivalents if R is a finite-dimensional algebra). Deduce that every absolutely pure
module is injective iff the ring is right noetherian. [Hint: for "4t-" use a pushout; for '= ' use
1.11.]

On occassion it will be useful to us to have a notation to express that an embedding is split.
There is no particularly standard notation for this: I will use "MIN" to express that M is a
direct summand of N (via a particular embedding) - one may read this as "M is a factor of N"
or "M divides N".

Given a class of embeddings one may define a notion of injectivity with respect to the class.
From the class of all embeddings, one derives the usual notion of injectivity. From the class of
all pure embeddings, we obtain the pure-injective modules: the next theorem characterises
these modules in various ways. Notice that they may be defined as being those modules which are
saturated for pp formulas. Most parts of the result are particular instances of a rather general
theorem which may be found in [Myc64], [Weg66]; for abelian groups, see [:Los57], for
modules, see [War69; Thm2], [St67] and [Zim77; 2.3] (see the comments after Thm2 in
Warfield's paper for further details and references). (One may consult [Hal79] for another
algebraic example).

Theorem 2.8 The following conditions on a module N are equivalent, and any
module Al which satisfies these conditions is said to be pure-injective (or
algebraically compact).
(i) Every system of equations over (i.e., with parameters in) Al which is finitely

satisfied in Al actually has a solution in N. Here the system may be in any
number - finite or infinite - of unknowns.

(ii) Every partial pp-type (in one variable) over Al which is finitely satisfied in
N is actually realised in N.

(iii) If Al is purely embedded in the module M then this embedding is split: that
is, M=Al M' for some M'.
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(iv) N is injective over pure embeddings. That is, any diagram-'8 as given may be completed to a commutative diagram as
shown.

(v) If a is in M, if b is in Al and if ppM(a)=ppA(b) then
N there is a morphism f:M--N with f5=_b.

Proof (i)#,(ii) (Actually, this will follow from the other implications but the direct proof is
worth seeing.) Suppose that the system, '(v), of pp formulas over hl is finitely satisfied in
N. Strip off the existential quantifiers from the formulas in ' by replacing
tp(U) = 30e(u,w) (where a is A-atomic) by e(U,i ): we can arrange that if ip* p then
wLP and w,, have no variables in common.

Let e(U,w) be the resulting system of equations over N. Clearly ''(U) is equivalent to
"3w e(u,w)", where the latter is (39Te(v,w) : eEe). By (i), e is realised in Al since it
is finitely satisfied in Al (for T is). Therefore I(U) is realised in Al.

(ii)=(i) Let e(u) be a system of equations over N which is finitely satisfied in Al.

Suppose that u=(vp)p<. In the obvious notation, let ''(v0) be the partial pp-type
3(v\(v°)) e(U) - thus we existentially quantify out all the free variables but v0. Since
e(u) is finitely satisfied in Al, so is Vv0). Since the latter is a partial pp-type it has, by
(ii), a solution a0EN.

Thus we replace the first free variable by a solution for it: and of course a solution for
0(a°^(v\{v°})) will yield a solution for G. Continue, by (transfinite) induction, replacing
free variables by solutions for them, until one reaches a complete solution for the original
system 9.

(i)= (v) Consider the elements of M as strung out in a (likely infinite) tuple m, of
which a is a sub-tuple, and set p (v,a)=tp°(m/a) to be the A-atomic type of M over o.
Without difficulty one sees that ppPl(5) is equivalent to 3v p0(U, a) (notation as before). So,
by the hypothesis of (v), the partial pp-type 3U p0(U,5) is satisfied in Al. Thus p0(v,5) is
a system of equations over Al which is finitely satisfied in N. By assumption (i), there is T
in Al such that p0(T,b) holds.

Define a map M-) N by mHT (that is, the p-th entry of the tuple m is sent to the p-
th entry of T). This is a morphism, since any linear relation involving the entries of m is
included in p0(U,-) and hence is satisfied by the corresponding members of T. Moreover,
since a occurs as a part of m and since p0(U, o) includes the relevant equations expressing
this fact, it follows that this morphism takes a to b, as required.

(v)=* (iv) Given a pure embedding A<; B and a morphism ANN as in the statement of
(iv), one notes first that, on writing A as the parameter string a, purity of the embedding
yields ppB(a)=ppA(o) s ppA(fo) where the inclusion is by 2.7. So, by (v), there is a
morphism B-'-- >N with ga=fa - as required.

(iv)==>(iii) This is immediate on applying (iv) to the diagram below.
(iii)= (ii) Let p(U) be any partial pp-type over N which is finitely

< satisfied in Al. Then p(u) is realised, by T say, in some elementary
M extension, M, of Al. Since N<M one has in particular N<, M. By

1N I (iii), this embedding is split; say M=N (D M' for some M'. Write
DIY T=(n,m)EN®M' accordingly. Since pp formulas are preserved by
N morphisms (2.7) one obtains, on projecting p(T) to the "N-

component", // 1= p(n). Thus there is, indeed, already a solution for p
in Al. a
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Corollary 2.9 If a module is ITI+-saturated, then it is pure-injective. In
particular, every module is elementarily equivalent to a pure-injective module.

Proof This is immediate from 2.8(ii). o

Examples and Exercises 2
(i)
(ii)

Injective modules are pure-injective (2.8(iv)).
Finite modules are pure-injective (2.8(i) or (ii)) but are not necessarily injective (7l2
is an example).

(iii) The class of pure-injective modules is closed under direct summands and direct products,
but not in general under infinite direct sums: for example it will follow from 2.11 that
7l(p)0-) is not pure-injective.

(iv) If N has the descending chain condition on pp-definable subgroups then (since it therefore
has dcc on pp-definable cosets) it is pure-injective.

(v) The module 7l(pp) is pure-injective but does not have dcc on pp-definable subgroups
(Ex 1.6/6(ii)).

(vi) Countable pure-injective modules necessarily have dcc on pp-definable subgroups (3.11
below).

(vii) If MC(R) (i.e., M regarded as a module over the centre of R) has dcc then, by (v)
above and 2.1, M must be pure-injective. Important examples are the finitely generated
modules over Artin algebras.

Exercise 3 (cf. Exercise 11.3/3) Let N be pure-injective and let S=End(#).
(i) Let aEN andset p=ppA(a). Then p(N)=So.
(ii) Every finitely generated S-submodule of N is /4-pp-definable in NR.
NO If SN is noetherian then the M -pp-definable subgroups of NR are precisely the S-

submodules of N. (Also see [Zim77; Prop3 and following].)

The next lemma says that pp formulas "commute with" direct sums and direct products.
This is far from being true of general formulas. The lemma is very useful, both in general
considerations and in the analyses of particular examples.

Lemma 2.10 Suppose that ip(u) is a pp formula and let (Mi : i E I ) be any set of
modules. Then:
(a) ip(ED I Mi)= ® I ip(Mi);
(b) ip(TT I Mi) = TT I Lp(Mi);
(c) If ai is in Mi (i E l) and if 5E TT i Mi has i-th component ai, then

pp(a)= 0i pp(ai).
Proof Let a=(ai)t E (TT I Mi)Z(U)= TT I MiZ(v). On projecting ip(a), one obtains (by 2.7)
ip(ai) for each iEl. Thus ip(TT Mi)`- TT Lp(Mi).

Conversely, if ip(ai) holds (in Mi, equally in TT j M j since, being a direct summand,
Mi is pure in the product), and this for each i, then it is an easy exercise to see that ip(a)
holds (patch together witnesses for the existential quantifiers on each coordinate).

Thus ip(a) holds iff ip(ai) holds for each iEl. So (a), (b) and (c) follow immediately. o

Exercise 4 (if you know what a reduced power is) [Gar80a] Let M be a module, let I be
an index set and let be any filter on I. Suppose that ip is pp and let m = (mi)iE7 be an

element of the reduced power MI /7. Show that Ml /7k ip(m) iff ( i E l : Mk ip(mi)) E .

Hence any reduced power of a module has the "same" lattice of pp-definable subgroups as M.

It turns out to be a significant question whether or not a direct sum of pure-injectives is
pure-injective. In the injective case, closure under direct sums corresponds to the right
noetherian condition (more precisely, to dcc on annihilators). There is an analogous
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correspondence for pure-injectives. For now, we make the following definition and prove a
useful characterisation.

Say that the module Al is E-pure-injective (or I-algebraically compact) if
N( -) is pure-injective (such a module N is, in particular, pure-injective).

Theorem 2.11 [Zim77; 3.4], [GJ76; Thm] The module N is 1-pure-injective iff
N has the dcc on pp-definable subgroups.

Proof (The basic argument is due to Bass and appears in [Ch60; Prop 4.1].) Suppose that
Lpo(N)>Lpl(N)>...>Lpn(N)>... is a strictly descending chain of pp-definable subgroups of Al.

For each i E w choose some element, ai, in the gap ipi(N)\ipi+1(N). Set
b77 =(ao,a,,...,a77-1,0,0,...)E N(ko).

Consider the partial pp-type 1(9)={ipn(v-bn) : nEw, n>_ 1) over N(A-). This set is
finitely satisfied in N('Aa) since, for kn, one has ipk(bn+1-bk)

If N( o) were pure-injective there would, by 2.8, be a solution c=(cn)nE for 1 in
#01'k-). A contradiction is produced from the fact that c lies in the direct sum,
rather than in the direct product, Nno. For there is some mEw such that cn=0 for n->m.
But then, from ipm+1(c-bm+1) one has, on projecting to the m-coordinate, that
ipm+1(cm-am) holds. But that gives Lpmi+l(-am,) (equivalently ip,n+1(om)) - contrary to
choice of am.

<-- If there is a strict inclusion of pp-definable subgroups ip(N( o))>yi(N( a)) then,
by 2.10, the inclusion ip(N)-> tp(N) also is strict. So if N has dcc on pp-definable subgroups
then the same condition holds for Therefore, as noted in Exercise 2(iv), we have that
N( o) is pure-injective, as required. o

Exercise 5 It is easy to find an example of an infinite direct sum of I -pure- injective
modules which is not E-pure-injective [consider any direct sum of finite abelian groups which
is not of bounded exponent: i.e., for which there is no nE7l nm0 which annihilates every
element]. For a description of exactly when a direct sum of E-pure-injective modules is I-
pure-injective, see [Zim77; 3.3]. Analogously, [Zim77; 3.7] describes the pure-injective
direct sums of pure-injective modules.
Exercise 6 A module N has dcc on pp-definable subgroups iff for each/any l31 its power
Nl has dcc on pp-definable subgroups.

Exercise 7 [GJ76; Thm], [Zim77; 3.4] The following conditions on Al are equivalent:
N is 1-pure-injective; N(I) is pure-injective for all/some infinite index set I; N(o) is
a direct summand of N'A-; N(I) is a direct summand of NI for each/any infinite index set
I.
Example 3
(i) Some 1-pure-injectives are: 7ln for any integer n>-2, in fact any abelian group of

bounded exponent; any injective module over a right noetherian ring or indeed any (-
injective module E (that is, a module E such that E('&J is injective: see below);
any finitely generated module over an Artin algebra. Exercise: show that a module E is
E-injective iff it is injective and 1-pure-injective.

(ii) Some pure-injectives which are not 1-pure-injective are: 2(p) for any prime p; any
injective but not 1-injective module - for example, any injective over a regular ring
which is not the injective hull of a semisimple module.

NO Products of different E -pure- injectives need not be E-pure-injective. Consider
TT {7ln : n->2): observe that this module splits off a copy of 7l(p) (and obviously a direct
summand of a E-pure-injective is E-pure-injective) or else use 2.11.
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Corollary 2.11a (Bass, see [Ch60; Prop 4.1]) An injective R-module E is E-
injective iff R has the acc on annihilators of elements of E. In particular, every
injective R-module is E-injective iff R is right noetherian. n
The proof is left as an exercise.

Exercise 8 Rososhek [Ros78] calls a module M "purely correct" if every module N such
that each of M and N is purely embedded in the other is actually isomorphic to M.

U) Show that if M is not 1-pure-injective then M('&) is not purely correct.
(ii) Deduce that every injective R-module is purely correct iff R is right noetherian

[Ros78; Thm 1].
NO Deduce that every R-module is purely correct iff R is right pure-semisimple (cf. §11.1)

[Ros78; Thm 3].
(This is how Rososhek proves the direction in [Ros?; Thm 2, Thm 3]. The proof of the
direction is much simplified if one uses the uniqueness of the decomposition of a totally
transcendental module as a direct sum of indecomposables (3.14, 4.A14).)

it will be seen in Chapter 3 that if M is a totally transcendental module then M has the dcc
on pp-definable subgroups (one may try this as an exercise now - compare Exercise 2(vi)
above). In fact, the converse also will be established. In order to do that, we need to know the
connection between types and pp-types - given a pp-type p how many complete types are there
with p as their pp-part?. The answer is: exactly one. It will be shown that if p,q ES(A)
are such that p+=q+ then p=q. In fact, given a complete type p, p+ together with the set,
ip , of negations of all those pp-formulas not in p+ serves to prove p.

Showing this involves looking at the interactions of the various pp-definable subgroups and
cosets: that is what we turn to next.

2.4 pp-elimination of quantifiers

In this section it is shown that, in any theory of modules, every formula is equivalent to a
boolean combination of pp formulas together with sentences having a closely prescribed form.
In particular, in any complete theory of modules, every definable set is a boolean combination of
pp-definable cosets.

The first lemma is a crucial component in the proof of pp-elimination of quantifiers. It will
also be used at a number of other points. Actually, I state it in a form which is stronger than is
needed for most, but not all, its applications.

I use the following notation. If H,> K are subgroups of some group, then by [aH:K], I

will mean just [H:K] - the number of cosets of K required to cover the coset aN. One may
generalise this: if X is a union of cosets of subgroups, all of which contain K, then by [X:K],
I mean the minimum number of cosets of K required to cover X.

Theorem 2.12 (Neumann's Lemma) [Neu54; 4.4] Suppose that we have a coset
contained in a finite union of cosets: aH s U, aiNi where H and the Hi are
subgroups (of some group to which a and the ai belong). Then one may omit from
this cover of aH all cosets of the form aiNi where [H:HnHi]>n!. In
particular, all cosets "of infinite index in aH" may be omitted.

Proof Let us make some immediate simplifications. It may be supposed that the coset OH is
the subgroup H - replace the original inclusion by H s U a-1 aiNi. Also, replace each Hi by
HnHi so that it may be assumed that each subgroup Hi is contained in H. So we have
H= U; aiNi.
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Assume that the cover is minimal in the sense that for each jE(1,...,n) the group H is not
contained in the union U {aiHi : iE(1,...,n), i* j). Suppose that there are r distinct
subgroups among the Hi.

The proof proceeds by establishing a series of claims.

Claim 1 Each index FH:Hi] is finite.
This is proved by induction on r, the case r=1 being obvious.
Choose jE(1,...,n). By minimality of the cover and since r>2, there is

g E H \ U {aiHi : Hi=H j). Then the complete coset gH j lies in this difference and, in
particular, gHj=_U (aiHi:Hi*Hj). Thus Hj=_U(g-1aiHi:Hi*H1).

It follows that H may be covered by finitely many cosets of those Hi which are unequal to
Hj,. For if k is such that Hk=Hj then, by the above paragraph,
akHk s U (akg 1 aiHi : Hi * H j). There are only r-1 such subgroups; so by the induction
hypothesis (over all such situations) one has that each index [H:Hi] is finite. But j was
arbitrary and r> 2, so the claim follows.

Thus the weaker (last) statement of the theorem is proved.

Claim 2 For some i. FH:Hi <n
Set K= fl Hi and note that, by Claim 1, the index [H:K] is finite - equal to m say.

Assume for a contradiction that for all iE{i,...,n) one has [H:H1]=[H:K]/[H1:K]>77. This
gives [Hi:K]<m/n and hence [aiHi:K]<m/n.

Therefore one has: [U, aiHi:K] S X, [Hi:K] < n(m/n)=m=[H:K]. This contradicts the
fact that H= UaiHi, and so the claim follows.
Claim 3 For each i. FH:H1 < !

Again this is by induction on r, with the case r=1 being covered by Claim 2. So, by that
claim, one may suppose that r>2 and that (say) [H:H1]Sn. Fix i>2: if HI= H, then we
are finished, so we may assume that Hi * H1.

Let g E H\ U (a jH j : j * i ). As in the proof of the first claim, one has
gH1 U{akHk : Hk*H,). Now, it may well be that this cover of gH1 is not minimal;
nevertheless, in cutting it down to a minimal cover indexed by, say, X {1,...,n), the coset
aiHi must be retained (since g lies in only that coset). Thus we obtain a minimal cover of the
coset gH1 involving at most r-1 subgroups, one of which is Hi. To apply the induction
hypothesis in its precise form, we translate to what is necessarily a minimal cover of Hi:
H1 s U{9-akHk : kEX ); and then simplify to the minimal cover
H1= U{(g-1akHk)nH, : kEX).

There are no more than r-1 subgroups involved in this union of no more than n-1 cosets
so, by induction, the index in H, of each subgroup, H, n Hk, involved is at most (n-i)!. In
particular [H,:H,nH1]((n-1)!. Hence
[H:Hi] S [H:H1nHi]=[H:H,].[H1:H,nHi]<n.(n-1)!=n! as required, and the theorem is
proved. o

The above proof, which is due to W. Hodges, actually shows that [H: fl; Hi] 5 n!. This, and
related results, have also been considered by Tomkinson [Tom87] where it is shown that this
bound is, in general, exact. Also see [Bd84a; 3.5] for an infinitary version.

The main result of this section is that, in any module, every definable subset is a boolean
combination of pp-definable subsets. Indeed, every formula in the language of R-modules is
equivalent, in every module, to an "invariants sentence" (this says something about indices of
pp-definable subgroups in each other) together with a boolean combination of pp formulas. I

will present the proof of this in terms of the boolean algebra of definable subsets. Every
definable subset may be built up from those defined by atomic formulas, using the boolean
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operators "n", "u" and "-i" (complement) together with the quantifier "3". Therefore, in order
to show that every formula is a boolean combination of formulas of a certain kind, it is enough to
establish the induction step for "3". That is, we assume inductively that W(v,w) is a boolean
combination of the required sort, and show that 3uW(u,w) is also of the required sort. In
other words, it is enough to show how to eliminate an existential quantifier. I will use the
convention of identifying a formula with the set which it defines in an (unspecified) module.

Before embarking on the proof, let me introduce some notation and terminology.
If K, -A are cardinals write K--A if both are infinite or if K='): also set KEX if both are

infinite or if K,<-A.

Let M be any module and suppose that ip, v are pp formulas (in the same number of free
variables). Set Inv(M,Lp,W)=,ILp(M)/ip(M)nW(M)I. Of course Inv(M,i.p,W)=Inv(M,tp,ipAW)
and, in fact, I will normally use the notation with the implicit assumption that W implies ip.

The following observation is very important: the statement Inv(-,LP,W)>k (kEw) is an
elementary one (it is in fact 3V). For one has Inv(M,ip,W)>k iff
Mk b'v...... vk 39(T(v) Consequently, for any finite k, the property
Inv(-,T,W)=k is expressed by the formula Inv(-,i.p,)V)>k A -iInv(-,ip,W)>k+1 and, also, the
property of Inv(-, ip,W) being infinite is an (infinitely) axiomatisable one. Hence, for T a
complete theory of modules, one may define Inv(T,gp,W), without ambiguity, to be
Inv(M)Lp,W), where M is any model of T. I will use the term invariants for these. If a
given invariant is infinite, its actual value usually is not of interest and I simply say that its
value is "oo" and, especially after this chapter, correspondingly use "_" instead of "-L ".

These invariants - a given finite value or infinity - are therefore invariants for any
complete theory of modules. They may be discerned in [Bau76], are nearer the surface in
[Mon75] and [Mrt75] and were explicitly noted and used by Garavaglia ([Gar7?] and
subsequent papers). (In their more particular form for abelian groups, they are already in
[5255].)
Exercise 1 Define the following relation on intervals in the lattice of pp-definable subgroups
([Zg84;§1]): if ip>tp'>W'>W then [Lp,W]>[ip',W']; if tp>W and 8 is arbitrary, then

[ip+a,W+e] and [Lp,W]> [IpA8,WAa]; then extend to a transitive relation. The main
consequence is that if [ip,W]> [Lp',W'] then the second interval is no more complex (lattice-
theoretically) than the first.

Show that if [ip,W]> [ip',W'] and if M is any module, then Inv(M,(p,W)> Inv(M,ip',W').
Example 1 Take R=21 and M=7lpoo. Take LP(v) to be "v=u" and W(v) to be "up=0". Also
let e(u) be "u=o".

Then Inv(M,tp, (or just "o" if we care only that the invariant is infinite);
Inv(M,W,e)=p; Inv(M2,V,e)=p2; .. Inv(M(A^),W,a)=oo.
Exercise 2
(i) Show that if M==M(0) (or simply if M=M2) then each invariant of M is either 1 or

infinite.
(ii) Show that if R is an algebra over an infinite central subfield and if M is any R-module

then each invariant of M is either 1 or infinite.
Exercise 3 [Kue73] Let R=71 and let p be a prime. If the sentence
Inv(-,up=0,u=0)>1 A Inv(-, u=u,plu)=1 is satisfied in the abelian group M then that
group is infinite. Find a "dual" sentence.

It will follow from the argument below that every sentence in the language of modules is
equivalent to a boolean combination of invariants conditions (i.e., assertions that certain
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invariants are less than/equal to/or greater than certain integers). I will use the term
invariants statement to mean a boolean combination of invariants conditions.

Let us proceed with the proof, assuming inductively that W(v,w) is a boolean combination
of pp formulas. A little elementary set theory allows one to see that the set W(v,w) may
therefore be expressed as Uj (ip j(v, w) n 01 -iWij(v, w)) where the LP j and W ij are pp (I am
using the fact that an intersection of pp formulas is pp). Therefore By p(v,w) is equivalent to
the formula 3v V j (lp j(v, w) A Ai iii j(v,w)). Now, there exists a point in a union of sets iff
there exists a point in one of the sets, so the latter formula is equivalent to
V j By (ipj(v,w) A A i Therefore, it will be enough to show how to eliminate the
quantifier from a formula of the form By (ip(v,w) AA,:, ip1(v,w)) where Lp and the Wi
are pp.

Let us imagine first that we are working inside some definite module. Then we will see just
what information about the module we used for the elimination procedure.

It may be assumed that pi(v,w) - ip(v,w) for each i. For any b in the module M, the
formula ip(v,b) A Ai ipi(v,b) simply defines the "set" p(v,b) \ U i Wi(V,b) (i.e.,
ip(M,b) \ Ui Wi(M,b)). So what we have to do is express the condition "ip(v,b) \ Ui Wi(v,b)
is non-empty" as a boolean combination of pp formulas; equivalently, we must express the
condition "ip(v,b) \ Ui WI(v,b) is empty" as such a boolean combination.

By Neumann's Lemma (2.12) one may drop from the union, Ui Wi(v,b), those Wi(v,b)
such that Wi(v,0) is of infinite index in ip(u,_ ), without changing the truth of the statement
'tp(v,b) \ Ui Wi(v,b) is empty". Note that whether Wl(v,b) is dropped depends only on
Inv(M,ip(v,o),Wi(v,o)) (this is independent of b) and on whether Wi(v,b) is empty (that
is, on whether b satisfies the pp condition By Wi(v,b)). I now claim that the truth of
"ip(v, b) \ U 1 Wi(v, b) is empty" depends only on the following data:
{i) the invariants Inv(M,e(u,_),'X(v,0)) where a is either ip or a conjunction of certain

of the Wi and where X is a conjunction of certain of the Wi (this is independent of b);
(ii) the "pattern of intersections" of the cosets 'p (v,b) - by this I mean the formulas of the

form ±3v AK Wk(v,b) where K is a subset of the full index set I (this depends on
which of the pp conditions, 3v AK Wk(v,w), are satisfied by b).

For, one is asking whether a certain coset is covered by a finite collection of "sub-cosets"
all of which have finite index in it. So I am claiming that all one needs to know are the indices,
in one another, of intersections of the various subgroups involved, together with information
about which of the cosets of these are disjoint. With the right picture in mind this is "obvious"
so, rather than make a long digression here to prove this rigourously, I have placed the detailed
proof below (2.14) and encourage the reader to accept it for the moment.

Therefore, in order to determine whether the set ip(v,b) \ Ui Wi(v,b) is empty we need to
know:
(i) about certain of the invariants of M, and
(ii) some of the pp-type of b
(the exact requirements may be extracted from the discussion above).

If the set is to be empty then, by Neumann's Lemma, there are only finitely many
possibilities for the values of the invariants; for any subgroup with index in ip(v,0) strictly
greater than n! may be discounted. Also, for each such possibility, there are only finitely many
partial pp-types for b in the formulas gyp, Vi which make the set empty.

Therefore, there is a formula e(w) (a disjunction of formulas of the sort: boolean
combinations of invariants conditions and boolean combinations of pp formulas) such that in any
module M one has Vw(3v(tp(v,w)AAi-IV i(v,w))H 6 (w)).
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Let me now state formally what has been established. The result (indeed, a more specific
one) was established by Szmielew for abelian groups [Sz55; 4.22]. This was extended by Eklof
and Fisher [EF72; §5] to Dedekind domains. Fisher attempted, using "structural" arguments, to
prove it for modules over any ring but was successful only in some very special cases [Fis75].
Baur succeeded in proving the general result [Bau76; Thm], using the combinatorics plus a
back-and forth argument. Independently, Monk [Mon75] gave a proof for abelian groups which
works just as well over any ring. Also independently, Mart'yanov [Mrt75; Thm 1] proved the
corollary 2.15 below for abelian groups with a finite number of linear operators and specified
subgroups (which implies the result for modules over any ring). The proof given here is like
that in [Mon75] and [Zg84].

Corollary 2.13 Let R be any ring. If x(U) is any formula in the language of R-
modules then there is an invariants statement a and a boolean combination o(u) of
pp formulas such that 7/ZRkbv(X(v)c-46Ae(u)). n
A rigorous proof of the claim which I made above is now given ([Gar78; Lemma6] is

essentially this; a related but somewhat different proof is in [Zg84]).
The following notation will be useful. Let Y= U Y-,, be a representation of a set Y as a

union of cosets YA (of various subgroups of a given group) and let X be a coset such that the
corresponding subgroup, X°, is contained in each subgroup YX° corresponding to a coset, Y.x,
involved in the union. Then define [Y: X] to be the number of translates of X (i.e., cosets of
X°) required to cover Y. Also set [O:X]=o.

The following properties are obvious.
(cl) If Y is itself a coset then [Y:X]=[Y°:X°].
(c2) If Z is a coset with Z°-_X° then [Y:Z]=[Y:X].[X:Z].
(c3) If Y and Y' are unions of cosets with [Y:X] and [Y':X] both defined, then

[YuY':X]=[Y:X]+[Y':X]-[YnY':X] provided either side is finite.
Lemma 2.14 Let H,,...,Hn, K,,...,Kn be groups with the Hi subgroups of G
(say), and the Ki subgroups of G' (say). For each i=1,...,77 let Ci,
respectively Di, be a coset of Hi, respectively Ki, if non-empty. Suppose that
the following two conditions are satisfied:
(a) for all I =_J {i,...,n) the indices [fl jHi: fl j Hj] and [fl1 Ki: n j K j], if

finite, are equal;
(b) for every Is (1,...,77) one has flI Ci=9 iff flI Di=. .

Then [U, C1:n, Hi]=[U; Di:fl, Ki]. In particular, G= UiCi iff G'= UiDi.
Proof The proof is by induction on n, the case n=1 being clear by condition (b).

So assume that the result holds for all such situations where the number (n) of cosets is
k. Then:
[Uk'Ci:flk;'Hi]=[U;Ci:nk 'HL]+[Ck+,:n'+ Hi]-[(U;Ci)nCk+,:nk 'Hi] (by (c3))

=[U; Ci: fl; Hi].[fl, Hi: n', 'Hil+ECk+,: fl k+'Hi]-[U,(CinCk+i): n,(HinHk+, )]
(by (c2))

=[U;Di:fl;Kj].[fl,Ki:flk,'Ki]+[Dk+:flk;'Ki]-[U;(Din0k+,):n (KinKk+,)]

=[Uk;1D1:nki1Ki] (reversing the steps), asrequired.
The main step (the third equality) has equality between its corresponding terms justified by

the induction hypothesis in conjunction with assumptions (a) and (b). o

Corollary 2.15 Every sentence in the language of R-modules is equivalent, modulo
the theory of R-modules, to a boolean combination of invariants conditions. o
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Corollary 2.16 Given a complete theory T of R-modules, every formula is
equivalent modulo T to a boolean combination of pp formulas. o

Thus, working modulo a complete theory of modules, a formula ip(U) may be supposed to
have the form V k(A (LPjk(v) A Ai1Wijk(v))), where the LPjk and 4ijk are pp.

Many consequences of 2.15 will be given in §5. The consequences of 2.16 will occupy us for
the remainder of these notes. Another way of stating 2.16 is the following.

Corollary 2.17 [Bau76; Lemma2] Let M be a module and let a and b be in M.
Then tpM(a) = tpM(b) iff ppM(a) = tpM(b). That is, elements (or tuples) have the
same type iff they have the same pp-type. o

We now have the following extremely useful criterion for elementary equivalence of
modules. It is stated explicitly in [Gar79; Thm 21.

Corollary 2.18 M=_M' iff Inv(M,i.p,w)-Inv(M',Lp, p) for every pair ip,V of pp
formulas in one free variable (with ip4ip).

Proof This is immediate from 2.15 (for the bracketed statement, just replace W by pAIP).
0

The criterion of 2.18 is one which may often be checked (see, for instance, the examples at
the end of the section). Of course, to check it, one needs some understanding of general pp
formulas over the base ring (as is the case with 71) or, since it is true that the set of all
Inv(-,ip,ip) is highly redundant, it may be that, for a particular class of modules, one can
reduce those invariants which have to be checked to a more managable collection, perhaps one
with some direct algebraic significance (e.g., as in the case of 1-injective modules (§6.1 and
[Pr82]), modules over valuation domains (§1o.V), or modules over regular rings (§16.2)).

As a further corollary one has the following.

Corollary 2.19 Every complete theory of modules may be axiomatised by sentences
of the form Inv(-,ip,tp)=k and Inv(-,Lp,ip)>k (with kEw) where LP, IV are pp
formulas in one free variable.

Proof M=M' iff Inv(M,ip, p)=Inv(M',ip,ip) for all such tp,tp - and this happens iff (i)
Inv(M,i.p,ip)=k whenever Inv(M',Lp,ip)=k, and (ii) Inv(M,ip,kp)>_k whenever
Inv(M',ip,ip)_>k, for all such ip,tp. (Since the theory is complete, disjunctions need not be
considered.) o

Sabbagh [Sab70a; Cor 3 to Thm 4] had already shown that every complete theory of modules
is axiomatisable by sentences involving no more than one change of quantifier (from "3" to "VV
or vice versa) and that any theory of modules may be axiomatised by sentences involving no
more than two changes of quantifier. These results follow from 2.18 and 2.15 respectively, and
the results here are more informative regarding the content of these sentences.

The expression of 2.16 which will be used most frequently is the following one. Recall that
for pES(A) p+ =( ip : ip is pp and ipE p): also set p-=(ip : ip is pp with parameters in A
and ipffp) and -ip-={-iip: ipEp- ). We also set p=( 'X: X is a boolean combination of pp
formulasand 'XEp).

Theorem 2.20 Let T be a complete theory of modules and let A M k T. Suppose
that p is a type over A.
Then p+ u -ip- proves p.
In particular, the map defined by pr-p+ is a bijection. o

Exercise 4 Determine all complete theories of abelian groups satisfying T=To (see §2.71).
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Monk [Mon75] noted that his proof of pp-elimination of quantifiers (for abelian groups)
gives a primitive recursive procedure for replacing an arbitrary formula by an equivalent
boolean combination of invariants conditions and pp formulas. Weispfenning [Wei83a] works
through the pp-elimination of quantifiers for abelian structures in general, noting that for
countable languauges the procedure is primitive recursive.

The next results, which arose in discussion with Macintyre and Point, show that the
elimination of quantifiers is even to some extent independent of the ring.

Corollary 2.21 Let 7,(U) be a formula in the language of R-modules. Then there is
an invariants statement 6 and a boolean combination 8(U) of pp formulas, which
involve only the "ring elements" (i.e., functions, allowing formal addition and
composition) appearing in 'X, such that TIlR k b U (X(U) H 6 ne(U) ).

Proof Let R1 be the subring of R generated by the elements appearing in x (we may assume
that 1 appears). Any R-module may be considered as an R,-module via the inclusion R1'R.

Apply 2.13 to MR to obtain 6, 8 of the form required. Then, since any R-module is a
priori an R1-module, one has from 7728 kVU('X(U)H6A8(U)) that, in particular,
77 lRkvv(x(U)HaAo(u)). o

Corollary 2.22 Let 'Xr(U) be a formula in the language of modules over rings,
where the "ring element" (function) symbols ocurring in x are r=(ro,...,rn) with
ro the identity function.
Let R* be the free ring on n generators eo=1,ei,...,e77 and let 'Xe(U) be the
formula obtained by replacing (ro,...,rn) by e=(eo,...,en). Choose, by 2.13, a
sentence 6e and a boolean combination ee(U) of pp formulas such that
7728*kbU (xe(U)H6eAee(u)).
Then for any ring k and any 1+n-tuple s=(so=1,s,,...,sn) of elements of R,
771 R' VU (xe(U).,65A8'S(U)).

Proof Let R1 be the subring of R generated by {so,...,sn}. Let R*--R, be the ring
morphism taking ei to si. Consider R1-modules as R*-modules via this morphism. Then
MRvu(Xe(u)HSeAee(U)) implies MRkVU(Xs(U)H65A8s(U)) (the action of e on
R1-modules being given by s).

Now, consider R-modules as R1-modules via the inclusion In the same way, we
deduce 77lRkVU('

_,

(U)c--I (55AeS(U)), as required. n

That is, if the elimination of quantifiers is done over the free ring, then the "same" sentence
6 and formula 8 may be used over any ring (of course, it need not be the case that an
elimination of quantifiers performed over k may be pulled back to the free ring).

Suppose that M is some structure for a certain language. Let 8(M) denote the poset of all
subsets of M which are definable with parameters from M. Then 8(M) is an atomic boolean
algebra. Marcja and Toffalori [MT84] consider the connection between a theory T and the
various 8(M) for M a model of T. In particular, they say that a countable theory T is p-
,*.-categorical if, for any two countable models M and M' of T, one has 8(M) 8(M').

In [Tof86], Toffalori shows that any countable theory of modules is p-9k,-categorical. His
proof is quite long and uses the structure theory developed by Ketonen [Ket78] for countable
atomic boolean algebras (as well as pp-elimination of quantifiers and Neumann's Lemma).

Subsequently, Piron [Pir87] gave a simpler proof, using a criterion of Vaught for partial
isomorphism of boolean algebras. He showed that, over any ring, if the modules M and M' are
elementarily equivalent, then 8(M) and 8(M') are partially isomorphic (so, if countable, are
isomorphic). (Exercise: [Pir87] show that does not imply M-M'.)
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Examples 2
(i) R=71, M=71(p), M'=71(p)eig. Since (§2.71) every pp formula reduces to annihilator

and divisibility statements, it is easy to check that M and M' have the "same" invariants
and hence 71(p)=-71(p)eQl. For both modules are torsionfree, so only simple divisibility
need be considered. Moreover, in each module every element is divisible by every prime
not equal to p. So it need only be checked that
Inv(71(p),"pniv" "p77 +1Iu")=Inv(71(p)eIQ,"p771u" "p77 +1iv") for each nEw. That
this is so follows by 2.10, since Qdpn=Qd for each n.
Also, if o=pE71(p) and a=(p,1)E?2(p)®IQ then it is easily seen that
PpM(a)=ppM (a') and hence tpM(a)=tpM'(a') (by 2.17).

(ii) R=71, T=Th(71poo). Any model of T must be divisible and without q-torsion for all
primes q*p, so must have the form for suitable K, 'A.
Since Inv(71poo, vp=0, v=0)=p, it must be that K=1. Since 71poo is infinite there
must be some -A with 71p00 9Q,l(^A)==71poo (for T has models in all infinite
cardinalities!). Now, the endomorphism ring of IQ is just IQ so, by 2.1, Qd has no non-
trivial proper pp-definable subgroups: in particular each invariant of IQ is either 1 or
oo. Hence 00=IQ(') for all non-zero y, a. Therefore (2.18) 71poo®Q(A) is a model
of T for every value of '->0; so these are precisely the models of T.

NO R=71, T=Th(M=7123 (D 7140-)). Since T contains the sentence Vv(v4=0), every
model of T is an abelian group of exponent 4 and hence is a sum of copies of 712 and 714.
Note that Inv(M,v2=0,v2=0A21u)=8 since !(7123 (D 714('*-))2/714("--k-)2)J=I7L23I=23.
Therefore one cannot add copies of 712 to M and retain a model of T. On the other hand,
every invariant of 2Z4( k-) is 1 or infinite (since we have infinitely many copies of 714 )
- here we are using the result (2.10) that pp formulas commute with direct sum. Thus a
sum of copies of 714 is elementarily equivalent to 714('x) iff it is a sum of infinitely
many copies.
Hence the models of T are precisely the 7123 ® 714(x) with K-> '2,.

Exercise 5 Let R=K[x,y:x2=y2=xy=yx=0] with K an infinite field (see
Ex2.1/6(vi)). Show that the models of Th(R) are just the sums R(K) (K-> 1) of copies of R.
(This exercise does become easier with some of the tools developed later.)

2.5 Immediate corollaries of pp-elimination of quantifiers

A number of the corollaries presented in this section were obtained before pp-elimination
of quantifiers was available. Proofs which appeal to pp-elimination of quantifiers are generally
much shorter than the original ones.

First we see how the invariants behave with respect to pure embeddings, direct sums and
products. Like many results of this section these "computational aids" will often be used without
explicit reference.

Lemma 2.23 Let M,N,Mi (iEl) be any modules.
(a) If M<; N then Inv(N,Lp,tp)=Inv(M,tp,tp).Inv(N/M,ip,y,) for all pp p,W and

so N=- M ® (N/M). In particular, Inv(M,tp,tp)5lnv(N,ip,ip).
(a)' If M <N then M is elementarily equivalent to M ®(N/M): if, moreover,

N<N' then N/M <; #'/ M.
(b) Inv(M(DN,ip,tp)=lnv(M,ip,tp).Inv(N,ip,tp).
(c) Inv(®iMi,T,W)= TTi Inv(Mi,ip,tp)=Inv(TTi Mi,iP,W).

Proof (c) This follows from 2.10, That result gives
p(® Mi)/W(® Mi)= ®i(ip(Mi)/tp(Mi)), and similarly for products. Then just treat the
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various cases: (i) for some i, ip(Mi)/tp(Mi) is infinite; (ii) for infinitely many i,
Iip(Mi)/p(Mi)l>1; (iii) not (i) nor (ii).

(b) This is a special case of (a) (and (c)).
(a) One may use the fact (see 2.27) that M < M then, as in [Sab70a; Cor3 to Thm 1], use

ultraproducts to split the pure-exact sequence M, ) N-->N/M. Alternatively, one may argue
directly as follows (compare [Zg84; proof of 2.2(1)]).

It is claimed that if M is pure in N then ip(N)/ip(M)=ip(N/M) for every pp formula ip:
clearly this will be sufficient. Certainly if Nkip(a) then N/Mkip(na), where n:N--N/M
is the canonical projection. Noting that, since M is pure in N one has ip(M)=MnLp(//), it
follows that tp(N)/1p(M),<i.p(N/M).

Now suppose that N/Mkip(na) - say this formula is 3w e(w,na) where e is A-
atomic. Let b in N be such that N/Mke(nb,na). Regard the zero element of each equation
of a as a separate parameter: so replace 8(F47, U) by eo(w,v,0), say. Then one has
N/Mke(nb,na,0).

It follows (since eo is a conjunction of equations and by definition of the quotient IV/M)
that there is c in M=kerb with Nkeo(b,a,c). Thus Nk3w,v eo(w,U,c). Since M is
pure in N and c is in M one has Mk3w,v eo(w,U,c) - say b',a' are in M with
6o(o',b',c) true (in M, equally in N). Apply 2.1 to eo(b,a,c) and eo(b',a',c) to obtain
eo(b b',a a', 0). In particular Nk3w eo(w,a-a',0) and hence Nk3w e(w,a-a') (since
eo(w,U,0) is just That is, NkT(a-a'). But n(3-07')=n57 since a' is in
M=kerb.

Thus we have shown naE ip(N)/ip(M), as required. The second assertion follows by 2.18.
(a)' The first part is immediate from (a), (b) and 2.18. The second is just a special case of

the (well-known) fact that if A _< B <; C then BIA <; CIA (the method of the proof of (a) shows
it). D
Exercise 1 Show that a(p)/72(p) is a direct sum of copies of Q,
[Hint: note that %) is pure in 7L(p).)
Exercise 2 Show that if A, B are abelian groups and if A ®A = B 19B then A- S.

Corollary 2.24 [SE71; §1.1], [Sab7oa; Cor2 to Thm 4] Let M, N, Mi (i E I) be any
modules.
(a) ®iM)i=TTiMi.
(b) M(K)=M(k0)=M1k0=MK for any infinite K.

Proof This is immediate from 2.23 and 2.18. o

Proposition 2.25 [Sab7l] If M<, N<, M' and MEW then M<N (and N<M').
Proof By 2.23(a), one has Inv(M,tpW)SInv(N,ip,tp)SInv(M',ip,iv)=lnv(M,i.p,yP) for any
pp tp, ip. So by 2.18 one concludes M=_41.

Let a be in M. Since M is pure in N one has, by definition, that ppR(a)=ppN(a). So
by 2.17 one concludes that tpM(a)=tpN(a). Thus M<N. o

Exercise 2 [Sab7oa; Thm4] If M<; N'=N<; M'=M then M=N.

Corollary 2.26 Fisher: see [Ek72; p341]; also [EF72; 2.5] for abelian groups, and
[Sab71; Thm 2] If M is elementarily equivalent to N then any pure embedding of
M into N is an elementary embedding. o

Corollary 2.27 [Sab70a; Cor 4 to Thm 4] Every module is elementarily equivalent to,
indeed, is an elementary substructure of, its pure-injective hull.

Proof This follows since any sufficiently saturated module is pure-injective, by 2.25 and
then by definition of pure-injective hull (see §4.2). o
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Corollary 2.28 For any set (Mi)i of modules, ED iMi { TT ^.
Proof Taking M= ®i Mi and N= TT i Mi in 2.26, this follows from 2.24. a

Proposition 2.29 For any module M one has M=M('o) iff M=M2
Proof This is immediate from 2.18 and 2.23. a

If T=Th(M) and M=M(' o) then write T=Tko and say that T is closed under
products. If T=Th(M) is any complete theory of modules then set T'&o to be Th(M t'to): this
is well-defined.

Exercise 4 If T is a complete theory of modules then T =011o iff the class of models of T
is closed under products (in MR).

Exercise 5

(i) Show that the pure-injective hull of (D p 7l(p) is TT p 7l(p), where p ranges over the
positive primes.
[Hint: use the invariants and show that III cannot be a direct summand of the second
module.]

(ii) Identify: (a) (TT p (D p 2(p)); (b) (TT p 7Z(p))/((D p 7Z(p7)), where p ranges
over all the positive primes.

(iii) Describe the pure-injective hull of 2(p)(Xo) (p fixed).
(iv) Give an example of pure-injective modules Ni (iEw) such that the pure-injective hull

of ®i Ni is not the product TT i Ni. There are easy examples with the Ni all I-pure-
injective, so find an example with none of the Ni 1-pure-injective.
[Hint: you're looking for an irreducible type which is not neg-isolated; see Ex7.2/2.]

(Also cf. [Fra81].)

2.6 Comparison of complete theories of modules

One of the main reasons for studying modules is that they represent various other
mathematical objects. For example, a representation of a group is nothing more than a module
over the corresponding group algebra. It follows that it is often not in individual modules that
our interest lies but, rather, in the whole category of modules (or at least in certain
subcategories). Therefore, if the study of one complete theory of R-modules were entirely
unrelated to the study of any other this would indicate some weakness in the subject of the model
theory of modules, especially since elementary classes tend not to be algebrically "natural" ones.
Fortunately, this is far from being the case, and this section is devoted to showing how one may
compare the various complete theories of modules over a given ring. In §4.7 this comparison
will become more subtle and deep when we introduce Ziegler's topology.

We look first at the natural ordering of complete theories of modules ([Pr80e]). It is an
ordering which is most useful when restricted to those theories which satisfy T=T'I*o, but it
does make sense for arbitrary complete theories. Let me use an example to illustrate the idea.

Take the ring to be the ring of integers and let T1, T2 be the theories of 22(Ao) and
22(o)®7l4('A0) respectively. By considering the invariants (cf. 2.18), one sees easily that
the models of these theories are respectively the 7Z2(K) (K>'rio) and the 7Z2(K)®7Z4(A)
(K,^A >'k) respectively. Thus every model of Ti is a direct summand of a model of T2 and so
in some sense we have T,-< T2. On the other hand, our requirements for one theory to be
smaller than another will not be met simply if every model of the one is contained in a model of
the other - for it is only the pure embeddings which preserve pp-types. Thus, for example, if
we take T. to be the theory of 7Z4('Ao) - so the models are the infinite direct sums of copies
of 724 - then, although it is true that every model of T, embeds in a model of T3, these
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embeddings will not be pure, so we will not consider Ti and T. to be comparable in our
ordering.

Suppose then that T, T' are complete theories of modules. Write TS T' if the equivalent
conditions of the next result are satisfied, and in that case say that T is a component of V.
That this defines a partial order on the set of complete theories of R-modules is an immediate
consequence of 2.25.

Proposition 2.30 Let T, T' be complete theories of modules. Then the following
conditions are equivalent.
(i) Some model of T is purely embedded in some model of V.
(ii) Each model of T is purely embedded in some model of T'.
(iii) Inv(T,T,.p)Slnv(T',ip,u,) for all pp formulas tp, ip in one free variable.

Proof (i)==>(ii) Suppose t'-<,* M' with MkT and M'kT'. Let Mi be any model of T. Then
there is a common elementary extension M2 of M and M1. It will be enough to show that M2
purely embeds in a model of V.

By 2.23 we have M2 = M ® (M2/M); by hypothesis this purely embeds in M' ® (M2/M).
So it will be enough to show that M' ® (M2/M) is a model of T'; by 2.18 it must be shown that
Inv(M2/M,i.p,ip)> 1 implies Inv(M',ip,V)= oo. Since M M ® (M2/M) one has by 2.18 that
lnv(M,ip,xp) = oo; since M'; M' the desired conclusion follows.

(ii)=:>(i) This is immediate.
This is immediate by 2.23(a).
If T'=(T')' k then this is immediate. For let MkT, M'kT'. Then by 2.23

Inv(M(DM',ip,yj)=lnv(M,ip, ,).Inv(M',ip,ip) and this is o0 or 1 according as Inv(T',ip,1p)>1
or Inv(T',ip,ip)=1 (by assumption (iii)). So M ®M'kT' by 2.18. Therefore M is a direct
summand of a model of T' as required.

For the general case, I appeal to some results of later chapters (which do not depend on 2.30
or its corollaries). Since it is the case where T and T' are closed under products which is
most interesting, this early divergence from a strictly orderly presentation should not try the
reader's patience unduly.

By 4.36 I may take MkT, M'kT' to be discrete pure-injective models with M' being the
discrete part of a 1M1+-saturated model. Then, by the case already dealt with, the only
obstruction to M being a direct summand of M' is the possibility that there is some
indecomposable direct summand, N, which occurs K (say) times in the decomposition of M
but only '1,<K times in the decomposition of M'. Since M' is assumed to be very saturated (for
discrete parts) this can happen only if -A is finite. If that is the case then, by 4.44, there is
some T'-minimal pair ip/p with Inv(N,ip,w)>1 and Inv(T',ip,ip) finite. But then since
Inv(M,ip,i,)<Inv(M',ip,y,) it must be, by 2.23, that K5^A - contradiction, as required. o

Corollary 2.31 Let T = T , be a (not necessarily complete) theory of modules.
Then the theory of pure submodules of models of T is axiomatised by
{Inv(-,ip,yi)=1:Inv(M,ip,ip)=1 for all MtT}. o

Exercise 1 Show the following (which may be used to give anotherf f ddi f modules asGi di bf f 2 30(i)(ii) ngs oven a agram o em eo . .M r)N Proo
r shown, with g elementary and f pure, there is a completion to a

commutative diagram as indicated, with g' elementary and f' pure.
.r 19'

C--,>N'
f'
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Exercise 2 Determine the ordering on the set of those complete theories T of abelian groups
which satisfy T=T° (see §21).

Clearly To=Th(0) is the smallest theory in the order just introduced. Is there a largest
complete theory of R-modules?: indeed there is. Define T*=Th( (D(MT : T is a complete
theory of modules and MT is a chosen model of T)). Note that T*=(T*)'1o.

Proposition 2.32
(a) T* is the largest complete theory of modules: if T is any complete theory of

modules then T<T*.
(b) MkT* iff Inv(M,lp,lpnip)=oo for all pp formulas i.p, tp in one free variable

such that Th(1I2R) does not prove Vv(ip(v)->ip(v)).
Proof (a) This is immediate by construction and 2.30.

(b) The direction "=#, " is by construction of T*. For if there is some module M with M
not satisfying Vv p(v)), that is with Inv(M,ip,ipn\p)>1, then, by the construction,
Th(M(koJ)<T* and one has Inv(T*,Lp,tp)=oo.

The reverse direction follows since, if M is as described and if N is any module, then
necessarily Inv(M®N,ip,ip)alnv(M,ip,tp) for all pp Lp,ip. Thus M®N=M, whence N isa
direct summand of a model of Th(M). Hence Th(M) = T*. o

This ordering on complete theories of modules is seen in [Gar79; §1]. There, Garavaglia
takes a (not necessarily complete) theory T (not necessarily of modules) whose class of models
is closed under direct product. Let S(T) denote the set of all (complete) theories of models of
T. Garavaglia shows [Gar79; Lemmas] that S(T) is a topological semigroup, where the
product of T' and T" is just Th(M'xM"), where M'kT' and M"kT", and the basic open sets
have the form U6 = {T' E S(T) : T'h(5 ) where 6 is a sentence. He sets T'IT" if there is a
model of T" of the form M' ®M, where M'I=T' (so this specialises to the ordering of this
section).

Garavaglia then defines the theory T'ES(T) to be "T-indecomposable" if, whenever
M'kT' and M' - TT i Mi (MikT), then MikT' for some i. Note that a theory, rather than a
structure, is indecomposable. Then he shows [Gar79; Thm 1] that every complete extension T'
of T is a (possibly infinite) product of T-indecomposable members of S(T).

This seems to have the flavour of Ziegler's 4.36 and perhaps neg-isolation; nevertheless, I
do not see any particularly exact connections (although - see the beginning of §10.4 - in the
context of m-dimension<oo, two indecomposables are elementarily equivalent iff they are
isomorphic).

These ideas have been extended by Nelson [Nel8?], who also proves the following: if M is
any module, then its periodic power is isomorphic to 41(k0), where the "periodic power" of M
is the submodule of MA- consisting of all periodic functions (i.e., all (ai)iEw such that there
exists k>1 with aj=aj+k for all jEw).

The next result allows one to compare pp-types which arise from different theories.

Proposition 2.33 [Pr81; 3.1] Let T<T' be complete theories of modules. For
each ordinal a, there is a natural embedding of topological spaces
ja:SaT(o)r_-_* S«T'(0). This embedding preserves the ordering on types given by
p < q iff p+sq+; also imja is a closed subspace of S«T'(0) Explicitly, ja
is given on p E SaT(0) by jap=(p+ u 1p-)T', where (-)T' denotes deductive
closure modulo V.

More generally, if R s M k T then there is an entirely analogous embedding
(since M embeds purely in a model of T', it does make

sense to think of R as a set of parameters for T').
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Proof I consider the general case. Note first that if A=_MkT then, choosing any pure
embedding of M into a model M' of T', the pp-type of A is preserved. So jaA will be well-
defined provided jaAp - the deductive closure modulo T' of p+ u,p- in the language with
parameters for A - is consistent. Since (clearly) this set decides every boolean combination of
pp formulas it is, by 2.16, already complete. Now, p+(M)\ U{ip(M) : 'WEp- } is non-empty,
provided M is sufficiently saturated, so the same is true with M' in place of M (for M is
pure in M').

To see that imja 1 is a closed subspace of SaT'(A) (clearly jaA is 1-1), let
p'ESaT'(A) be in the closure of imjaA (in the topology described in §1.1). Let
'X(v,7) E p'(U) be a boolean combination of pp formulas. By assumption there is pESaT(A)
with x(U,a) EjaAp - hence with 'X(U,3) E p (note that p=(ja' p)"). In particular
T u {3Uis consistent, and this is so for every 'XE(p')-. Hence T u (p')-(v) is
consistent. Thus p'(u)=jaA(p(U)) for some p E SaT(o) - as required. a

Exercise 3 Describe explicitly the maps j for some examples (e.g. for T3 <T2, with
notation as at the beginning of the section).

The theory T* makes an appearance in the following context.
In [EkMz84] Eklof and Mez study the ideal structure of existentially complete (e.c.) and,

more generally, algebraically complete (a.c.) D-algebras, where D is a commutative ring. One
of their key lemmas is that, if R is an a.c. D-algebra and if a, b E R, then b E RaR iff the pp-
type of b in RD contains the pp-type of a. This connection between the ideal structure of an
a.c. D-algebra and its underlying D-module structure gives rise to the question of which D-
modules can be realised as the underlying D-module of an a.c. or e.c. D-algebra. In [EkMz87]
they go on to consider this question (in [EkMz85] the special case D=71(p) is dealt with).

They show ([EkMz87; 1.4]) that if R is an e.c. D-algebra (D commutative) then, as a D-
module, R is a model of the largest theory, T*, of D-modules: in particular, all e.c. D-
algebras are elementarily equivalent as D-modules. On the other hand, they show ([EkMz87;
1.6]) that if D is a principal ideal domain but not a field, then not every model of T* is the
underlying D-module of an e.c. D-algebra. So one problem they leave open here is the
characterisation of those commutative rings D over which every model of T' may be endowed
with the structure of an e.c. D-algebra.

Then it is shown [EkMz87; 2.2] that if K= ID1+'k, and if ),> K is such that there exists a
),-saturated model of T* of cardinality -A (cf. §3.1), then there is an e.c. D-algebra whose
underlying D-module is this (necessarily unique) ),-saturated model of cardinality a (in fact,
their result is stronger than this). It is noted that there exists a a-saturated model of
cardinality -A for every ),>K iff D (commutative) is of finite representation type (see
Exercise 3.1/4). So they conclude that there is, for every 'X> K, an e.c. D-algebra of cardinality
A, whose underlying module is ),-saturated iff D is a principal ideal ring (= commutative ring
of finite representation type).

There are a number of related results and open questions. Their paper ends with an
application to a problem of Fuchs.

2.71 pp formulas and types in abelian groups

Our most fruitful source of examples in these notes is the category of 2-modules. By the
way, I use the terms "abelian group" and "Z-module" entirely interchangably. Algebraically,
there is no distinction; model-theoretically, there is none either, since the language for 2-
modules is definitionally equivalent to that for abelian groups (the function "multiplication by
n" may be defined as an iterated sum). Admittedly, theories of 2-modules are not typical: for a
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start, 2 is a commutative ring and so all pp-definable subgroups are submodules.
Nevertheless, many points are well-illustrated by abelian groups and, in fact, consideration of
this special case has often pointed the way to results which are true in general.

Perhaps the most atypical feature of theories of abelian groups is that they are very well
understood. Szmielew's results [Sz55] on quantifier elimination and decidability provided,
early on, a decision procedure for such theories and a set of invariants, of the sort defined in
§2.4, which allow one to test for elementary equivalence. Other results, especially those on
algebraically compact modules over 2! and related rings, make the algebraic implications of
Szmielew's work clearer and, in fact, provide a more direct route to her results. This route is
taken by Eklof and Fisher in [EF72], where they extend the results to Dedekind domains.

It has been seen (2.9) that any complete theory of modules is determined by its pure-
injective models. It is known, see [Kap69; Notes to §17] or below, that every pure-injective
abelian group is the pure-injective hull of a direct sum of indecomposable pure-injectives. The
indecomposable pure-injective abelian groups are all quite familiar. With the results of this
chapter (and some later ones) most of the broad questions (and many detailed ones) about
theories of abelian groups have been (or can easily be) answered.

The most significant exception is that the gap between an abelian group and its pure-
injective hull is not very well understood. One consequence of this is that there is no good
structure theorem for countable models of theories of abelian groups (although the truth of
Vaught's Conjecture here follows nevertheless, by a crude counting argument).

One purpose of this section is to present enough material on abelian groups so as to enable
the reader to appreciate (and fill in details of) examples which use these groups. In particular,
a description of all the indecomposable pure-injective abelian groups is included. The first
result proved is that the pp-elimination of quantifiers for modules may be further refined for
abelian groups: every pp formula may be broken into a conjunction of annihilator conditions and
divisibility statements. Since much of what is so for 2-modules also holds for modules over
Dedekind domains, I present the results in this generality. There is no harm, however, in
reading this section as if the base ring under consideration were always Z.

In defining Dedekind domains, I take the opportunity to define various related classes of
rings which will be referred to, here and later. For more background the reader may consult
[Kap70].

Suppose that R is a commutative domain (= has no zero-divisors). Then R has a
classical field of fractions Q=Q(R), the elements of which are the equivalence classes,
[r/s] with r,s E R, s*o, under the usual ring operations - see [St75; Chpt2] (r/s is
equivalent to t/w iff rw=st). An ideal I of R is said to be invertible if
1-1= (qEQ : Iq=R) is such that 1.1-1= R (note that necessarily I.1-'=-R and that 1-1 is
an R-submodule of Q).

For example, if R=71 then Q=Q regarded as a ring, and a typical non-zero ideal, I, of
a has the form n:2 for some nE7l. Then

I-'
is {qEQ : ngE7l) which is just the set of all

fractions which, when written in reduced form, have denominator a divisor of n. So 11-1=7L
since 1=n.(1/n) Ell".

A commutative domain, such as a (and K[X]), in which every non-zero ideal is
invertible, is termed a Dedekind domain. Other examples are the rings of integers in finite
extension fields of the rational field Q. The next result gives various standard characterisations
of these rings.

Theorem 2.7IA (see [Kap70; §2.3]) Suppose that R is a commutative domain which
is not a field. Then the following conditions on R are equivalent:
(i) R is a Dedekind domain;
(ii) R is noetherian, every non-zero prime ideal P of R is maximal, and each

localisation R(p) at a non-zero prime is a discrete rank 1 valuation domain;
(iii) every ideal is a projective module (i.e., R is a hereditary commutative

domain);
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(iv) every ideal is uniquely a product of prime ideals;
(v) every divisible module is injective (so injective=divisible). o

Recall that if R is a domain and if P is a prime ideal of R then the localisation, R(p),
of R at P is the ring of equivalence classes of "fractions" r/s where r,s ER, s f P.

For example, if R=71 then R(0)=IQ and if p is a prime then 71(p) (that is 71(pT)) is
(m/n : m/n E Q and p4'n).

A valuation domain is a commutative domain whose ideals are linearly ordered by
inclusion. A valuation domain R is discrete rank 1 if the ideals are just
R>P>P2>...>P71 >...>0. An exam ple of such a discrete valuation domain is 71(p). For more on
valuation domains see §10.V.

A commutative domain R is a PrUfer domain iff, for every (maximal) prime ideal P,
the localisation R(p) is a valuation domain (note that a localisation of a valuation domain is
again a valuation domain, if not a field). Recall that a commutative ring is a principal ideal
domain (PID) if every ideal is cyclic.

Returning now to one of the main objects of this section - the description of the
indecomposable pure-injective abelian groups - the first result is that which allows us to
reduce general pp formulas to rather simple ones (it is also the basis of the usual proof of the
decomposition theorem for finitely generated abelian groups).

Theorem 2.716 (e.g. [HH70; 7.10], [Jac74; 3.8]) Suppose that H is a matrix over
the principal ideal domain R. Then there are invertible matrices X, Y over R such
that XHY is a diagonal matrix. o

The next result says that, over a principal ideal domain, we have elimination of quantifiers
down to pp formulas of a particularly nice form. For abelian groups, this is due to Szmielew
[Sz55]. It was extended to principal ideal domains (indeed, to Dedekind domains) by Eklof and
Fisher [EF72], who made heavy use of the structure theory for pure-injectives over such
rings (see [Kap76; Notes to §17]).

Theorem 2.711 Suppose that R is a principal ideal domain (for example R=71).
(a) Every pp formula Lp(U) is equivalent (in every R-module) to a conjunction of

formulas of the form pklt(v) and of the form t(U)=0, where pk is a
power of the prime p and t(u) is a term in (R-linear combination from) U.

(Recall that in this context, an element p is prime if pt ab implies pl a or
pib, whenever a,bER).
Moreover, every formula of the sort pklt(U) may be taken to have the form
pklplt'(u) where, if t'(v)=E;viri, then the greatest common divisor of
(r1,...,rn) is 1 (and l<k).

(b) In particular, if ip(v) is a pp formula in one free variable then ip(v) is
equivalent, in every R-module, to a conjunction of formulas of the sort pk I piv
(where pk, pi are powers of the prime p and k>l) and of the sort yr=0
(where rER).

Proof I follow the proof given in [Ho8?]. Since part (b) follows immediately from part (a),
prove (a).

Write the pp formula ip(v) in the form 3w (vT+wS=0)....(*) where T, S are
matrices over R. By 2.715, there are invertible matrices X, Y over R such that
XSY=D=diag(r1,.... rn) is a diagonal matrix (in so far as a rectangular matrix can be
diagonal) with (1,i)-entry riER).

Since X, Y are invertible, one successively derives the following formulas equivalent to
(*):
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3iu (UTY+wX-'.XSY=0);
3w' (UU+w'D=0).... (**) where U_TY.

Now think of (**) as a conjunction of linear equations. If w'=(w1...... wm), then each wi
occurs (with non-zero coefficient) in at most one equation. Therefore, equivalent to(**), is the
conjunction over jE(1,...,m) of the equations tj(u)+wjrj=0 (where tj(U) is thej-entry
of UU).

Thus (*) is equivalent to a conjunction of equations of the form rlt(U) where rER and t
is a term. As the special case, of t(u), one has t(u)=0.

Now (see [HH70] or [Jac74]), every non-zero element has an essentially unique
expression as a product of prime powers. Moreover, the g.c.d. (r, s) of elements r, s E R is 1

iff 1 E rR+sR. So it is easy to see that, if (r,s)=1 then rslt(U) iff rl t(U) and sl t(U).
Therefore every formula of the form rlt(U) (r#0) may be replaced by a conjunction of
formulas of the sort pklt(U) where p is a prime.

Finally, suppose that t(u) is 1,viri=0. Write this as (I; visi)s=0 where s is the
g.c.d. of (r1,..., rn) and the si are such that sis= ri. By the argument above, if pl is the
highest power of p dividing s, then the formula pkit(U) is equivalent to pkI pl(E; visi)
- which has the form desired. Of course, if 1>.k then the formula has no non-trivial content, so
may be dropped.

Note that the above reduction is effective. a

The simple pp formulas which appear above are sometimes termed "basic".

Corollary 222 Suppose that R is a principal ideal domain (actually [War69;
Cor 5] it suffices that R be a Prufer domain). Let MW be modules. Then M is
pure in N iff for every r E R one has MrnM=Mr.

Proof Certainly the second condition is necessary for purity. For MrS#rnM always is true
and, if m=nr E NrnM, then AI=3w (m=wr) so, since M is pure in N, MI=3w (m=wr)
and so m E Mr.

Now suppose that R is a principal ideal domain. Let ip(U) be pp and let a be in M such
that A/F p(a). By 2.711, .p(U) is equivalent, in every module, to a conjunction of formulas of
the form rl t(u) for suitable elements r of R and terms t. Let "rlt(U)" be any one of
these. Since A( kip(a), certainly Nk rI t(a). So by assumption, t(o) E Mr. Hence M
satisfies the conjunction of all those basic formulas and hence Mkip(f). Thus M is pure in Al

- as required. o

Theorem 2.711 will be used to describe the indecomposable pure-injectives over a discrete
rank 1 valuation domain. The list one obtains may also be obtained algebraically (see [Kap69;
Notes to §17], [Har59], [Hu162]). Then we use the fact that if R is a commutative ring then
any indecomposable pure-injective R-module is actually a module over a localisation of R at a
maximal ideal: this was noted and used by Ziegler [Zg84; 5.4] and generalises [Kap69].
Therefore, if R is a commutative ring whose localisations at maximal ideals are well enough
understood that over each one has a list of indecomposable pure-injectives, then one may pull
back to a list of indecomposable pure-injectives over the ring R itself. Examples of such rings
are Dedekind domains and commutative regular rings (the latter are treated in Chapter 16).

Proposition 2.713 Let R be a discrete rank 1 valuation domain with maximal ideal
P and quotient field Q (regarded as a module over R). Then the indecomposable
pure-injective R-modules are:

the artinian modules R/Pn (nil);
the generalised Prufer module Q/R;
the injective hull 0 of R;
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the completion R of R in the P-adic topology (= the pure-injective hull of R
- see §4.2 for the definition).

In particular, if R=71(p) then the list becomes:
gyp. (n>1); 71po; u; Z(p)-

Proof I follow the proof in [Zg84; 5.13. Both Q/R and Q are easily seen to be
divisible = injective (2.71A) and so they certainly are pure-injective. Moreover, both are
uniform (every pair of non-zero submodules has a non-zero intersection), and hence they are
both indecomposable (pure-)injectives.

Each R/Pn has dcc on submodules, hence on pp-definable subgroups (we are using that R
is commutative), and so is pure-injective (2-pure-injective even, by 2.11). Moreover, R/Pn
has a unique minimal submodule - Pn-'/Pn - hence it is indecomposable (for it has dcc on
submodules).

Last on the list is R (completeness of the list will be established below). Let me describe
this module (ring even). The powers of the prime ideal P may be decreed to form a
neighbourhood system of 0 for a linear topology on R. R has a completion in this topology: a
Cauchy sequence xo,x1,... is one which is such that for every n there is no with
xi- xj E Pn whenever i,j >no. The completion, R, of R in this topology is the collection of
all Cauchy sequences, modulo the usual equivalence relation; it has a natural structure as a ring
extension of R - in particular it is an R-module (and, as such, is easily seen to be torsionfree).

The elements of R may usefully be thought of as in 1-1 correspondence with infinite
branches through the tree of cosets of the form a+Pn with a E R and nEw. That is, given
cER and nEw, there is a unique (mod Pn) a77 E R such that cean mod Pn (i.e.,
c-an E Pn).

That R is pure-injective is a direct consequence of the construction (note that every
branch of pp-definable cosets in the tree has a point at the bottom" (trees, of course, branch
downwards)). That R is indecomposable as an R-module follows easily (consider its
endomorphism ring). The pp-definable subgroups of R are just the ideals of the ring k, which
are R>PR>P2R>...>PnR...>0 (this can be proved in various ways: for example it is an
immediate consequence of the fact that R is pure in R).

It remains to be shown that there are no more indecomposable pure-injectives. Choose and
fix a generator p of P. Let N be an indecomposable pure-injective and choose a non-zero
element a of N. Consider the annihilator, annR(a)=(TER : ar=0), and the height (in the
coarse sense) h(a)=max(n : a E A(P77) - either a member of w or "oo". If annR(a)=Pn+1
then annR(opn)=P. So, replacing a if necessary, it may be supposed that annR(a) is 0 or
P. Consider the possibilities.

If annR(a)=P and h(a)=nEw, then choose bEN with bpn=a. Then bR=R/P77+1
since oP=O. Moreover, b is not divisible by p in hl since h(a)=n so, by (a short
argument using) 212, bR is pure in N. But the module bR is itself pure-injective, so bR
is a direct summand of N. Hence

If annR(a)=P and h(a)=oo then the set, V(vn)nE(,)=(vo=a)u (vi+lp=vi: iEw),
of pp formulas is finitely satisfied in N so, by 2.8, is realised - say by (an)nEw in N.
Clearly, the module generated by { an : nEw) is a copy of Q/P (the unique divisible torsion
module). Since Q/P is injective it is a direct summand of A/ and so N-01P.

If annR(a)=0 and h(a)=oo, then a is uniquely (since annR(a)=0) divisible in N by
every power of p. Hence N contains a copy of the divisible hull of a - so N is a copy of Q.

If annR(a)=0 and h(a)=nEw, then choose bEN with bpn=a. Then bR-R (since
annR(b)=0) is, by 212, pure in N. So (for pure-injective hulls see
§§4.1,4.2). a



Chapter 2: pp formulas 49

The proof actually has established the following points for modules over a discrete rank 1
valuation domain: every pure-injective module has an indecomposable direct summand - it
therefore follows (see 4.A14) that every pure-injective module is the pure-injective hull of a
direct sum of copies of the modules described in 2.713; among the indecomposable pure-
injectives, the R/P", Q/R, and Q all are E-pure-injective, whereas k is not (it fails to
satisfy the criterion of 2.11).

The next task is to see that the indecomposable pure-injectives over a commutative ring
may be found by looking at those over its localisations at maximal ideals. Let us look at
commutative localisations more generally.

Suppose that R is commutative and let S be a multiplicative subset of R (so 1E S,
o$S and r,s E S implies rs E S). For M an R-module, the localisation MS of M at S
is obtained by first factoring out the S-torsion submodule -tSM=(mEM : ms=0 for some
sES), and then forming "fractions": formal expressions m/s (or ms-1) with m E M11;SM
and s E S, under the usual equivalence and operations. I n particular, RS has a natural ring
structure extending that of R/-tSR (-tSR is an ideal), and MS has a natural RS-module
structure extending its structure as an R-module (see [3t75; Chpt2] for details). If P is a
prime ideal then R\P is a multiplicative subset and MR\p is just what I earlier denoted by
M(p) - the localisation of M at P. Let QS:M-->MS be the natural morphism which
takes mEM to (m+-tSM)/1 via M/tSM.

Given a pp formula ip over R, we may ask what is the relation between LP(M) and
ip(MS): it turns out to be what one probably would expect. (There is no ambiguity in writing
ip(MS): one may equally well regard MS as an R-module or ip as a formula in the language of
RS (elements of R which become identified in RS have the same action on RS-modules).)

Lemma 2.714 [Gar79; Lemma4], [Zg84; Lemma5.5] Let R be a commutative ring
and let S be a multiplicative subset of R. Let M be any module. Suppose that
T=ip(v) is a pp formula in the language of R-modules. _
Then ip(MS)=(ip(M))S, where this latter is the RS-submodule of MSZ(U) generated
by the image of tp(M) under QS.
In particular, if mEM then QS(m)E ip(MS) iff msEip(M) for some sES.

Proof Suppose first that ip(U) is a single equation, say 1, viri=0. If a...... an EM with
1, airi=0 then, on applying the R-morphism QS, one obtains E QSai.ri=0. That is
QS(ip(M)) s ip(MS).

Conversely, if (a11sJ,...,an/s") E ip(MS), where al,...,an E M and si,...,sn E S, then
let s=X, si and write ai/si=ci/s for c1 =ai Xj.,,sJ E M. Then one has I (ai/si)ri=0,
so (I ciri)/s=0, and hence I ciri E CSM. Therefore there is tES with (I ciri)t=0 -
thatis - Ecit.ri=0. Thus (c,t/1,...,ct/1)st=(c1/s,...,c"/s)=(a1/s...... a"/s1) is in
(ip(M))S also, as required.

Thus the result is true for equations so, clearly, for conjunctions of equations. But pp
formulas are just projections of such conjunctions of equations and (M")S=(MS)", so the
result follows. n

Exercise 1 Detail the last part of the proof of 2.714. Alternatively, re-prove the result using
matrices from the beginning.

This is used to prove the following striking result of Garavaglia.

Theorem 2.715 [Gar79; Thm3] Suppose that R is commutative. Let M be any
module.
Then: M = ® {M(p) : P is a maximal ideal of R)
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_- ® {M(p) : PEW, where b' is any set of primes containing all the
maximal ideals of R).
Indeed, the natural morphism M -p TT { M(p) : P a maximal prime} is an
elementary embedding.
Here the localised modules should be understood as R-modules via the natural
morphism R--->R(p).

Proof First suppose that M is a finite R-module. Then R/annRM is a finite ring
(exercise!), so there are only finitely many (maximal) primes P1,...,Pn (say) containing
annRM. If Q is any prime not in this set then, since (R\Q) n annRM * 0 one has c(Q)IM = M,
and so M(O)=O-

Since R/annRM is artinian (so idempotents lift modulo the Jacobson radical) and
commutative, R /annRM is a finite direct product TT, Ri (say) of local rings, and
Pi = j ®Hi, Hi being the maximal ideal of Ri. Then it is not difficult to check that if
ei is the central idempotent, (0,...,1,0,...,0), of R corresponding to Ri (so with "1" in the
i-th position) then M(pt)=Mei. Since the ei are orthogonal and sum to 1, one obtains
M=M®;Mei= ®; M(Pt).

Thus if M is a finite R-module, and if b' is any set of primes containing all the maximal
primes, then IMI=I ® {M(p) : PE2f')I.

Next suppose that M is infinite and that b' is as stated. The map M-+TT {M(p) : PE b'}
given by at-->(Q(P)a)PE6) is monic. For if a is a non-zero element of M then annR(a)xR,
so there is P E if' with annR(a) <P: then a ff c(p)M and hence Q(p)a x 0. Therefore this
product is infinite: so, therefore, must be the corresponding sum ® (M(p) : PEP).

In summary; we have that for any module Al, INI=I ® {N(p) : PE 6' )I.
Therefore, if M is any module and if ip(M)_> p(M) with ip, y being pp formulas (so, R

being commutative, ip(M), W(M) are submodules of M), then
Ii.p(M)/p(M)I=I ® ((qp(M)/W(M))(P) : PE6) )I=TT (I(1p(M)/W(M))(P)I : PEZ<'}. But (R is
commutative so Q(p) is exact [St75;X1.3.4]) and

this in turn is isomorphic to Lp(M(p))Itp(M(p)) by 2.714. Thus it has been shown that
Inv(M,tp,W)=TI(Inv(M(p),ip,W): PE b'}=Inv(ED {M(p): PE 6)),ip,yi) (by 2.10).

Hence M=_ ED (M(p) : PE 0), as claimed.
To finish the proof, it must be shown that the natural map M -* TT (M(p) : P maximal) is

an elementary one: by 2.26, it is enough to show that is is pure (we have already seen that it is
an embedding). So let ip be pp and let aEM be such that Mkiip(a). Let
I = (ip(M):a) = (rER : MPLp(ar)). By assumption, I is a proper ideal, so it is contained in a
maximal ideal, P say. If we had M(p) k ip(Q(p)a) then, by 2.714, there would be sER\P
with MI- T(as) - contradiction. Hence M(p) -np(Q(p) a) and so the embedding is indeed
pure, as required. o

Corollary 2.716 As abelian groups, 71= ® p prime 2(p)- o
Corollary 2.717 [Gar79; Cori] Let R be a commutative regular ring and let M be
any module. Then M= ® {M/MI: I is a maximal ideal of R). In particular, every
module is elementarily equivalent to a direct sum of indecomposable injective modules
(cf. 4.36 and also 4.38). o

Exercise 2 [Gar79; Cor2] Suppose that R is commutative without nilpotent elements. Then
every R-module is elementarily equivalent to a direct sum of cyclic modules iff R is (von
Neumann) regular.
Question How much of the above goes for classical rings and modules of quotients in the non-
commutative case? (see [St75; Chpts2,11]).
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The next result appears in [Kap69; Exercise 65] for PID's (also see [War69; Prop 121).
The general result is [Zg84; 5.4]. The localisation technique is used also in [Fis75; 2.29].

Theorem 2.28 Suppose that R is commutative. Then, for every indecomposable
pure-injective module N, there is a maximal ideal P of R such that the natural
R-morphism is an isomorphism. Moreover N(p) is
indecomposable as an R(p)-module.

Proof Since R is commutative it acts as a ring of endomorphisms of N. Since End(N) is
local (4.27), the sum of any two non-automorphisms is a non-automorphism. Hence
(rER : -xr:N) N is not an automorphism of N) is an ideal of R (proper, of course).
Choose any maximal ideal, P, of R containing this ideal. Since every element of R\P acts
automorphically on N (note: such elements need not be invertible in R - consider Q71), it
follows that N already has a natural R(p)-structure. Thus the result follows.

Notice that the last remark follows trivially, since N"="N(p) has "identical" structure
as an R-module and as an R(p)-module (in particular, the pp-definable subgroups are the same,
since the R(p)-action is pp-definable in terms of the R-action). o

Thus every indecomposable pure-injective R-module may be found already over some
localisation R(p) of R at some maximal ideal. The next lemma says that one may pull back
indecomposable pure-injective R(p)-modules to R, and that essentially nothing changes in the
process.

Lemma 2.29 [Zg84; 5.3] Suppose that R is commutative. Let S be a
multiplicative subset of R, and let M, N be RS-modules.
(a) M and N are elementarily equivalent as R-modules

equivalent as RS-modules.
iff they are elementarily

(b) M is an (indecomposable) (pure-)injective module over R iff it is so over
RS.

(c) N is the pure-injective hull of M as an R-module
module.

iff it is so as an RS-

(d) M is an elementary substructure of (resp. pure in) N as an R-module iff it
is so as an RS-module.

Proof This is left as an exercise using, for example, 2.714. a

Applying this together with 2.23, one obtains the following description of indecomposable
pure-injectives over certain rings including Dedekind domains (in particular this applies when
R=71). For the generalisation to PrUfer rings, see §10.V.

Theorem 2.7110 [Zg84; 5.2] Let R be a commutative ring such that each
localisation of R at a maximal prime is a field or a discrete rank 1 valuation
domain. Then the indecomposable R-modules are, where P ranges over the maximal
primes:
RIP = R(p) if R(p) is a field;
R(p)/R(p)P77, Kp/R(p), (j'), Kp otherwise, where Kp is the field of
quotients of R(p). n
Corollary 2.211 Suppose that R is a Dedekind domain. Then the indecomposable
pure-injective R-modules are:

Q; R(P);
where n E w, n ,>l, where P ranges over the maximal ideals of R, and where "Q"
denotes the field of quotients of R (=the field of quotients of each localisation). a
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In particular, the indecomposable pure-injective abelian groups are: the finite groups
71pn; the priifer groups 71poo; the p-adic integers 2(p); the rationals 0.

The argument of this section may also be made to show that there are no continuous pure-
injectives (i.e., pure-injectives without indecomposable direct summands) over a Dedekind
domain (see [Fis75; 2.29)]).

Corollary 2212 Suppose that R is a Dedekind domain. Then R has no more
than IRI+'Z, indecomposable pure-injective modules. If R is countable and not a
field, then there are exactly X. indecomposable pure-injectives.

Proof Since R is noetherian, there are no more than IRI+ )k0 prime ideals so, by 2.211,
this is an upper bound. If R is countable and if P is any non-zero prime, then the modules
R/Pn are all non-isomorphic (being of different lengths) indecomposable pure-injectives, so
X. is a lower bound. o

Ziegler [Zg84; 5.7] classifies the indecomposable pure-injective pairs, (U,U), where
U.>U are torsionfree modules over a Dedekind domain. The list is: (0,0); (Q,Q);
(R(p),R(p).P17); (),o), R(p)), where P is an arbitrary non-zero prime,
p 0, i2=42(R) is the quotient field of R and Q(R(p)) is the quotient field of T(-F).

In [Zg84; 9.8] he shows that the CB-rank of the space that they form (§4.7) is 2. From
his explicit description of the space, decidability of the theory of such "torsionfree pairs"
follows ([Zg84; 9.10]) over any suitably recursive Dedekind domain (cf. 17.15).

2.L Other Languages

I refer the reader to the various papers for the definitions of the quantifiers mentioned in
this section.

The first results concern eliminability of the Magidor-Malitz quantifiers, Qam: the
quantifiers Qom are also known as Ramsey quantifiers.

It was proved by Baldwin and Kueker [BK80] and (later) by Rothmaler and Tuschik
[RT82] that if T is a countable stable theory then the Qom are eliminable (i.e., formulas
involving them have first-order equivalents) iff T does not have the finite cover property
(fcp).

Baudisch [Bd84a] showed that in theories of modules, the Magidor-Malitz quantifiers
Qam (n>,2) all have the same expressive power as Qa2 (and that the elimination of the
quantifiers Qam in favour of Qa2 is relatively effective). He also showed that the Ramsey
quantifiers are eliminable in any complete theory of modules. Previously, Rothmaler [Rot8l]
had shown the eliminability of the quantifier Qo ("there exists infinitely many") in any
complete theory of modules. So, by Baudisch's result, it followed that every module fails to have
the fcp. This was given another proof by Hodges using Poizat's results on "beautiful pairs"
[Poi84] and a direct proof was also given by Rothmaler [Rot82]. Rothmaler also has some
partial results showing eliminability of Qo in certain incomplete theories of modules [Rot84].
Baudisch [Bd83] shows decidability of the theory of abelian groups with Magidor-Malitz
quantifiers and gives an elimination procedure.

For all this, and more, see [BSTW85], especially §1.3. On p.249 there is a useful table
summarising what is known about the various languages (as above, also Hartig's quantifiers and
Laa).

As for stationary logic: Eklof and Mekler [EkMk79; §4] show that modules have an
elimination of quantifiers in the language Laa and that, moreover, the Laa-theory of abelian
groups is decidable. The results on abelian groups were obtained independently by Baudisch



Chapter 2: pp formulas 53

[Bd81]. Furthermore, if R is countable, then the theory of R-modules has an Laa-model-
companion iff R is right coherent (cf. 15.35).

Eklof [Ek74] and, independently, Kueker (unpublished) consider conditions for an abelian
group to be L.K-equivalent to a free group or to a direct sum of cyclic groups. Also Ruyer
[Ru84; Thm 23 has a criterion for a module over a Dedekind domain to be LKw-equivalent to a
direct sum of finitely presented modules. For classification of abelian groups up to LOOw-
equivalence, see [BE70] and the survey article [Ek85].

Sabbagh and Eklof [SE71] have various results on L.,-equivalence of direct sums and
products and on classes of modules definable in the language L.w. They show [SE71; Prop 10]
that if, for every cardinal K, one has R(K) L.,-equivalent to RK, then R is left coherent:
furthermore, if R is left noetherian then, for every K, R(K) is an L., -substructure of RK.
This contrasts sharply with the finitary (Lww) case (§2.5).

In the same paper they asked whether the class of commutative noetherian rings is definable
in Lww. They observed that, if so, then there would be a fixed countable bound on the length of
any chain of ideals in a commutative noetherian ring (i.e. the "depth" of the zero ideal). Bass
[Bas71] had showed that any such chain has to be countable, but his proof did not give an upper
bound. In fact, he showed that if there exist countable noetherian rings of arbitrarily high
countable Krull dimension then there could be no such bound. Gordon and Robson [GR73; 9.8]
gave examples of countable commutative noetherian domains of arbitrarily high countable Krull
dimension, so they were able to conclude that the class of countable commutative noetherian
rings is not definable in L,,,-

For classification of abelian groups up to Loow-equivalence, see [BE70] and the survey
article [Ek85].

The model theory of modules in a certain topological language has been considered. The
relevant language has two sorts: one for elements and the other for sets which are to be
interpreted as forming a topology (the module operations have to be continuous with respect to
the topology) and there are certain restrictions on the occurrences of quantifiers applying to set
variables. This language allows one to say significant things about the topology but is also quite
close to being first-order and is reasonably well-behaved. Garavaglia [Gar78; §5] obtained a
criterion for elementary equivalence of topological modules in terms of satisfying the same
sentences which are 1V3 with respect to individual variables (this restricts to the criterion seen
in §2.4). In his thesis ([Kuc84; Chpt.IV], see [Kuc86]), Kucera considers stability in these
topological languages, for modules in particular. Cherlin and Schmitt [CS83], generalising
some of [EF72], classify saturated torsionfree locally pure topological abelian groups and
obtain decidability for these groups in the appropriate topological language.



54

CHAPTER 3 STABILITY AND TOTALLY TRANSCENDENTAL MODULES

Stability theory is a relatively new area of model theory which has developed rapidly. It is
much concerned with types: with their properties and the relations between them, and with how
this is reflected in terms of the structure of models. It is perhaps not surprising then, that one
finds notions from stability theory relevant to modules (sometimes even identical with already
existing algebraic notions). For we have seen that every type reduces essentially to a collection
of pp formulas and negations of pp formulas, and pp formulas are not far from being "algebraic"
since they express solvability of systems of linear equations.

I will state definitions and results from stability theory in various chapters, as I need them.
A short introduction which covers most of what I will need is Pillay's book [Pi83]. A concise
continuation of this is Makkai's article [Mak84]: Rather more inclusive are the books of
Baldwin [Bal8?] and Lascar [Lass?]. The already-mentioned model theory texts of Poizat
[Poi85] and Hodges [Ho??] contain all the stability theory that we will need. Of course there
is also Shelah's book [She78], which contains a vast amount of material (though much is
implicit rather than explicitly pointed out and the presentation is not designed to facilitate
"dipping into" the book).

Stability theory divides complete theories into two major classes: those which are stable
(where there is some possibility of developing a structure theory, at least for sufficiently
saturated models); and those which are unstable (in the sense that they contain an infinite
definable linear order and are, in some senses, less well-behaved than stable theories - though
see [PiSt86]). Every theory of modules is stable. Since an arbitrary stable (non-superstable)
theory may yet be very complicated it is not immediately clear how useful one should expect this
to be. But, in fact, modules have pleasant model-theoretic properties which go beyond mere
stability, and we will see that reasonable classification theorems exist even in the non-
superstable case.

Within the class of stable theories there is a much better-behaved class - the superstable
theories - and beyond these there are the totally transcendental (or more prosaically, t.t.)
theories. For modules (and even in general) the totally transcendental theories have good
structure theorems for their models. Rather suggestive for the general case is that for theories
of modules the non-superstable case may be refined considerably (see Chapter 10).

I now define all these terms and immediately establish their algebraic characterisations in
modules (which are what I will usually, but not invariably, use).

A complete theory T is K-stable (K being an infinite cardinal) if ISIT(A)k5K whenever
IAkkK (A denotes an arbitrary subset of a model of T). Thus T is K-stable if it has no more
than the minimum possible number of types defined over sets of cardinality K.

Exercise 1

(a) Show that in the definition of K-stability one may replace S1(A) by Sn(A) for any
nEw.

(b) Show that for any set A, ISI(A)I>, lAl.
(c) Show that the (theory of the) rationals with the usual ordering "<" is not k,-stable.

Rather more difficult to show is that this theory is not K-stable for any (infinite) K.

It turns out that there are surprisingly few patterns of behaviour with regard to this
notion. The basic classification theorem (due to Shelah) is as follows (see [Pi83; 5.3],
[Poi85; 13.10,17.12,17.19]).

Theorem 3.A Let T be any complete theory. Then either:
(i) T is unstable - that is, T is K-stable for no infinite K>,ITI; or
(ii) T is stable - that is, T is K-stable for some KNIT) - in which case T is K-

stable for all K>2ITI satisfying 0=K, for all 'A<K(T), where K(T) is an
infinite cardinal which depends only on T (so T is stable in "most"
cardinals).



Chapter 3 Stability and t.t modules 55

In the stable case there are essentially three possibilities:
(a) T is merely stable - that is, stable but not superstable - in which case

stable for a given K > 2ITI exactly if K is as described in (ii) above;

T is K-
or

(b)
(c)

T is superstable - that is, K-stable for all K>21TI; or
T is totally transcendental (t.t.) - this is usually defined in terms of

Morley rank (see §5.2) but is equivalent to every reduct, To, of T to a
countable language being w-stable (= ,-stable), and this implies that To is
K-stable for every infinite K (and that T is K-stable for every K >JT) - this

condition characterises T being totally transcendental). If T is totally

transcendental then T is superstable. n

Given any infinite cardinal K, there exists a cardinal K,- >K such that K,'ko > K1 (take
K1>K to have cofinality (4). It follows that, in order to prove T superstable, it is sufficient to
show that there is some cardinal Ko such that T is K-stable for all K>K0.

In some sense the totally transcendental theories are the simplest: they have fewest types,
so there is less possibility for "complexity" of models. This is, indeed, reflected in structure
theorems (e.g., see [Pi83a]). Of course cardinality is a very coarse measure, and one might
argue that the real point of total transcendence (and superstability) is the existence of rank
functions on types. These ranks are very useful in the analyses of models. The model-theoretic
rank functions will be considered in §5.2. Algebraic and topological dimensions, related to the
model-theoretic ranks, are used at various points. The use of ranks and dimensions is one of the
main strands running through these notes.

Every module is stable. This is shown in the first section, which also contains "algebraic"
characterisations of totally transcendental and superstable modules. It is seen that totally
transcendental modules are precisely the 1-pure-injective modules of §2.3. Various
corollaries are deduced with the aid of the invariants of §2.4. In particular, if M.< // are
superstable then the quotient M/M is totally transcendental.

In the second section it is shown that every totally transcendental module is a direct sum of
indecomposable submodules. This theorem encompasses a number of well-known algebraic
direct-sum decompositions. A countable theory all of whose models are pure-injective must be
totally transcendental: this, and related results, are considered at the beginning of the section.

3.1 Stability for modules

The main theorem here states that all modules are stable and characterises superstable and
totally transcendental modules (recall that to say that a module is stable, ... is to say that its
complete theory is so). Stability of modules was proved independently by Fisher ([Fis75;
5.5], it also follows from [Fis72]) and Baur ([Bau75; Thm 1]) (there are partial results in
[Brt75]) before pp-elimination of quantifiers was available: the original proof used pure-
injective extensions (see below). The characterisation of totally transcendental modules is due
to Garavaglia and Macintyre (see [Mac71; Lemma3], [Ger79; Lemmas] and [Gar80; Thm 1])
and that of superstable modules is due to Garavaglia [Gar79; Lemma7]. In another guise,
totally transcendental modules were characterised in rather similar terms ("p-functors" and
"subgroups of finite definition" take the place of pp formulas) by Gruson and Jensen [GJ76;
Thm] and Zimmermann [Zim77; 3.4]. In giving upper bounds for numbers of types, I follow
the proof of [Zg84; 2.1].

Theorem 3.1 Let T be a complete theory of modules.
(a) T is stable.
(b) The following conditions on T are equivalent:

(i) T is superstable;
(ii) for any set (tpn : n E w) of pp formulas in one free variable, there is

n E o such that for all m> n, I nv(T, A LPi, A o LPi) is finite;



Chapter 3 Stability and t.t modules 56

(iii) in any, equivalently every, model M of T if Lpo(M) > ip,(M) -> ... is a
descending chain of pp-definable subgroups, then there exists nEw such
that for every m->n the index [ipm(M):tpm+i(M)l of tpm+i(M) in
Lpm(M) is finite;

(ii)', (iii)' as (ii), (iii), but for formulas in any finite number of free
variables.

(c) The following conditions on T are equivalent:
(i) T is totally transcendental;
(ii) for any set (Upn : nE(4} of pp formulas in one free variable there is nEw

such that, for all mEw, A I'LI)i 44Pm;
(iii) any, equivalently every, model of T has the descending chain condition on

pp-definable subgroups;
(iv) any set of pp formulas in one free variable is equivalent to a finite subset;
(ii)', (iii)', (iv)' as (ii), (iii), (iv), but for formulas in any finite number of

free variables.
Proof Let A be any set of parameters. By 2.20 one has IS,(A)I=IS,+(A)I so it is sufficient
when counting types to count pp-types. Now, if ip(U,a) E p(U) with Lp pp then, for any tuple
b with tp(U,b) E p(U), one has that ip(v,a) and ip(U,b) are equivalent (since p is
consistent and cosets of the same subgroup are equal or disjoint). Thus if p is a pp-type then
p is equivalent to a set of pp formulas which contains just one instance of each pp formula
represented in p (precisely: this set, together with the pp-diagram of the set A of
parameters suffices to prove p).

In particular, a pp-type may be given by a partial function from the set Z' of pp formulas
(in the appropriate number of free variables) to the set A<(4= U (An : nE w) of finite tuples
from A. Now, there are just of these, where we may as well assume from
now on that IAI>- 2. Thus there are no more than IAIITI pp-types over A.

Therefore IS,(A)I=Is,+(A)IkIAIITI. So if IAIITI=IAI then IS,(A)IkIAI; therefore, by
definition, T is stable (since it is K-stable for some K) and (a) is proved.

(b) Clearly (ii) and (iii) are equivalent, asare (ii)' and (iii)'. So I will prove (i)=(iii)'
and finish by showing that 00= =>0) since (iii)' (ii) is obvious.

(i)=*(iii)' Suppose that (iii)' fails. Then there is a descending chain of pp-definable
subgroups ipo(M) ->ip1(M) > ..., in k free variables for some k E w, such that each index of one
group in that above it is infinite.

Let K be a cardinal satisfying K,2ITI and Kko>K (if then 'via+w will do
for K). If T were superstable then (3.A) T would have to be K-stable. Let M be a K-
saturated model for T. Then (exercise!) [ipn(M):ipn+,(M)1 K for each n. So choose
elements On a (a<K) of ipn(M) which lie in distinct cosets of ipn+1(M). If
A=(an,« : nEw, oo<K) then IAI=K'tk,=K: so we show that T is not superstable by
producing strictly more than K distinct types defined over A (for then T will not be K-
stable).

Let -qEKw. Define the pp-type p,2(u) to be (the pp-deductive closure of)
( pn+,(v ai nE(4 }. It is perhaps easiest to think of the pp-types, p,, as
defining branches through a Kw-tree:
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1p0(M)\l + W+ (M) . . . aOa+ W+(M).. .(M000+lp +(M ao+.
+ ( o )o*

00010+0"p2(M) 000+0++-. 1p2(M) ... 00 R(0)001,(,) +lp,(M) ...a00+010+lp2(M)

/ \.. I ...

With this picture in mind, it is an easy exercise to check that the p,Z are consistent and
that if n,j E Kw, n*,u then p,7 and pj, are contradictory. But there are K o>K of these
pp-types and so, extending these to (necessarily distinct) complete types over A, one sees that
T is not superstable.

(ii)#,(i) Let pES,+(A). By assumption there is Lp(U,a) E p such that for all
ip(U,b) E p the index [ip(U,0):tp(U,0)nXy(U,0)] is finite. Since there are only finitely many
cosets of Lp(U,0)A p(U,0) in tp(U,a), once tp(U,a) has been determined to be in p (and there
are just inequivalent possibilities for such a formula), there are only finitely many
inequivalent choices left for a representative of kp(U,y). Since there are only ITI pp formulas,
one therefore obtains at most JITI = IAI.2ITI possibilities for p.

So if IAI,2ITI then
IS,(A)I=IS,+(A)I<IAI.2ITI=IAI

and hence T is superstable, as
required.

(c) As with (b) it is enough to show (i)ce(iii)' and (ii)i (i), for (iv)' is clearly
equivalent to (ii)'.

(i)=*(iii)' Again, a tree of cosets is constructed. Suppose that there is an infinite properly
descending chain ipo(M)>ip,(M)> ... of pp-definable subgroups (of some model M of T). It
must be shown that T is not totally transcendental: what is shown is that the reduct of T to a
certain countable language is not w-stable.

For each nEw choose anEipn(M)\)pn+,(M), and set an1=Qn+ an,0=o. For each
72E20 define the (partial) pp-type p-q to be (ipn+l(U- I,% ai,'Z(i)) : nEo ). Thus the p,7
define paths through a 20-tree of pp-definable cosets. In particular it is easily seen that the
p,2 are consistent and are mutually contradictory.

,p0(M)

ip+(M) a0. W+ (M)/ \ / \
ipz (M) a,. ,p2(M) 00+'P2 (M) a0+a,+W2(M)

lp3(M) a2+p (M) 00.a++ 0201p3(M)

/ \ / \ / \
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Let L° be a countable sublanguage of L which contains all ring "elements" which appear in
at least one of the formulas ipn (nEw) (and make sure to include the identity 1ER). Thus, in
effect, we consider modules as being over the corresponding countable subring of R. Extend the
p,Z (n E 2w) to, necessarily distinct, complete types over the countable set ( on : nEw) in
this language L°: there are 2'tko of these. So the reduct of T to L° fails to be w-stable. Thus
T is not totally transcendental, as required.

(ii)#(i) By (ii)/(iv) every pES,+(A) is equivalent to a single pp formula over R.
There are only ITI.IAI of these. Hence IS,(A)I=IS,+(4)I=IAI.ITI=1Fil provided IRI,IT!, as
required (by 3.A). o

Example 1

(a) Consider the indecomposable pure-injective abelian groups (after 2.7111). All the 71pn,
71poo and Q are w-stable. The 7l(p) are superstable, not w-stable.

(b) Referring back to Example 2.1/5: all of (v)-(viii) are totally transcendental.
(c) The ring 71(p) as a module over itself, is superstable but not totally transcendental.
(d) The ring K[X], where K is a field, is noetherian but not artinian, so is not t.t. as a

module over itself. Explicitly, an infinite descending chain of pp-definable subgroups
(i.e., (left) ideals) is K[X]>(X)>(X2)>.... If K is infinite then this module fails to be
superstable. If K is finite then it is superstable (by 3.1, since every proper factor is
artinian).

Exercise 1 The cardinal ic(T) which appears in the statement of 3.A(ii) is the smallest
infinite cardinal strictly greater than the length of any properly descending chain in the
fundamental order (cf. §5.1). Show that for modules it is the smallest infinite cardinal strictly
greater than the length of any descending chain of pp-definable subgroups where, within the
chain, the index of each subgroup in the preceeding is infinite. [Hint: this is essentially
contained in the proof above.]

Exercise 2 Deduce that any K(T)-saturated module is pure-injective (an example where
ic(T) is significantly less than ITI+ is provided by any non-zero vectorspace over an
uncountable field).

Modules, then, are stable in the languages which fix the ring. A more powerful kind of
language has one sort for module elements and another sort for ring elements (so quantification
over ring elements is allowed). I n such a language one may express a good deal more than in the
languages we are considering. A heavy price is paid, however, and one reflection of this is that
complete theories of (ring, module) pairs in such languages are not in general stable.

Exercise 3 Investigate (ring, module) pairs (R, MR) using this language (see [0170],
[0171] and [Sab7la] first).

Perhaps it would be fruitful to consider bimodules (S,SMR,R) using a 3-sorted language,
since endomorphism rings can then be brought into the picture (although it might be possible to
subsume this under the 2-sorted case, since an (S,R)-bimodule is just an S°p®R-module).

I now outline the original proof of Baur that modules are stable [Bau75; Thm 11 (also
[Fis72] contains all the ingredients). Let -A,>2ITI satisfy -AITI=a: it will be sufficent (3.A)
to show that T is -A-stable. So suppose that I M kT and IRI = ^A: it must be shown that
IS,T(R)I s -A .

It may be supposed that M is a ITI+-saturated model of cardinality [CK73; 5.1.4] - so
M is pure-injective. Let pES,(R), and realise p in an elementary extension, M', of M.
Say M' = M ®C' and (m, c) realises p. Let C bean elementary substructure of C' of
cardinality CITI and containing the element cEC'. By the Fefermann-Vaught Theorem
([FV59; 5.1]), one has that M (DC is an elementary extension of M (since M'=M (DC is).
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Thus every 1-type over A is realised in a module of the form M eC where C has
cardinality ,ITI. There are at most 2ITI,,, non-isomorphic modules of cardinality ,ITI, so
there are at most -A possible isomorphism types for M eC. Each such module contains -A
elements. Therefore there are at most )=fix) different realisations of types in S1(A), as
required.

Exercise 4 A module M is said to be saturated if it is 'X-saturated, where IMI=-A. Let
K(T) be as in Exercises 1, 2 and let K < K(T). Show that, if -AK> A-, then there cannot be a
saturated model of the theory of M of cardinality -A [Hint: cf. proof of 3.1]. (For instance,
show that there is no non-superstable saturated module of cardinality 'riw (use the fact that if
K is any cardinal then Kcf(K) > K, where cf(K) is the cofinality of K, plus the fact that the
cofinality of 'taw is ' k. (for fitw is the union of 'via smaller cardinals:
'rtw = U ('tin : nEw). By way of contrast, 'k, is not the union of countably many countable
sets).

Show that there is a saturated model in each cardinality ,2ITI iff T is superstable (in
fact, if T is 'a-stable then there is a saturated model of cardinality -A, see [Poi85; 5.19]).
Deduce from this a characterisation of the rings of finite representation type (see Chapter 11).

For a description of saturated modules as products of indecomposables, see [Zg84; 6.15].

As a first corollary of 3.1, one sees that the totally transcendental modules coincide with the
E -pure- injective modules of §2.3. This was proved independently by Gruson'and Jensen
[GJ76; Thm], Zimmermann [Zim77; 3.4]: the word "totally transcendental" does not appear
in the first two papers, but the relevance of those papers was noted by Garavaglia [Gar80a;
§6], the author [Pr8oc] and Rothmaler [Rot83; Thm].

Corollary 3.2 Let M be any module. Then M is totally transcendental iff M is
I -pure- injective.

Proof This is immediate by 2.11 and 3.1. o

Then there are some corollaries to 3.1 which are immediate on using the invariants of §2.4.

Corollary 3.3 If T = T'A- and if T is superstable then T is totally
transcendental.

Proof This follows by 3.1 since (2.23) each of the invariants is 1 or oo. o

Corollary 3.4 If T is totally transcendental then T'o is totally transcendental.
Proof This follows since T and TA- have isomorphic lattices of pp-definable subgroups (by
2.10) so have, or fail to have, the dcc together. o

Corollary 3.5 If M and N are totally transcendental then so is M e N (this is
true of general structures - see [Mac7l; Lemmas]).

Proof If tp(M(D ,)>4J(MeN) then 2.10 yields ip(M)eip(N)>v(M)ew(N), so either
ip(M)> ,(M) or ip(N)>4J(N). Therefore if both M, N have dcc on pp-definable subgroups, so
has M e N. o

Example 2 Infinite direct sums of U. modules need not be t.t.. Take R=71 and note that each
7ln (n>.2), being finite, is U. but that M= (D (7ln : 77->2) is not t.t. (for consider the
formulas 2Iv, 22Iu, ..., 2 n I v.... ). M is not even superstable (since Inv(M,2nIu,2n+1Iv) is
infinite for each n). A more subtle example is M'= (D (7lp : p is prime), which may be seen
to be superstable but not totally transcendental. Of course ®(2p('Ko) : p is prime) is not
superstable.

Corollary 3.6 If M and N are superstable then so is M e N.
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Proof Since Inv(M®N,Lp,W)=Inv(M,ip,ip).Inv(N,ip, ,) (2.23), this follows as in 3.5. o

Corollary 3.7 If M is pure in N and N is superstable (respectively totally
transcendental) then M is superstable (resp. totally transcendental).

Proof Since purity of M in N implies tp(M)=Mnip(N) for each pp ip, this follows by 3.1. o

Corollary 3.8 [Zg84; 2.3] If M is an elementary substructure of N and N is
superstable then the factor module N/M is totally transcendental.

Proof One has (2.23) that Inv(N,ip,tp)=Inv(M,ip,tp).Inv(N/M,ip,ip) for each gyp, w. Now

M=N implies that Inv(M,ip, iJ)=Inv(N,tp, p). Therefore, if Inv(N/M,Lp, p)>l, then
Inv(N,ip,xp) must be infinite. There are, in N, no infinite descending chains of pp-definable
subgroups each of infinite index in the preceding one; hence in N/M there is no infinite
descending chain of pp-definable subgroups, as required. o

Exercise 5 Let NR be a pure-injective module and let S=End(NR) be the endomorphism
ring of N - so N is a natural left S-module.
(i) If N is totally transcendental then SN has dcc on finitely generated submodules.
(ii) If SN is artinian then NR is U. (hence any left artinian ring is right t.t.).
NO If SN is noetherian, then NR is U. iff SN is artinian.
Exercise 6 ([Mac7l; Thm 1]) Suppose that R is commutative, and let M be totally
transcendental. Then there is a divisible submodule M' of M (that is, for c a non-zero-
divisor of R, M'c=M'), such that M/M' is c-torsion for some non-zero-divisor cER (i.e.,
(M/M')c=0 - that is, McSM').

In particular if R is a Dedekind domain (e.g. R=21) and if M is t.t., then M = E e 8 for
some in). ective module E and some module B of "bounded" torsion (meaning Bc=0 for some
cER, cm0). Conversely, any module of this form is totally transcendental.
Exercise 7 A module M is said to be compressible if it embeds in each of its non-zero
submodules. For example: any simple module is trivially compressible; ZZ is compressible,
as are the (7L(p))Z for p prime.

Show that if R is commutative and if M is a compressible module which is not simple,
then M is not totally transcendental.
[Hint: treat the case of a cyclic module mR first, noting that since the ring is commutative
each endomorphism is induced by a multiplication; then choose a proper embedding f:M-4mR
and consider
(mR, m) <_ (M, m) = (f M, f m) 5 (mR, f m) S (M, f M) = (f M, f 2 m) S ....]

Is there any generalisation to the non-commutative case?

3.2 R structure theorem for totally transcendental modules; part I

The main object of this section is to present a broad structure theorem for totally
transcendental modules and to observe that it covers a number of well-known structure
theorems for modules. Part 11, in Chapter 4, will investigate in more detail the indecomposable
factors which occur, and will delineate the restrictions on how often they occur. A consequence
of this will be Vaught's Conjecture for w-stable modules; a more direct proof of this, due to
Garavaglia, is outlined below as an exercise.

First, we look at some aspects of the relationship between pure-injectivity and total
transcendental ity.

Proposition 3.9 [Gar80; Thm 2] If M is totally transcendental then M is pure-
injective.
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Proof This follows from 3.2; but it also follows directly from 3.1. For, let 4'(u) be any set
of pp formulas with parameters from M which is finitely satisfied in M. By 3.1, if M is U.
then there is a single pp formula ipE 4) such that ipH T. Since T is finitely satisfied in M, p
is satisfied in M and hence is realised in M. Thus M is pure-injective by 2.8. n

Let us record part of 3.1 separately.

Proposition 3,10 Suppose that T is totally transcendental and let pESnT(R).
Then there is some ipE p+ with ip-* p+. a
The next result barely counts as a weak converse to 3.9.

Proposition 3.11 [Gar80; Footnote2], [Zim82; Prop3] If M is pure-injective and
if IMI<2'o (in particular (but see [MS741), if M is a countable pure-injective),
then M is totally transcendental.

Proof Consider the proof of 3.1(c)(i)=(iii)', assuming that M were not totally
transcendental. Since M is pure-injective, the 2 rto distinct pp-types would all be realised in
M: but this would contradict IMI<2o. a

The same argument gives the following ([Zim82; Prop3]; also see [Pa77; 3.2.11] and
[Law77]). If M is a (D,R)-bimodule, with D a division ring, and if dim0M is countable,
then MR is totally transcendental (so this applies if R is an algebra over a field and M is
countable-dimensional over the field). Zimmermann uses this to prove the following result:
[Zim82; Thm 1] the group ring R[6] is pure-injective (as a module over itself) iff R is
pure-injective (as a module over itself) and 6 is finite.

From 3.11 one obtains a reasonable converse to 3.9.

Theorem 3.12 [Gar79; Lemma6] If T is countable (or at least if ITI<2'o) and
if every model of T is pure-injective, then T is totally transcendental.

Proof The assumption on ITI implies, by the downward Lowenheim-Skolem Theorem, that T
has a model of cardinality less than By 3.11 such a model must be totally transcendental.
Hence T is totally transcendental. a

If T has cardinality at least 20 then T may have only pure-injective models yet not be
totally transcendental.

Example 1 [Pr8od] Let R=71(p) (as a ring) and take T=Th(RR). Then every model of T
has the form R (D 0('A) for some ', where Q is the quotient field of R (this can be proved
using the invariants (cf. §2.71)). Thus every model is pure-injective.

But, since R> pR> p2R> ... > pnR> .... T is not totally transcendental.

One does at least have the following.

Proposition 3.13 [Rot83; (3)] If every model of T is pure-injective then T is
superstable.

Proof Let K> 2ITI be such that Ko>K.
It is not difficult to see that there is MkT with IMI=K and with [tp(M):lp(M)]=K for all

pp formulas ip, tp with Inv(T,ip,tp) infinite (go to a K+ -saturated model and then cut down).
Then if M were not superstable one could construct, as in 3.1(b)(i)==) (iii)', K'o distinct

pp-types defined with parameters in M. Therefore M, being pure-injective, would have to
realise all these pp-types. This would imply IMI> K'k°>K=IMI - the required contradiction. a

Exercise 1 Suppose that R is countable, or simply that IRI<2o. If N is pure-injective
with no proper non-zero pure submodule then N is U. (cf. [0k77]).
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Theorem 3.14 [Gar80; Lemma1] If M is a totally transcendental module then M
is a direct sum of indecomposable (pure-injective) submodules.

Proof First it is shown that M has an indecomposable direct summand. Choose OEM, ax0 (I
am ignoring the trivial case M=O). Let N be a pure submodule of M which does not contain a
and which is maximal such. Note that, although the union of a chain of direct summands need not
be a direct summand, the union of a chain of pure submodules is pure, so N does exist by
Zorn's Lemma.

Since Al is pure in M, 3.7 implies that N is totally transcendental. So by 3.9, Al is
pure-injective. Hence M=NeNo for some No; it will be shown that No is indecomposable.

If No=N1 (D e 1V2 then, since (NeN1)n(N(D M2)=N it may be supposed that a(Ne/1
say (since a( N). But then, by maximality of N, one has that N=N (D A(,. So N1=0. Thus
No is indeed indecomposable.

Now let 7 be the collection, ordered by inclusion, of all sets of the form {Ni)i with
2iNi=ED iNi pure in M and with the Ni all indecomposable. Since increasing chains of
pure submodules are pure (and directness of the sum is no problem, being a finitary property),
Zorn's Lemma implies that there is a maximal family in 7. Let N1 be the (direct) sum of the
(indecomposable) members of this maximal family.

As above, one has M=N1eA' for some N'. Since N' is pure in M, N' is (3.7) t.t. so,
by the above, N' has an indecomposable direct summand if it is non-zero. But this would
contradict maximality of the chosen family. Hence N'=0.

That is: M=Ni is a direct sum of indecomposable submodules. n

It will follow from 4.A14 that this representation of M (t.t.) as a direct sum of
indecomposable submodules is essentially unique (in the sense discussed in §4.3). Garavaglia
([Gar80; Lemma3]) proved directly that the endomorphism ring of an indecomposable totally
transcendental module is local (cf. 4.27) and so deduced uniqueness. Kucera ([Kuc87; §4])
derives uniqueness by using dimension theory for regular types, so avoiding 4.A14 and the need
to show that the endomorphism ring of an indecomposable pure-injective is local.

Exercise 2
(i) Show that 3.14 does not characterise the totally transcendental theories - that is, find a

non-t.t. theory, each of whose models is a direct sum of indecomposable pure-injective
modules.

(ii) What if we assume that R is countable? [Hint: count types; cf. proof of 3.1.]
(iii) What if we then drop the requirement that the indecomposables be pure-injective? [Hint:

cf. §7.2.]
Exercise 3 [Gar8o; Thm 6] Show (without assuming the continuum hypothesis!) that if T is

countable and w-stable then the number of non-isomorphic models of T is either countable or
is 2'& (Vaught's Conjecture holds for t.t. modules).
[Hint: I U {SnT(0) : nEw)I is either 'rt, or 2'o. If the latter, then there must be 2'A.
countable models. If the former, then there is a countable prime model Mo, and a countable
saturated model Mi. One has 19 =Mo eN for some N. Then show that the number of countable
models is either no more than ?Z, or is 2° according as the number of non-isomorphic
factors of N is finite or 2,. Use 3.14 and the uniqueness stated just above and the invariants
of §§2.4, 2.5. Also use 2.24.]
Example 2 Recall that an injective module E is said to be 1-injective if E('"o) is
injective. An injective is E-injective (i.e., by 3.2, is t.t.) iff the ring has acc on annihilators
of elements of E (exercise). In particular, if R is right noetherian then every injective is
1-injective. Thus 3.14 includes the theorem of Matlis [Mat58; 2.5] which states that every
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injective over a noetherian ring has an (essentially unique) decomposition as a direct sum of
indecomposable injectives.

Exercise 4 [Gar8oa; §6] Suppose that M is a finite module. Show that every power MK of
M is a direct sum, M(,) (-A=2K), of copies of M.
[Hint: by 3.14, MK is a direct sum of indecomposable modules, so it need only be shown that all
the indecomposable summands are isomorphic to M. It is probably easiest to use some of our
later results on the space Z(M), but a proof is possible at this stage.
1. M, hence M has only finitely many pp-types, hence only finitely many types; so Mk-
is !k, -categorical.
2. If there were an indecomposable factor NiM of a model of the theory of M'o, then
M o ® N would be a countable model of this theory but not isomorphic to M'o (by 4.A14) -
contradicting k,-categoricity. ]
Exercise 3 Let IRI+',-i,=K. Suppose that E is an indecomposable injective.
(i) If E is 1-injective then IEI-<K.
(ii) In particular if R is countable and if E is an indecomposable injective then E is E-

injective iff E is countable.
(Of course the same goes more generally for pure-injectives.)

Example 3 An abelian group is w-stable iff it has the form E®B where E is injective and
6 is torsion of bounded exponent (see Exercise 3.1/6). The decomposition of the injective is
covered by Ex2 above. Also 3.14 gives that B has a direct sum decomposition, so this includes
(with a bit more work describing the possible indecomposable factors) the decomposition for
abelian groups of bounded exponent.

Example 4 Projective modules over right perfect, left coherent rings may be shown to be U.
(see 14.19, 14.22) - so they are direct sums of indecomposable projectives.

Example 5 [Gar79; Cor3] Suppose that R is commutative and let MR be artinian. Then
M is totally transcendental. Hence each power, MK, of M is t.t., so is a direct sum of
indecomposable submodules. This argument applies to any power of a U. module.

Example 6 Rings over which each module is totally transcendental (so has a direct sum
decomposition) are considered in Chapter 11 (they are the right pure-semsimple rings).

3.R Rbelian Structures

I think that the main omission from the body of the text is a treatment of Fisher's "abelian
structures". This is especially unfortunate since Fisher's account of them was produced as long
ago as 1975, yet they have been unduly neglected since. Abelian structures include modules as a
very special case and it has long been folklore that if it goes for modules then it goes for abelian
structures".

Abelian structures are "many-sorted versions of modules, with predicates" (for a more
precise definition, see below). For instance, if one wishes to discuss the model theory of pairs of
R-modules with a specified morphism between them (M Al), then one sets up a two-sorted
language (one sort for the domain, another for the codomain) and then adds a function symbol
which takes arguments of the first sort and has values in the second sort (alternatively,
introduce a predicate for the graph of the function). Then one specifies that the domain and the
codomain are R-modules and that the function is an R-morphism between them.

Again, if one wishes to discuss pairs MS// of R-modules, then one may use the usual 1-
sorted language for R-modules, together with a predicate for a submodule. Alternatively, one
may use the previous set-up, adding the extra axiom that the function is manic. One could also
talk about pairs of R-modules and the groups of R-morphisms between them by using a 3-sorted
language (two sorts for elements; one sort for morphisms).
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My reasons for not developing this in the text are, first, that to develop a substantial part of
the theory in this generality would involve a considerable amount of work and would make this
book rather dificult to read (vide the comparative neglect of [Fis75]). Another reason is that,
with no clear major applications in mind, the exercise would be of doubtful value: It seems
more sensible to let applications of abelian structures build up, before acknowledging the
necessity (as opposed to desirability) of a careful development.

There are applications - even in the text (namely, representations of quivers: but they may
be treated as modules over the appropriate path algebra). For instance, Baur in his work on the
four-subspace problem [Bau80] used abelian structures, in that he employed the language of
vectorspaces with four predicate symbols, rather than that of modules over the path algebra of
D4. Also, the representations of posets that I discuss in Chapter 17 are abelian structures - but
I don't need any theory there. It is a little unsatisfactory that authors tend to call on results
about abelian structures which may not have been written down carefully (at least in print), but
which "clearly" are proved just as in the modules case. At least the pp-elimination of
quantifiers has been treated properly by Weispfenning [Wei83a] and, of course, there is
already a great deal in [Fis75]. Kucera [Kuc84] has made the effort to develop some of his
results in this generality, and Piron's thesis [Pir87] is largely set in the context of certain
kinds of abelian structure.

Apart from the ways in which abelian structures allow one to extend to scope of the "model
theory of modules", there are interesting developments in pure model theory. In the course of
investigating superstable structures of U-rank 1, Buechler and others have found that abelian
structures arise in a natural way from the geometry of realisations of types (see comments in
§5.1, §7.2).

I describe abelian structures and then outline the main results of Fisher's work [Fis75],
the first three sections of which are published as [Fis77] (unfortunately, the remainder is
unpublished).

The language L has a symbol for addition, one for subtraction and, for each sort, a zero
element of that sort. Addition and subtraction are applied only to arguments of the same sort.
There may (and usually will) be additional relation and function symbols in L. The following
requirements must be met (they are easily expressed as axioms): the elements of each sort form
an abelian group (under the restriction of "+" and "-", with the zero of that sort being
interpreted as the zero element); each function is a group morphism; each relation is a group.
Let -A be the cardinality of the language L.

One works within an abelian class k: a class which is closed under substructures and
products, which is "compact" and which satisfies the HEP. Fisher's definition of a "compact"
class includes elementary classes but also allows, for example, reducts of elementary classes
(for "concreteness", one may think in terms of axiomatisable classes). The HEP
("Homomorphism Extension Property) is: every diagram as given has a completion as shown.

(note that this excludes certain universal Horn classes of modules - cf.
Ex 15.3/1).
For some of the results, it is not necessary to assume that the language is

the usual finitary L., (i.e., no expressions of infinite length) but,
from now on we assume that k is an abelian class and L is finitarv.

Examples are: R-modules; (2-indexed) chain complexes of R-modules (one function
symbol suffices for the boundary maps, since functions are not restricted to having domains
entirely within one sort); representations of a quiver; small additive categories (there is more
than one way of treating these within the framework of abelian structures); if s is a small
additive category, the functor category (s,Ab); representations of posets; if RSS is an
inclusion of rings, the category of pairs (M, N) where M N, // is an R-module and M is an
S-module which is an R-submodule of N when given its induced R-structure.

Also, given a compact class k, closed under substructures and products, but not necessarily
having the HEP, one may expand the language L to L* by adding a relation symbol RLp for each
pp formula ip. Then let K* be the class of L*-structures with L-reduct in k and which
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satisfy `d (R,,(x) +-a tp(x)). So every member of K has a unique expansion to an L*-
structure and the L*-embeddings are just the morphisms whose reduct to L are pure
embeddings. Then define KP to be the class of substructures of members of K*: KP is an
abelian class. Note that KP and CT* (§5.4) are essentially the same - each structure in KP
carries with it information about how it embeds into an "honest" member of the class (one where
R,,(x) holds iff ip(x) does). The absolutely pure members of KP are just those of K*.

The use of KP and k* is similar to our use of various functor categories in Chapter 12:
the pure-injective objects of K are exactly those whose L*-expansions are injective objects of
K* (equivalently, of KP) (3.5, 3.6 - these refer to numbering in [Fis75], as do all numbered
references below). Also, in any abelian class the pure-injectives are precisely the
algebraically compact objects (3.7). (I should say at this point that I often quote Fisher's
results under stronger hypotheses than those in [Fis75].)

The third section of [Fis75] is much concerned with injectivity: in particular, there is a
generalisation (3.10) of Eklof and Sabbagh's result which says that every ) 0-injective module is
injective iff the ring is right noetherian (cf. §15.4). As a corollary of this generalisation, every
abelian class has enough injectives (3.11). Essential embeddings are considered, and it is shown
that if K has enough injectives then it has injective hulls (3.17). Also (3.25), in this
generality, injectives, each embeddable in the other, are isomorphic (the proof is as in 1.8). Of
course, all this is applicable to KID, so we obtain corollaries about pure-injectives and, more
to the point, we get the hulls of §4.1 which are such an essential part of the model theory of
modules. These corollaries on "pp-essential morphisms" were quoted by Garavaglia (who also
gives them direct proofs) in [Gareoa]. The existence of hulls was not sufficiently appreciated
for some time, though see [Che76; ChptVI], [EkMk79; §4], [Gar8o], [Gareoa].

The fourth section begins with a lengthy discussion of why the use of saturated extensions is
preferable to the use of ultraproducts (the main point being that ultraproducts give more than
one really needs or wants). The first result of the section is the proof, in this general setting, of
Sabbagh's result for modules: M=N iff there are pure embeddings M1; N'sM and
N{; M's M. Various corollaries follow (as in the modules case): in particular, every abelian
structure is an elementary substructure of its pure-injective hull (4.5). It is also shown that,
for any abelian class, the existentially complete, finitely generic and infinitely generic
structures coincide (4.7). Then there are various results on elimination of quantifiers (note
that elimination of quantifiers in KP corresponds to pp-elimination of quantifiers in K !). In
particular, it is shown (4.13) that every formula is equivalent to an V3`d formula (cf. after
2.19). Fisher also finds a structural criterion (4.14), in terms of cancellation in saturated
models, for every formula to be equivalent to a boolean combination of V3 sentences and pp
formulas (cf. 2.13). He is not, however, able to establish this structural property in general
(though he does show it for boolean rings - i.e., commutative regular rings with every factor
field having two elements).

His fifth section discusses homogeneous-universal structures and, in particular, he shows
(by two different arguments) that abelian structures are stable (5.5) (cf. 3.1). One argument
uses the previous results of the section to show that if K=K ' and if R E K then there is a
saturated structure elementarily equivalent to A of cardinality K: recall that ^A is the
cardinality of the language. The other argument is more direct, and is essentially that which is
also given by Baur (see §3.1).

There is a natural notion of a member of K being presented by generators and atomic
relations. Let f be the least infinite regular cardinal such that every cyclic (=1-presented)
structure is 7-presentable (the definitions of these terms are just as one should expect). It is
shown (5.7) that the class of injectives is axiomatisable in LKK iff K>7.

The sixth section generalises results of Eklof and Sabbagh. Say that the abelian class K is
noetherian if 7='A.. Then, by the above, K is noetherian iff the class of injectives is
axiomatisable (for modules this is [ES71; 3.19]): a number of other equivalents are given as
6.1. Say that K is coherent if every finitely generated substructure of a finitely presented
structure is finitely presented. Then (6.2) K is coherent iff the class of absolutely pure
structures is axiomatisable, and this is so iff the class k has a model-completion
(equivalently, a model-companion). The proof of that also shows that if K is a coherent abelian
class then the 'Ti,-injectives are just the absolutely pure structures (it is not known if this is
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so over non-coherent rings). It is shown that if K is abelian then KP is coherent (6.4):
Fisher also shows (6.5) that if S is a small abelian category then the abelian class (S,Ab) of
all abelian-group valued functors on S is a coherent class (cf. [Aus66]). From this is derived
a proof of the Mitchell embedding theorem: if S is a small abelian category then there is a ring
R and a full exact embedding of S into the category of R-modules. There is a criterion (6.9)
for coherence which generalises the usual one in terms of right ideals of the ring ([St75;
1.13.3], also cf. §15.4).

The seventh section considers subdirect representation. It is shown (7.10) that if there is a
bound on the cardinality of subdirectly irreducible structures then 2' is such a bound (cf.
[Tay7l], [MS74]). Fisher also introduces a notion of irreducible structure: A is irreducible
if, given morphisms A-) B and A- C, if the induced morphism A-* BxC is an
embedding then at least one of A- B, A- C is an embedding. He relates this to
irreducibility of presentations and hence sees it as a generalisation of irreducibility of right
ideals (cf. §8.1). Thus his 7.12 is very closely related to (perhaps includes?) the fact (8.2) that
a pp-type is irreducible iff it has indecomposable hull. His 7.14 (combined with 7.12) shows
that an indecomposable pure-injective has local endomorphism ring. Fisher says that K is
Azumayan if every injective is discrete. He obtains the criterion (7.15) that K is Azumayan if
every cyclic presentation of a non-trivial structure can be written as the intersection of a
presentation of an irreducible structure and a presentation strictly larger than the first: this
generalises the usual criterion in terms of the right ideal structure of the ring for every
injective to be discrete (1.12), and also includes the obvious criterion in terms of pp-types
(namely, that every pure-injective model is discrete iff every pp-type p can be written as
qnq' where q is irreducible and q'' p - for this says exactly that N(p) has an
indecomposable summand. He shows (7.16) that noetherian implies Azumayan and hence, as a
special case, derives Matlis's result that an injective over a noetherian ring is the injective
hull of a direct sum of indecomposables.

Fisher then goes on to derive the general structure theorem for injective objects in his
abelian classes". He uses the term "impregnable" where I have used "continuous". His

structure theorem (7.21) is the result which I quoted as 4.A10, but set in the context of abelian
structures. There is a strong elimination of quantifiers for injective members of noetherian
abelian classes (7.24). He shows that over a Dedekind domain, there are no continuous pure-
injectives (7.29) (cf. after 2.7111): he uses localisation - cf. Ziegler's more general results in
§2.71. He also obtains 16.26 for the special case of boolean rings (7.31).

In the eighth section Fisher is concerned with artinian and completely reducible classes (cf.
modules over artinian rings and over semisimple artinian rings), obtaining a Krull-Schmidt
theorem (8.7) for objects in an abelian class which are both "noetherian" and "artinian". He
also derives, under the strong hypothesis of finiteness of the endomorphism ring, pp-
elimination of quantifiers (8.9). Then there is a generalisation of the Wedderburn
characterisation of semisimple artinian rings (8.18). There are results on those abelian classes
which are "dual" to the completely reducible ones. There is a generalisation of the Faith-Walker
Theorem (8.26): if K is an abelian class and there exists a cardinal K such that arbitrarily
large homogeneous-universal models are direct sums of substructures of cardinality SK, then
K is noetherian (cf. 11.4, 11.6).
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CHAPTER 4 HULLS

It was shown in the last chapter that every totally transcendental module is a direct sum of
indecomposable submodules. The proof of this was short - in a sense too short, since it tells us
little about the indecomposable factors which occur. For instance, if a is an element of the
totally transcendental module M and if N is a minimal direct summand of M containing a,
then what is the relationship between N and a? Is N uniquely determined by a? Does N
depend on a or just on the pp-type of a? These questions will be answered in this chapter.

In section 1 it is shown that, given any pure-injective module M and any element (or
subset) of M, there is a minimal direct summand of M containing the element (or subset). We
will call this the hull, N(A), of the element or subset A and the terminology is justified by
showing that this hull is unique up to isomorphism over A. Furthermore, it is shown that the
hull of A depends only on the pp-type of A.

The terminology is reminiscent of that for injective hulls: indeed, the above hulls can be
seen as injective hulls in an appropriate (functor) category. I don't, however, take that
approach to them, preferring to work on a more "concrete" level. The injective hull of a module
A is characterised by the fact that every element in it is "linked" in a non-trivial way to A by
an atomic relation (equation). There is an analogy for hulls: every element of the hull of A is
linked in a non-trivial way to A by a pp-relation.

Injective hulls are examples of hulls in the sense of section 1. There are other examples.
For instance, pure-injective hulls lie at an opposite extreme and are special cases of the hulls of
D. The second section considers there special cases and some others, and provides some
examples.

A major theme of these notes is the representation of pure-injective modules in terms of
simpler components (best of all, as pure-injective hulls of sums of indecomposable factors).
There is a general decomposition theorem for pure-injective modules: in fact it is equivalent to
the better-known corresponding result for injective objects in Grothendieck abelian categories,
since there are functors which convert pure-injective modules into injective objects. The
general result says that every pure-injective module is the direct sum of a discrete pure-
injective and a continuous pure-injective. A pure-injective is discrete if it is the pure-
injective hull of a direct sum of indecomposable summands. A pure-injective is continuous if it
has no indecomposable factor. This representation is essentially unique. All this material is
presented in the third section. The discussion takes place in the context of Grothendieck abelian
categories: proofs are omitted, but I intend that the section should allow the reader to feel fairly
comfortable with the ideas discussed.

One may study the indecomposable pure-injectives by looking at the pp-types which are
realised in them: we say that a pp-type is irreducible if its hull is (direct-sum-)
indecomposable. A syntactic criterion is given for a pp-type to be irreducible. The fourth
section contains various result on indecomposable (and continuous) pure-injectives. It is
shown, for example, that every continuous pure-injective is a direct summand of a product of
indecomposable pure-injectives and (hence) every module is elementarily equivalent to a
discrete pure-injective. The section also contains a general method for producing irreducible
types that allows some control over their properties.

The fifth section follows up the observation that, in complete theories of modules, certain
indecomposable summands may be constrained to appear only a limited (finite) number of times
in the decomposition of any pure-injective model. The factors so constrained are identified, as
are the types whose hulls they are, and the "unlimited part" of a complete theory of modules is
defined. When it comes to describing forking, ranks, regularity and other model-theoretic
notions (Chapters 5 and 6), it is this unlimited part which is important.

The models of a totally transcendental theory of modules are described in §6. It is shown
that certain indecomposable factors must occur in every model; that certain of these occur a
fixed, finite number of times in every model; others may occur any number of times, but must
appear; others must occur infinitely often; then there are some factors for which there is no
restriction on the number of occurrences.
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With this description to hand, various points about these theories become fairly trivial:
these include characterising the prime model, proving Vaught's Conjecture, describing saturated
models and characterising the 'fit,-categorical and W,-categorical theories (the last is done in a
supplementary section). Almost all of the material of this section goes through in much wider
circumstances, though rather more work is needed to show this (cf. Chapters 9 and 10).

If T is a complete theory of modules then the set of (isomorphism types of) indecomposable
pure-injective factors of models of T carries a natural topology, under which it is a compact
space. It is shown that the closed sets of this topology are in natural correspondence with those
component theories of T (in the sense of §2.6) which are closed under products. Examples
relate this topology to the Zariski topology and to the Pierce spectrum. The section (the seventh)
closes with a criterion, in terms of this space, for existence of prime and/or minimal models.

4.1 pp-essential embeddings and the construction of hulls

In this section hulls are constructed. We will see that given any subset A of a pure-
injective module, there is a minimal direct summand containing that subset: moreover this
"hull" does deserve the name, in that it is in some sense a smallest extension of A and it is
unique up to A-isomorphism. Even the existence of such minimal direct summands is
surprising and seems to have been unknown until Fisher's work [Fis75] (and insufficiently
appreciated for some while afterwards). I do not approach hulls by the most direct route (for
that, one may consult [Zg84]), but rather take a somewhat meandering path which allows us to
view them from various angles. In this, I follow [Pr81]. Let us proceed with the construction.

The embedding of an element in its hull is a generalised version of an essential embedding.
Turning back to §1.2 one sees that there were three ways of defining essential embeddings: in
terms of elements; in terms of morphisms; and in terms of (A-atomic) types. Each of these
methods is also represented here.

First I consider the element-wise definition. In the injective case the central type of
relation has the form- ar=b where a, b are non-zero elements of a module and rER. In view
of our replacement of atomic formulas by pp formulas the following definition is a natural one.

Let A, B = M. Say that A and B are linked if there area in A, b in B, and ip app
formula, such that by linearity of pp formulas, equivalent to this
requirement is Mk lp(5,b)A1 p(o,b), so the condition is symmetric. Thus: A and 8 are
linked iff there is a tuple a from A whose pp-type over B is not that of the zero tuple. The
context M is quite essential in the definition (in contrast to the A-atomic case). The
terminology is extended to elements and tuples in the obvious way.

Example 1
(i) If E is a non-zero indecomposable injective and if a and b are non-zero elements of E,

then a and b are linked. For there is a relation ar=bsm0 for some r,s E R (by 1.7).
So, setting 6(v,w) to be yr-ws=0, we have E i= e(a,b)n-1e(a,0).

(ii) R=71; M=714; 7=2E714, b=1E714. The fact that a and b are linked is witnessed by
the fact that b2= o and b2 m 0.

NO To contrast with the injective case, consider R=71, M=71(p). Since each indecomposable
injective 71-module is countable and since IE(7l(p-)))l'I71(p-)I=2a, the module M is not
uniform. In particular there are (many pairs of) elements a,b E M with a71nb71=o.
Such elements are not "linked" in a purely algebraic sense. It will follow, however, from
4.11 below, that a, b are linked in the sense just defined. This may also be shown
directly - exercise (use the description of elements of M given in §2.71).

(iv) R=K[X,Y]/(X,Y)2 (see Ex2.1/6(vi)). The elements x, y ER (being respectively the
images of X,Y) satisfy xRnyR=O, but they are linked. For let ip(v,w) be
3u (v=ux nw=uy). Then Ri=Lp(x,y) (take u=1) but RI -inp(x,0). To justify the



Chapter 4: Hulls 69

latter assertion, suppose otherwise: then there is cER with cy=0 and cx=x; but
annRy=J so cEJ; also Jx=O, so x=cx=0 - contradiction as required.

Exercise 1 A little care is needed in using the notion of linking: from the fact that A and 8
are linked it cannot be concluded that there is a single aEA and b in 8 with a linked to T.

It will be seen in Chapter 5 that A and 8 being linked is a property closely connected with
A and B being dependent (in the sense of stability theory) over 0 (in general it is slightly
weaker, but for theories closed under product it is precisely this). On the other hand, as has
been noted already, it generalises the situation where ARnBRmo (by AR I mean the
submodule generated by A): for if I; airi= I; bas) m 0 then take e(u, w) to be the formula
E,"viri= 5;"wjsj and observe that e(5,b)Ane(5,0) holds.

It was noted that the relation "linked" is symmetric. For convenience I will regard the zero
tuple as being linked to any other tuple. Also if b is linked to 5 and if c is arbitrary then,
trivially, b^c is linked to o.

Exercise 2 Suppose that N is pure in N' and that a,b are in N. Then o,b are linked in
N iff they are linked in N'.

This notion may be described in terms of types (compare with 1.9).
Say that pES+(A) is maximal if it is maximal with respect to inclusion in S+(A). In

the case of S+(o) there is a unique maximal element, namely the pp-type of the zero tuple of
appropriate length. In general, realised types are maximal (for then G(p)=0) but there may
well be non-realised maximal pp-types. We say that a type is maximal if its pp-part is so.

Clearly (note!) if pp(c/A) is maximal then either c=0 or c is linked to A. The
converse is not true.

Exercise 3 R=7L; M=28 ®712. Take a=(0,1), b=(4,1), c=(2,1), all in 7l8®712. The
endomorphism (-x2)9 Ids takes c-a to b-a, so by 2.7 pp(c-a)spp(b-a) and hence
pp(c/a)=_pp(b/a). Also 2((c-a) but 24'c so c is linked to a. But 4R(b-a) whereas
44'(c-a), so pp(c/a) is not maximal in S+(A).

Lemma 4.1 Suppose that p is a type over A such that p+ is maximal. Then
p+ proves p (modulo T).

Proof It must be shown that every formula in p is a consequence of some pp formula in p.
By 2.20 it is enough to show that if ip is pp and not in p then p+ proves -up. By maximality
of p+ it must be that p+ u {Lp} is inconsistent - as required. G

Thus a type is maximal (i.e, its pp-part is maximal) iff it is proved by its pp-part (the
converse to 4.1 is immediate).

It will be seen that the hulls constructed in this section are independent of the over-theory
T and depend only on pp-type. So, in order to compare pp-types in modules which are not
necessarily elementarily equivalent, we consider the way in which the posets of the form
S+(A) are connected by morphisms.

Suppose As_M and let f:A)A' M' be a bijection such that ppM(A)=ppM'(A'=fA).
Then, for each «, there are natural maps

where S+(A) is the set of pp-a-types over A modulo
Th(M) and S+(A') is the set of pp-«-types over q' modulo

+ f + Th(M'). These maps are defined by:S (A) f S (A') f'p=({Lp(u,fa) : p(U,a)E p}) and
f. q=((tp(u,f-1a') : p(U,a') E q)), where denotes pp-
deductive closure modulo the appropriate theory.
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These order- (and topology-) preserving maps need be neither onto nor 1-1, although it is clear
that f*f*p 2 p. However, when restricting to maximal pp-types, one does have a bijection
(homeomorphism even).

Lemma 4.2 Let A=_M and suppose that f:A-QA's/1' is a bijection such that
ppM(,q)=ppM'(A') Then the induced maps f*:S+(A)-->S+(A') and
f.:S+(A')-- S`(A), when restricted to the respective sets of maximal pp-types,
are inverse bijections.

Proof This follows easily since f* and f. are order-preserving and since f*f. and f.f*
are increasing maps. n

Exercise 4 Show that f* need be neither onto nor 1-1. When is f.f*p = p?.

The point of the lemma above is that the hull of A will depend only on its pp-type, and not
on any over-theory. That hulls should show some such independence is reasonable. For
example, the module 722 occurs as a direct summand of (pure-injective) models of many
theories of 72-modules.

Given a set or module of parameters, A, the hull of A will be realised by successively
realising maximal pp-types. Let us see where such a process can stop.

Lemma 4.3 [Pr81; 2.3] Let A be a subset of the pure-injective module M. Then A
realises every maximal pp-type in S+(A) iff A is a direct summand of M (that
is, if A is pure-injective and is pure in M). It is equivalent to require that A
realise every maximal pp-1-type in S+(A).

Proof Every pp-type poE S+(A) is contained in a maximal pp-type in S+(A). By
assumption such a type is realised in A so, in particula po is realised in A. Thus, by 2.8, A
is pure-injective.

Now suppose that Mkip(a) where Lp is pp and a is in A. It must be shown that Akip(a).
The formula ip(v) has the form 3w e(v,w) where e is A-atomic. Then e(o,w) is
consistent (with Th(M) in LA) so extends to some maximal pp-n-type p over A, where
n= l(w). By assumption p(w) is realised in A, say by b. Thus one has Ak p(b), in
particular Ake(a,b) - hence Akip(a). So A is indeed pure in M.

<-- If M=A®6 and p is a pp-type over A, then, using that M is pure-injective,
realise p by, say, c=(a,b) E A®B. Since pp formulas are preserved by morphisms (in
particular by projections), from p(c) one concludes p(o) (since the parameters A are fixed
by the projection). Therefore p is realised in A, as required.

To see that realising every maximal pp-1-type is enough to imply that A is a summand of
M, note first that, by 2.8(ii), this does imply that A is pure-injective. Also, the proof that A
is pure needs only a little modification: instead of extending 8(U,w) to a maximal pp-n-type,
remove the quantification from only one variable, wl, say, and then proceed as before. Then,
having replaced w1, by an element of A, go on to w2, and so on (cf. proof of o

For the remainder of this section let us suppose that we are working inside some very
saturated model M: so all sets and parameters mentioned are in 1q, and all models are
elementary submodels of M. Thus "pure in a model" is equivalent to pure in M.

An embedding (both sets in M) is pp-essential if for all morphisms f EEnd(M)
one has that pp(A)=pp(fA) entails pp(C)=pp(fC) (in the terminology of [Zg84], C is
"small" over A). Since, given such a morphism f there is gEEnd(M) which reverses the
action of f on A, it is enough to suppose that ffA= IdA. Thus 1q, ) C is a pp-essential
embedding iff for all fEEnd(M), if ftA=IdA then pp(C)=pp(fC).
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Notice how this generalises the notion of essential embedding, which says that if the A -
atomic type of A is preserved then so is that of C.

The next result is an analogue (actually a generalisation - exercise) of 1.9.

Proposition 4.4 [Pr81; 2.6], [Zg84; 3.7] The embedding A--C is pp-essential
iff pp(c/A) is maximal for all c in C.

Proof = If pp(d/A)=_pp(c/A) then, by 2.8, there is a morphism f(EEnd(M)) taking A^c
to A"d. Since f fixes A, the assumption gives that pp(A^c)=pp(A^d) - that is,
pp(c/A)=pp(d/A). So pp(c/A) is maximal, as required.

Suppose that f is the identity on A. Let c be in C and suppose that (p(fc) holds,
where ip is pp. Since pp(c/A) is maximal and since necessarily pp(fc/A)=_pp(Z/A), one
has pp(fc/A)=pp(c/A). Thus one concludes that ip(c) holds. That is pp(fC/A)=pp(C/A),
as required. a

Thus we have a "local" definition of pp-essential embedding which corresponds to the
criterion cR n A * 0 for essential embeddings.

Notice that by 4.2 the use of the word "maximal" in 4.4 is unambiguous (has the same
meaning in any context where the pp-type of A is as given).

Exercise 5 Take R=71, B=712 ®714 pure in (so a direct summand of) M (the over-theory
could be that of B(oo) for example). Show that the embedding 0 (D712 , ) 0 ®714 is pp-
essential, but that 0 ® 712 ' B is not. The non-zero map 7Z2 ®o - 0 ® 714 is not even an
embedding in our sense since it is strictly pp-type-increasing.

Now we are ready to construct hulls. Given A(=_M) set Ao=A. If there is pES,+(A0)
maximal but not realised in Ao then choose a realisation ao, say, of p and set A1=Ao^ao.
Continue inductively: given A«, if there is pES,+(A«) maximal but unrealised in A,,
then choose a realisation a., of p and set A«+1=A«"%. For limit ordinals ),, set

A%=U{Aa: a<) ).
If A/ is a direct summand of M containing A then, since any (maximal) pp-type in

S+(A) is (by 2.8) realised in Al, the realisation may always be taken to be inside N. So the
construction must stop and, moreover, stop with some direct summand N(A) of N by 4.3
(the notation, which implies essential uniqueness, will soon be justified). In [Che76; Chpt.6],
Cherlin gives the same construction of hulls, as do Eklof and Fisher [EF72; 4.4] for abelian
groups (also see [Gar8l; Lemma2]).

Exercise 6 Referring to the above construction, show that, in any case, if K is strictly
greater than 141 +ITI and if T is K-stable, then the construction stops at some N 2 A of
cardinality at most K.

The next result, taken from [PP83], is due to Pillay and, in essence, independently to
Ziegler [Zg84]. It is also implicit in [Fis75].

Proposition 4.5 ("pp-constructible =: pp-atomic") If c is in N(A) then pp(c/A)
is maximal in S+(A).

Proof Set AIM) =a=(a,),<p, where A itself is an initial segment in the enumeration (so
the indexing here is shifted from that used in the construction).

It is claimed that pp(a/A) is maximal in Sp+(A). So suppose that c=(ca)a<p is such
that pp(c/A)2pp(57/A). I show inductively that for 7<p,

pp((aa)a< ./A)=pp((ca)a<7/A)
Since A occurs initially, the induction can start. Suppose then that the induction

hypothesis holds at 7. Since pp(c/A)2pp(5/A) there is a morphism f with
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0 7-(aa)a<7 H c7-(ca)a<7 The induction hypothesis and construction implies that 4.2
can be applied, and we conclude that pp ((ao:)o:57)=pp((c)a57).

The limit case is obvious.
Therefore the claim has been established.
Now let a' be any sub-sequence of a. Note that pp(a'/R) contains that pp-type which is

obtained from pp(a/R) by existentially quantifying out all variables, w say, corresponding to
a\a'. Now this latter pp-type is maximal, since if b' realises it, then clearly b' '(o\a')
realises pp(a/R) which is maximal (hence pp(b'/R)=pp(a'/R)). That is, pp(a'/R) is
maximal for any sub-sequence a' of a, as required. o

Proposition 4-r2. A pp-type p E S+(R) is maximal iff it is realised in N(R).

Proof The direction is by above. For "=: ", we note that if R=_8, then any (maximal)
pp-type in S+(A) extends to a maximal pp-type in S+(B), so this direction follows by
construction (alternatively, start the construction by realising p, then use 4.15).

Corollary 4.7 The embedding R--N(R) of any set into its hull (the context being
understood) is pp-essential.

Proof This is immediate from 4.5 and 4.4. c

Lemma 4.8 The embedding A'N(A) is a minimal extension of A to a direct
summand of M.

Proof Suppose that R =_ N1<; M with N, pure-injective and NHS N(A).
From the fact that N, is pure in M it is immediate that N1 is pure in N(R). Hence

(2.8) N, is a direct summand of N(R), say N(R)=1®N2, and note that R=-N1.
Let r(:N(R)--*A/1 be the canonical projection. Since N, is pure in N(R) one has

pp(R)=pp(rtA). Then Ac )N(R) pp-essential (4.7) yields pp(N(R))=pp(i /l(R) = N,).
Hence N2=0, as required. o

An alternative approach to the construction of hulls is based on the following definition and
lemma. Given R(=_/) set Li(R)=(T : c is linked to R): if the entries of c are to be
restricted to some set then use a superscript to indicate this.

Exercise 7

(i) 11=_8 implies Li(R)=_Li(B).

NO If R=_M<; N then LiM(R)=M"n"LiA(R).
(iv) Li(R) may be of arbitrarily large size.

Proposition 4.9 [Pr81; 2.2], [Zg84; 6.5] Suppose that pp(T/R) is maximal.
Then Li(R^T)=Li(A).

Proof (After Fisher - see [Gar8Oa; Lemma2]) Suppose, for a contradiction, that there is
b E Li(A-T)\Li(R). Since bfLi(R) the definition gives pp(b/R)=pp(0/R). Thus
pp(b^R)=pp(d-A), so by 2.8 there is a morphism f (in End(/)) fixing R and taking b to
0.

Since b E Li(R"T) there is tp pp, and a in A such that lp(b,T,a)A-lLp(O,T,o) holds.
Applying f to ip(b,T,a) yields From the assumed maximality of pp(T/R) and
2.7 it follows that pp(f7/R)=pp(T/R). Hence ip(O,fT,a) yields ip(O,T,a) - contradiction,
as required. o

Then one may construct hulls by defining N(R) to be a set maximal with
Li(R) = Li(N(R)).
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The next theorem summarises the basic properties of hulls. Since, for purposes of precise
references, I have used [Pr81] and [Zg84], it should be emphasised that the material of this
section is largely due to Fisher ([Fis75; §3], where he constructs hulls as injective hulls in a
suitable category (see §3.A)).

Theorem 4.10 Let N(R) be constructed as above. Then:
(a) N(R) is a minimal direct summand of M containing R;
(b) N(R) is a maximal pp-essential extension of R;
(c) every T in N(R) has maximal pp-type over R;
(d) N(R) is maximal with Li(R)=Li(N(R)); in particular, if b is in N(R) then

there is Lp pp and a in R with tP(b,a)A1tp(O,07).
Proof We have (a) and (c) already (4.8, 4.5), and (b) is clear from 4.4 and the fact that
N(R) is a direct summand of M (exercise - compare proof of 4.8).

For (d) we note first that by 4.9 one has Li(R)=Li(N(R)). Next set M=N(R)®M for
some M. Then suppose that m,= (n, m) E N(R) ®M has mm 0 but is such that

Now, m1-n=m: regard this equation as the formula
e(m,m1,n) and note that, since mm0, one therefore has iWE Li(N(R)^m,).

On the other hand if tp(m,n,) holds with tp pp and ni in N(R), then projecting yields
tp(O,n,) (in N(R), equally, since N(R) is pure in R. in M). Thus m ff Li(N(R)). This
contradiction completes the proof. n

The next result is due to Fisher [Fis75; 7.18] but was not published. Therefore Garavaglia
included a direct proof in [Gar80a] (Cor 2); also see [Gar80; Lemma 2] for the t.t case.

Corollary 4.11 Suppose that a and b are elements of the indecomposable pure-
injective module N. Then there is a pp formula tp such that N k tp(a, b) A -itp(a, 0).

Exercise 8 Show that an indecomposable pure-injective module cannot contain a pure
submodule of the form R ® B with R and B non-zero.

Exercise 9 Given R=_M show that any module satisfying one of the three conditions (a), (b),
(d) of 4.10 is a hull of R.
Exercise 10 Suppose that the hull of o decomposes as N(a) = N' ® N" and that,
accordingly, 5= Show that N' is the hull of a'.

It has now been shown that, given a "hull" N(R) may be constructed within any
summand of M which contains A or even (in view of 4.2) within any pure-injective module
which contains a copy of A sitting in it with the appropriate pp-type. To what extent is N(R)
unique?

Example 2 Take R=71, N=714(0), and let a be any element of order 2. Then clearly a
hull of a is any copy of 7l4 in N which contains a. So certainly N(R) is not in general
unique as a submodule of M. Of course in some cases (e.g. if the hull is definable over R) the
hull may actually be unique: replace a by an element b of order 4 in this example, so that
the hull of b is just the module it generates (already a direct summand). If T is the theory of
the abelian group 7l(2), then the hull of any non-zero element which is divisible by all prime
powers is a copy of Q. Such a hull is unique since it is definable over the element (for every
model is torsionfree).

Theorem 4.12 [Fis75], [Pr81], [Zg84] Suppose that R is contained in the pure-
injective module N and let R-L--)fA=_N' be such that ppN(R)=ppV(fA). Suppose
also that Al' is pure-injective: so there is an extension N-'-4N' of f (by 2.8).
Let N(R) be as above. Then the restriction of g to N(R) is an embedding of
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N(A) as a direct summand of N', and pp(gN(A)/fA) is maximal. In particular
gN(A) is a hull of fA.

Proof Let h:N'- /1 extend f-1. Since A-AN(A) is pp-essential (4.7) one has
pp/(N(A))=pp/(hg/(A)) (for hg fixes A). Therefore ppN(N(A))=ppM'(g/(A)) -
since ppM(N(A))=_ppM'(g/(A)) ppM(hg/(A)). So by 4.2 the maximal pp-types over
N(A) are in natural bijective correspondence, via g, with those over gN(A).

Now, the maximal pp-types over N(A) are realised in N(A) by construction. Hence
those over 9N(A) are (clearly) realised in gN(A). So by 4.3, 941(R) is a direct summand
of V.

Also pp(N(A)/A) is maximal so, by 4.2, pp(gN(A)/fA) also is maximal. Therefore by
what was shown above and (the exercise following) 4.10, gN(A) is a hull of fR. o

Corollary 4.13 Let N be an indecomposable pure-injective and let a be a non-
zero element of it. Suppose that the endomorphism f of N is such that
pp(fa) = pp(a). Then f is an automorphism of N. o
Corollary 4.14 [Pr81; 2.10] Let R M<; N(A) and suppose that M s--> M' is such
that pp(A)=pp(fA). Then f is a pure embedding of M into W.

Proof Extend M r---) M' to N(A)-'-4N' (by 2.8) where hl' is some pure-injective
module purely extending M' (e.g., a sufficiently saturated elementary extension of M'). Then
gN(A) is pure in N' and f purely embeds M into gN(A) (by 4.12). So f purely embeds
M in M', as desired. a

Corollary 4.15 [Fis75] (see [Gar8oa; Lemma2]) Suppose that 4(')s/(') and that
N(') is pure-injective with pp/(A)=pp/'(A'). If N(A) and N(A') are
constructed as above, then and in particular
PWV (N(A))=PPN (N(A')).

Proof Apply 4.12 to A=_N and A'=_N(A') to obtain a morphism g with g/(A) a direct
summand of N(A') containing A'. Since N(A') is a minimal direct summand containing A'
(4.10) g is therefore an isomorphism from N(A) to N(R') taking A to A'. That is,
(N(A),A)=(N(A'),A'). Since N(A), N(A') are direct summands one actually has
PPN(N(A))=PPN (g/(A)=)V(A')). a

Thus N(A) is indeed unique up to isomorphism over A and, moreover, depends only on
the pp-type of R. Call N(A) the hull of A. If p is a pp-type over 0 then denote by ,V(p)
the hull of p - that is, the hull of any exact realisation of p in some (pure-injective) module:
by an exact realisation of a pp-type p I mean a tuple whose pp-type is p (whereas a
realisation is just a tuple whose pp-type contains p). Extend this definition of, and notation
for, hulls to types via their pp-parts.

The hulls that we have constructed are examples of Taylor's "minimal compact" structures
[Tay71]; also see [K1167].

Corollary 4.16 Let g be an endomorphism of N(A) fixing A. Then g is an
automorphism of N(A).

Proof This is immediate by 4.12. a

The process of constructing hulls should be compared with the general notion of
construction in [She78]. The difference lies in the fact that maximal pp-types are dense only
with respect to positive formulas: therefore one should not expect N(A) to be a model but
rather the "positive primitive") version thereof.

Beware that N(A) will not in general be a model but it can be thought of as the minimal
positively saturated extension of R. Modules of the form N(A) are the building blocks of
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pure-injective models and decomposition of models in terms of hulls is an important theme here.
After giving, in the second section, some examples of hulls I consider, in §4, those pp-types
which have indecomposable hulls. We will see that such hulls have local endomorphism rings.
This gives uniqueness of decompositions expressed in terms of indecomposable pure-injectives.

Finally, let us note that any type realised in the hull of A is isolated by its pp-part.

Corollary 4.17 Let b be in N(A). Then pp(b/A)i-tp(b/A). In particular, if
pp(b/A) is finitely generated then tp(b/A) is isolated.

Proof This is immediate by 4.5 and 4.1. o

One says that right ideals I, J of the ring are related if E(R/I)=E(R/J). Generalising
this, we say that two (pp-)types over 0, p and q, are related if and then
write p- q. This may not at first look like a generalisation, but take the point of view that pp-
types generalise right ideals and note that I, J are related iff there is an injective module
which is the injective hull of both an element with annihilator exactly I and an element with
annihilator exactly J.

In [Dei77], Deissler introduced a rank which measures how far an element is from being
definable. His rank is defined by: rk(b,A,M) = 0 (M a model, b and A in M) iff b is
definable with parameters from A; rk(b,A,M)=oc iff rk(b,A,M) is not less than a and if
there exists a formula ip with parameters from A such that ip(M) is non-empty and, for
every cEip(M), one has rk(b,A^c,M) <a.

Deissler showed [Dei77] that every element of the structure M is assigned a rank iff M
is a minimal model of its own theory (i.e., has no proper elementary submodel).

Kucera studies this rank for modules in his thesis [Kuc84], also see [Kuc8?],
[Kuc8??]. He begins in [Kuc8?] by defining Deissler rank relative to a given set of formulas
(which has to satisfy certain conditions), and generalises Deissler's characterisation of minimal
models [Kuc8?; 2.6]. Specialising to modules, he defines rk+ ("positive Deissler rank") to be
Deissler rank relative to the set of pp formulas and shows that, if M is a module and if b, A
are in M, then rk+(b,A,M) < oo iff b belongs to every pure submodule of M which also
contains A. So, for example, if M is totally transcendental and if A is a subset of M, then M
is the hull of A iff rk+(M/A) <oo (i.e., rk+(b,A,M)<oo for every bEM) [Kuc8?; 2.7].

In [Kuc8?; §§3, 4], Kucera sets up some machinery for computing (relative) Deissler rank
and also establishes some relation with U-rank.

He goes on in [Kuc8??] to look at, from this point of view, injective modules over
commutative noetherian rings. First it is shown [Kuc8??; 1.1] that, if N=N(A) is U. and
bEN, then rk+(b,A,N) = rk(b,A,N). Then he obtains the following estimates for the
positive Deissler rank of injective modules over a commutative noetherian ring R:
[Kuc8??; 2.4] if E is an indecomposable injective - so E=E(R/P) for some prime ideal P
- then rk+(E/ (R/P)) 5 2, with rk+(E/ (R/P)) = 1 iff E is just the quotient field of RIP
(one defines rk+(M/A) to be sup (rk+(b,A,M)+1: bEM));
[Kuc8??; 2.9] if A = (RIP)(K) and E=E(A) then rk+(E/A) S w (Kucera conjectures that
if K is infinite then the actual value is either 1 or w);
[Kuc8??; 2.12] if A is a direct sum of modules of the form RIP (P prime), if E=E(A)
and if b' is the poset of all primes appearing, then rk+(E/A) S wdp(7P)+1 where dp(b') is
the depth of the poset Z' (i.e., the foundation rank of its opposite) - thus positive Deissler rank
is related to classical Krull dimension (see §10.5).
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4.2 Examples of Hulls

1. Injective hulls Let A be a subset of the injective module E (to accord with the usual
algebraic usage one would replace A by the module it generates - a point of no consequence). By
4.10 and 4.15 there is a unique-to-isomorphism-over-A direct summand of E, usually written
E(A), which is minimal such containing A. This module E(A) is of course injective and is
called the injective hull of A (see §1.1).

Of what pp-type is this the hull? Having fixed the algebraic isomorphism type (i.e., the A-
atomic type) of A we may ask in what ways this may be completed to a pp-type. In general
there are many ways, but there are two canonical ones: that which adds as few pp formulas as
possible is discussed in 2, below; that which adds the maximum number of pp formulas is the
pp-type of A sitting inside its injective hull. Since every module containing A has an A-
fixing morphism to E(A) it is obvious that this latter is the largest pp-type 'completing' the
A-atomic type of A.

Those readers acquainted with injective hulls may be interested to see how 4.10 is
reconciled with §1.2, so I spend the rest of the sub-section on this. The main point is that
injective modules have a "local" elimination of quantifiers. Let us say that a module N is
locally substructure complete if whenever 07,_5 are in N with tpo(a)=tpo(b) then
tpM(a)=tpM(b) (i.e., ppN(a)=ppN(b)) - recall that "tpo" denotes A-atomic type. It is
immediate from the definitions that any injective module is locally substructure complete.

Now, if N has complete elimination of quantifiers then Al is locally substructure
complete (by 16.1), but the converse fails even for injective modules. For, over any non-
coherent ring there exist an injective E and some module M elementarily equivalent to E
which is pure-injective but not injective (15.42). So if one ensures that E and M are large
enough then there will be a,b E M with aR=bR but with tpM(a) *tpM(b). Thus the theory
of E does not admit complete elimination of quantifiers; yet E is locally substructure
complete. This again points up the local aspect of the developments of the preceding section.

Lemma 4.18 Suppose that E is injective and that 5,_5 are in E.

(a) If tpo(a)=tpo(b) then ppE(a)=ppE(b);
(b) a and b are linked iff there is a A-atomic formula 6 such that

6(5,5)n16(6,b) holds, and this is so iff 0RnbRm0.
Proof (a) This has already been noted.

(b) Suppose that there is no such A-atomic a linking a and b. Let a' in E' be a copy
of a in E, and consider the direct sum E ®E'. The absence of such a formula 6 means that
tpo(a"b)=tpo(a'^b) (each being equivalent to tpo(a) u tpo(b)).

Since E ®E', being injective, is locally substructure complete, it follows that
tp(a^b)=tp(a"'b). So if W is pp with then also p(a',b) holds. Projecting this to
E one obtains ip(o,b). Thus the first equivalence follows.

It has been noted after Exercise 4.1/1 that if aRnbR*O then a and b are linked.
Conversely, if there is a A-atomic formula a with then clearly one has
some relation airi=Ebjsj with airi*0, as required. a

An easy corollary of this is the following.

Corollary 4.19 If A is embedded in C 5 E with E injective, then this embedding
of A in C is essential iff it is pp-essential (with respect to Th(E)). a

It is left to the reader to finish reconciling the previous section with §1.2.
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Example 1 Some injective hulls of abelian groups are: E(71)=Q;'RE(71(p))=Qd;
E(7Lpn)=71poo; E(716)=E(712®713)=712 4D 713oo; E(Tj)=(Q(2') (for 7l(p) is
torsionfree and has cardinality 2o).

It is not difficult to check that all injective 2-modules are w-stable: this is not true of all
pure-injective 71-modules but it is a property of injective modules over any right noetherian
ring.

2. Pure-injective hulls Let A be any module and let A' be a pure-injective elementary
extension of A. Then the hull of A in Al is called the pure-injective hull of A and is
denoted by R. The pp-type of A in A' is just the pp-type of A in itself, which is of course
the minimal possible pp-type, given the isomorphism type of A.

A point about notation: rather than place bars above very long expressions I use pi(-) to
denote the pure-injective hull of "-"; for example I may write "pi( ED (#,X : 'xE A))".

From the previous section one has the following description of the pure-injective hull (see
[War69; Prop6 and preceding comments]).

Theorem 4.20 Let M be any module. Then there is a pure-injective module M
with M purely embedded in M such that, whenever Mc--> A/ is a pure embedding
with N pure-injective, there is an extension of f to an embedding of M as a
direct summand of N.

M is unique up to M-isomorphism. G

Retaining the notation of the first paragraph, one has A<; A<; A' and A= A', so 2.25
yields the next result (already recorded as 2.27) which says that, in some sense, pure-injective
modules are more typical than injective modules.

Theorem 4.21 (see 2.27) Every module is an elementary substructure of its pure-
injective hull. o

We have already encountered the example 71(p)« (p) (and generalisations to Dedekind
domains in §2.71). Injective hulls and pure-injective hulls coincide for absolutely pure modules
- in particular for all modules over regular rings. We will continually use the concept of pure-
injective hull, though there are relatively few explicit (non-injective, non- 1: -pure-injective)
examples to hand, so this use may be compared with that of injective hulls in module theory and
that of saturated extensions in model theory. Many results in these notes do, however, help to
elucidate the structure of a general pure-injective module.

Now I digress to discuss pure-essential embeddings: these form the basis of the more usual
approach to pure-injective hulls (another approach makes use of dualities).

One says that an embedding A,B is pure-essential if A is pure in 8 and for all non-
zero submodules C of B, if An C=0 then (A(D C)/C is not pure in 8/C. One may see that
these are just the pp-essential embeddings provided B is taken as the context (in which to
measure pp-types).

Proposition 4.22 [Pr81; 1.2] If the embedding of A in B is pure-essential then
B=_Li(A) (we are working in Th(8)).

Proof Choose c in 8, T* 0. It must be shown that c is linked to A. It may as well be
supposed that c enumerates a submodule C of B.

If CnR#0 then certainly c is linked to A. So suppose that CnA=O, and let n:8-+>B/C
be the canonical projection.

By definition of pure-essential rcA is not pure in nB. So there is a conjunction,
e(w,i)=_ A jtj(w)+t'j(v)=0, of atomic formulas, and there is 5 in A with
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rt8k3w e(w,r(a) but with rtA not satisfying this formula. Choose b in 8 with
rtSke(rtb,rta).

Lifting back to 8 and noting that C= ker tt, one sees that there are c,11 E C with
BP AJt)(b)+t'J(a)=c). Regard this formula as e,(b,o,c) and let tp(u,u) be
3w eo(w,u,u). So Bktp(a,c).

If one had 8ktp(a,6) then, since A is pure in 8, one would have Aktp(5,0) also.
Therefore there would be a' in A with Akeo(a',a,0): that is Ake(o',a). Applying the
projection it to this gives nAke(rfa',na) - contrary to choice of e.

Thus 8ktp(a,c)Altp(a,0) - so cELi(A) as required. o

In the other direction one has the following.

Proposition 4.23 [Pr81; 1.3] Suppose that A=-B with BsLi(A) (in Th(B)).
Then for all C<B, Cmo, if AnC=O then GA(DC)/C is not pure in 8/C.

Proof Suppose that C is as stated, with AnC=O. Let r(:8+>B/C be the canonical
projection. Choose cEC, cm0: by hypothesis there is some pp formula tp(v,w) and a in A
with Bktp(c,a)A-1tp(0,07).

From 81tp(c,5) follows rtBktp(ttc,r(a): that is it8ktp(0,rt57).
If nA were pure in n8 then one would have rtAktp(0,rta). The formula tp(v,w) may

be taken to have the form 3u AJvr)+tJ(w)+t'J(U)=0 for suitable terms tJ, t'j and
suitable r)ER. Lifting uAktp(0,rt5) back to A yields some a' in A and cjEC with
Ak AJtJ(a)+t'J(a')=c). But AnC=O, so it must be that /fl- AJtJ(5)+t'J(a')=0 and
hence A k tp(O, a). This certainly would imply B k tp(0, a) - contrary to choice of tp. o

Corollary 4.24 Suppose that A is pure in B. Then A is pure-essential in 8
iff BsLi(A) (in Th(B)). a
Actually, the above development, 4.22-4.24, contains a flaw: since pure-injective hulls

may be obtained as maximal pure-esssential extensions the conclusion of 4.22 should be
stronger (namely, that A<8 be pp-essential) and 4.24 should have the (in general stronger)
equivalent that A<8 be pp-essential i n place of Bs Li(A).

This is related to a point made by Sabbagh. Under the definition of pure-essential embedding
given above (and this is the usual one), it is easy to prove that if A --> 8 is pure-essential and
if A) C is a pure embedding, then there is an extension of A> C to an embedding of 8
into C (see [Ki67; Lemma3]). In fact, any such extension is a pure embedding of B into C
(by 4.14 and 4.10), but this does not seem to follow so easily: indeed, I do not know how to
establish it without resorting to hulls. With this stronger conclusion, it becomes obvious, for
example, that a composition of pure-essential embeddings is pure-essential, and one also may
prove the stronger versions of 4.22 and 4.24 (exercise).

Exercise 1 [Sab70; Prop 3] Show that E(M) iff M is absolutely pure (i.e., is a pure
submodule of every extension).

Exercise 2 Injective and pure-injective hulls may be wildly different. Take, for example,
the base ring to be the ring of integers and show: that 22=712 but E(7l2)=71200; that
I(p)I=2° but E(71(p))=Q); that Z TT (!(-p) : p prime) but E(71)=Q.
Exercise 3 If M and N are modules, then M ®N = );T (D N. This point is just a little bit
subtle, because the context should be taken to be that of the theory of M ®N. For instance,
consider A=712 ®7l4 and take a = (1, 0), b=(1,2). Each of the subgroups (a) and (b) is pure
in A and (a) n (b) = 0, so (a) ®(b) is contained in A. But the hull of (a) ®(b), as a
submodule of A, is A, not a copy of 712 ®712. The point is that a and b are not independent
in A.



Chapter 4: Hulls 79

A more spectacular example is the following. Take the p-adic integers 71(p), considered as
an abelian group. Then (exercise) there are pure submodules M,N of a(p with MnN = 0.
So, considered as a subgroup of (p), the hull of M®N is just 7l(p).

Injective hulls and pure-injective hulls lie at opposite extremes of a spectrum of hulls.
Various intermediate and special cases have been considered: see, for example, the survey
[Sk178] and references therein.

Other points and examples

3. If A is pure in M then the hull of A (in Th(M)) will be its pure-injective hull: on the
other hand, if A-<M is not a pure embedding then this certainly will not be the case.

A specific example over the ring of integers is: A=71, M=Qd. Then the hull A'(71) of 71 in
Q is Q, not 71. Another example over the same ring is: A=712, M=714('-). Then the hull of
any copy of 712 embedded in any model of Th(M) is a copy of 7l4 (for the pp-type modulo
Th M of the non-zero element of 7l2 says that that element is divisible by 2, and so this pp-
type implies the existence of a copy of 714 surrounding the copy of 712).

It seems that this point (the dependence on context) is often not grasped at first, and so I
will emphasise it: the theory of hulls is not simply the theory of pure-injective hulls.

4. If the subset A of M is "large enough" in M then it will be the case that N(A) is a model
of Th(M), but the difference between hulls and prime models may be seen clearly in the totally
transcendental case. In that case, to obtain a prime model, all isolated types must be realised,
but to obtain a hull, only those types (sic) isolated by a pfp formula need be realised.

A specific example is given by T=Th(712('&) ®714(ko)). Any model must contain
infinitely many copies of each of 712 and 714, but the hulls of single elements are 0, 712, 714.
Do note, however, that these are the "building blocks" of the models.

5. If Al is an indecomposable pure-injective module then N is the hull of each of its non-zero
elements. In particular (4.11), if a,b E N are non-zero then there is a pp formula ip with
IV lp(a, b) A-iip(0, b).

Exercise 4 Take A/ to be the pure-injective hull (equivalently, completion in the p-adic
topology) of 71(p) and let a, b be non-zero. Describe (in terms of suitable representations of
a and b) a pp formula which links a and b in N.

6. Take R=71; N=a(p). It was pointed out earlier that there are non-zero submodules A

and B of N with AnB=0. Thus the intersection of two pp-essential embeddings need not be
pp-essential. This contrasts with essential embeddings, and may be blamed on the fact that we
are not really working in the right category (and lack "witnesses" to important relations). This
may be remedied by going to appropriate functor categories (where the pure-injective modules
become the injective objects) - see Chapter 12.

7 . (R=71) It has already been noted that if T=Th(712(''a) (D 72 (A°)) then the possible hulls
of single elements are 0, 712 (as a direct summand of course) and 714. The module 712 ®7l4
could be obtained as the hull of a pair of elements. If a is an element of order 2 which is
divisible by 2 then the hull of a is a copy of 714 (and is, in particular, not the module
generated by a). If, on the other hand, b is an element of order 2 which is not divisible by 2
then the hull of b is just the module it generates - a copy of 712. Thus one sees how hulls
depend on pp-type and not simply on isomorphism type.

Exercise 5 Verify the list of hulls of single elements above and also show that:
in Th(712(A0) (D 713('0)) the possible hulls of single elements are: 0, 712, 23, 26 =722 ® 23;
in Th(712( 0) ®7le(' .)) the possible hulls of single elements are: 0, 712, 718, and 712 ®718.
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8. If PEST(0) and the hull e1(p) of (a realisation of) p is the sum of n indecomposable
pure-injectives then the weight (see after 6.27) of p is no more than n and, in the case that
T is closed under products, it equals n. Thus in 8.7 above, all non-zero 1-types in ST(0)
have weight one but, for each of the theories in the exercise above, there is a 1-type over the
empty set of weight two.

4.3 Decomposition of injectiue and pure-injectiue modules

One of our main concerns in these notes is the representation of pure-injective modules in
terms of simple (especially indecomposable) components. The broad existence and uniqueness
theorems are really quite general and belong in a text on abelian categories. Although it would
not be inappropriate to prove what I need here, there would be little point in doing so since the
material is adequately covered in standard texts. Therefore I refer to texts on abelian categories
for proofs.

Nevertheless I feel that these is some value in presenting the main definitions and results so
as to give the reader an indication of what kind of decomposition theorems may be expected.

Therefore I state some generalities about Grothendieck categories (these will also be
referred to in Chapter 12) and then go on to describe the main decomposition theorems. I have
used [Pop73] and [St75] as my main sources (the latter is perhaps more accessible).

Readers allergic to categories will not suffer seriously if they skip on to §4 after reading
the statement of 4.A14.

The definition of injective module (=injective object in the category mR) that is given in
§1.2 makes sense in any category. The definitions of essential embedding and injective hull also
make sense in, for example, an additive category. The existence of injective hulls (uniqueness is
a formal consequence) is guaranteed in any Grothendieck abelian category (see, e.g., [St75;
V§2]). An abelian category is Grothendieck if it has a set G of generators (so every object is
an epi image of a coproduct (=direct sum) of objects of G) and satisfies the "AB5" condition -
that is, has arbitrary coproducts and, given a subobject C and a 1-directed system (C ,).X of
subobjects (of some object), one has C n 1, C-, = E The latter is a kind of finiteness
condition: note that if C(.x) is given by its "elements" then this condition is satisfied.

Examples of Grothendieck (abelian) categories are Module categories: let C be a small
(just a set of objects and morphisms) additive (morphism sets are abelian groups under "+",
which is respected by composition) category. Then the category (C°p,Ab) of functors from the
opposite category C°P to the category Ab of abelian groups is a Grothendieck abelian category
with a generating set of projectives consisting of the representable functors (C,-) for C an
object in COP. This functor category (C°p,Ab) is also denoted IIZC and may be thought of as a
generalised module category: think of the ring R as a category consisting of one object with
endomorphism ring R to see that the module category T/ZR is "really just" the functor category
(R°,Ab). The analogue of the category of left modules is (C,Ab)=T/ZCop. Such Module
categories have properties very similar to those of module categories (cf. [Mit72], [Mit78];
also [Aus66], [Aus74]). Also, any Grothendieck abelian category may be realised as a Giraud
subcategory of a Module category (see [St75; X.4.1]).

In this section I will present the standard decomposition theorems for injective objects in
Grothendieck abelian categories. Then I will show how these imply general decomposition
results for pure-injective modules.

First one introduces the spectral category of an abelian category ([0066]; see also
[NP66] and [War69a]).

Proposition 4.A1 For any abelian category C the following conditions are
equivalent:
(i) every object of C is injective;
(i)° every object of C is projective;
(ii) every monomorphism in C is split;
(11)0 every epimorphism in C is split. a
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A category e as in 4.A1 is said to be spectral. Clearly mR is spectral iff R is
semisimple artinian.

Every Grothendieck abelian category C gives rise in a natural way to a spectral abelian
category SpecC together with a functor Spec:(3 ) SpecC which is given on objects by
Spec(C)=E(C) - the injective hull of C. For the action on morphisms, note that, given an
object C of C, the essential subobjects of E(C) form a system directed by intersection so,
given objects C, C' of C and any fE(C,C'), the germ defined by f is a unique morphism in
(Spec(C),Spec(C')) (see [St75; V§7] for details).

Theorem 4.A2 (see [St75; V.7.2]) Let C be Grothendieck abelian. Then there is a
left exact functor Spec:C-+SpecC which takes objects to their injective hulls;
SpecC is a spectral Grothendieck abelian category. a

There is a structure theorem for spectral Grothendieck categories. An object C of a
spectral category is discrete if it is a coproduct (direct sum) of simple subobjects. A spectral
category is discrete if every object in it is discrete.

Theorem 4.A3 [St75; V.6.8, 6.7], [Pop73; 5.2.2, 5.2.3] Let C be a spectral
Grothendieck abelian category.
(a) C is a product DisCxContC of a discrete spectral category DisC and a

continuous spectral category ContC.
(b) Any discrete spectral Grothendieck category has (i.e., is naturally equivalent to

one of) the form XIIlmD,, where Di is a division ring for iEI. Conversely,
every such category is discrete. a

Here, one says that an object C of a spectral category is continuous if C has no simple
subobject: the category is continuous if every object in it is continuous (the zero object is
regarded as discrete, continuous, neither or both, as convenient).

Since injective hulls are "absorbed" by the functor Spec, the next result follows.

Proposition 4.A4 Let EE7rmR be injective.
(a) Spec(E) is discrete iff E=E(®Ei) for certain indecomposable injective

submodules Ei.
(b) Spec(E) is simple iff E is indecomposable.
(c) Spec(E) is continuous iff E has no indecomposable direct summand. a
Corollary 4.A5 Let EE77ZR be injective. Then there are unique to isomorphism
submodules Ec and Ed of E such that E=Ed ®Ec, where Ec has no
indecomposable direct summand and where Ed=E((DIEi) for suitable
indecomposable injective submodules Ei. a

A ring R is local if the set of elements which do not have an inverse form an ideal. If this
condition is satisfied then this unique maximal ideal is also the unique maximal right (and left)
ideal; hence it is the Jacobson radical, J(R), of R and RIJ(R) is a division ring. To check
that a ring is local, it is necessary and sufficient to show that for all r, s E R, if r+s is
invertible then r or s is invertible.

Proposition 4.A6 Let C be an object of the abelian category C. Then End(C) is a
local ring iff for all fEEnd(C), either f or 1-f is an automorphism. If
End(C) is local, then C must be indecomposable. a
The importance of indecomposable objects having local endomorphism rings is shown by the

next result.
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Theorem 4.A7 (Krull-Remak-Schmidt-Azumaya) see [Pop73; 5.5.131 Let C be an
abelian category and suppose that C, an object of C, has decompositions $ICi,
®J D j where the Ci, D j are indecomposables with local endomorphism rings. Then
there is a bijection T(:1J such that for all iEl (uniqueness of
decomposition). a
Theorem 4.A8 [Mat58; 2.6] If E is an indecomposable injective object of the
abelian category C then EndE is a local ring. a
A proof which covers even the pure-injective case in module categories is given in 4.27.

Theorem 4.A9 Let E be a discrete object of the spectral category C. Then the
decomposition of E as a direct sum of indecomposables is essentially unique (in the
sense of 4.A.7).

Proof This is by 4.A8 and 4.A7. a

Corollary 4.A10 Let E be an injective object of the Grothendieck abelian category
C. Then E=Ed®Ec where Ec has no indecomposable direct summands and where
Ed=E((DIEi) for suitable indecomposable direct summands, E1, of E. If
moreover Ed= E(®J E' j) with the E' j indecomposable injectives, then there is a
bijection Ti:I-- *J such that Ei-E'ni for all iEl.

Proof Pull back 4.A9 from SpecC to C using 4.A2, and this is what one obtains. a

A broader version of 4.A10 (which follows from that result) is the following.

Theorem 4.A11 (Krull-Remak-Schmidt-Azumaya-Gabriel) [0066; 3.31, [War69a;
4.2], also see [NP66; Prop I] Let C be an abelian category and let {Ci)I, (Dj)J be
sets of objects such that each injective hull E(Ci), E(D j) is indecomposable.
Suppose that E(®ICi) = E(®J D j). Then there is a bijection T[ : l -* J such that
E(C1)=E(Dtti) for all iEI.
Suppose also that F is a direct summand of ®IE(Ci). Then there is I'=_I such
that ® I E(Ci) = F ® ®I' E(Ci) (exchange property). a
What does all this have to do with pure-injective modules? (which are of more concern to us

than the special case of injectives).

Theorem 4.A12 [GJ81; §1] (also cf. [Fac85] and [Fis75]) Let R be a ring. There is
a Grothendieck abelian category C and a functor F:72R) C which is full,
faithful, and pure-exact, such that MR is pure-injective iff FM is an injective
object of (3. a

To say that F is pure-exact is to say that whenever the sequence
0 ) MV-a N> HIM--' 0 is exact with M-----) N a pure embedding, then the image
sequence 0 )FM )--FN---> F(N/M) > 0 also is exact.

Actually there are a number of ways, found by various authors, of turning the pure-
injective modules into injective objects of a Grothendieck abelian category. I will describe some
of these ways, in more or less detail, in §12.3.

The next result has a number of independent sources: [Fis75; 7.14], [Z-HZ78; Thm 9],
[GJ81; 1.31. For a description of the radical, see 4.27.

Corollary 4.A]3 Let NR be an indecomposable pure-injective. Then End(N) is a
local ring.
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Proof I will include a direct proof of this (4.27) but it follows immediately from 4.A12
since, with notation as there, (F being full and faithful), and then one has
4.A8. a

Corollary 4.A14 [F1s75; 7.21]Let NR be pure-injective. Then there are unique
direct summands Nc and //d of A' such that N=Nd®Nc where A/C has no
indecomposable direct summands and where //d= pi(®I Ni) with the Ni
indecomposable direct summands of N. Moreover, this decomposition is essentially
unique (in the sense of 4.A10) and, if N' is a direct summand of Nd, then there is
I'sI such that N=N'®pi(®I'N1).

Proof This follows by 4.A12, 4.A10 and pure-exactness of the functor F in 4.A12. n

Ziegler gives a different proof of this ([Zg84; §6]) by developing a "dimension theory " for
factors: I say a little about this.

Let M be a module and let V be the set of all its direct summands. Ziegler defines /'1
to be dependent on 7' _ 7 if there is a finite subset, 7o, of ' such that there is no
decomposition of M of the form M' ®M", with Uo M". He notes that this is a kind of
dependence relation (in particular, the exchange property holds). Then he shows that, if 7 is
cut down to factors with local endomorphism rings, a weak transitivity axiom is satisfied; from
this, he deduces the existence of bases as well as the fact that bases have the same cardinality.
So, fixing a summand with local endomorphism ring, one may define the dimension of M with
respect to that indecomposable. Finally, Ziegler makes the assumption that M is pure-
injective, develops some material relating to hulls and then completes the proof of 4.A14.

Given a complete theory, T, of modules let N be a sufficiently saturated (weakly
saturated is enough) model of T and express it as N= Nd ® Nc as above. Define the
continuous part of T, To, to be the complete theory of Nc.

4.4 Irreducible types

A major theme of these notes is the representation of pure-injective modules as (pure-
injective hulls of) direct sums of indecomposable pure-injectives. The general sort of
decomposition which one may expect has been described in the previous section (4.A14), but we
wish to know, for example, under what conditions the continuous factor is zero. Moreover one
might wish to have much more detailed information about the decompositions - what
indecomposable factors can occur and how often they may occur.

This section is concerned with indecomposable pure-injectives and with the pp-types whose
hulls they are.

The first task is to give a direct proof that indecomposable pure-injectives have local
endomorphism rings, via a useful description of the radical of this ring.

It is known that if E is an injective module and if S = EndE, then the Jacobson radical
J(S) of S consists of precisely those f E S with kerf essential in E. In order to give
another illustration of the kind of generalisation one should expect in going from injective to
general (pure-injective) modules, I insert an intermediate step to the correct generalisation:
one may skip over this to the definition just before 4.26.

Given N pure-injective, set S=End//. One might define, in an effort to characterise the
elements of the radical of S, the set H(S)= (f E S : kerf is pp-essential in N ).

Lemma 4.25 Let N be pure-injective, and set S=EndN. Then H(S)=J(S).
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Proof Let fEH(S) and note that for any 9ES one has ker(gf)=_kerf. So SfsH(S).
Recall (e.g. [He68; 1.2.3]) that if every element r of a certain left ideal of a ring is such that
1+r is invertible, then that left ideal is contained in the Jacobson radical. So it will be enough
to show that 1+ f is invertible.

Let A=kerf. Since A )N is assumed to be pp-essential one has hl=N(A). Moreover
1+f fixes A (pointwise). So by 4.16 1+f is an automorphism of N, as required. o

It is not difficult to see, however, that one should not expect H(S) to equal J(S). It has
already been noted that the intersection of pp-essential submodules may be zero, so it is not even
clear that one should expect H(S) to be closed under addition.

Example I Consider R=71, N=712 ®714, and let gES=EndN be defined by (1,0)'--x(0,2)
and Since kerg = 714 is not pp-essential in N, g does not lie in H(S).
Nevertheless gEJ(S) since g2=0.

The point in this example is that, although the algebraic kernel is not large enough, g is
strictly pp-type-preserving on a large (pp-essential) subset of N. That is: it is too much to
expect to find many elements which have been annihilated; rather one should look at those
elements whose pp-type has been increased - 7l(p) with the endomorphism multiplication-
by-p provides an even better example.

So the definition of H(S) did not take full account of the way in which pp formulas replace
A-atomic formulas.

Therefore given a pure-injective N with endomorphism ring S, we consider
K(S)=(f ES : f is strictly pp-type-increasing on a pp-essential subset of N). (Clearly
H(S)=_K(S).)

Proposition 4.26 Let N be pure-injective with endomorphism ring S. If
fEJ(S) then f strictly increases the pp-type of every non-zero element. In
particular J(S)sK(S).

Proof Suppose that fEJ(S). Then 1-gf is an automorphism of N for all gES (see
[He68; 1.2.3]). Suppose then that bEN has pp(fb)=pp(b). By 2.8 there is 9ES with
gfb=b. Thus (1-gf)b=0, and so it must be that b=0, as required. o

Now we will see that J(S)=K(S) provided N is indecomposable. Actually, by making use
of 4.A12 and what is known of the injective case one may see that this equality holds without any
restriction on N. I do not see a direct proof of this, so confine myself to the indecomposable
case (which is all that we will need).

The first part of the next result characterises those endomorphisms of an indecomposable
pure-injective which are in the radical (it may be found in [Prel; 4.4, 4.8] and [Zg84; 4.3]):
the fact that the endomorphism ring is local then follows (cf. 4.A13).

Theorem 4.27 Let Al be an indecomposable pure-injective with endomorphism ring
S.
(a) J(S)=(f ES : f strictly increases the pp-type of some element of N)

(b) S

_ (f E S : f strictly increases the pp-type of every non-zero element
of N).

is a local ring.
Proof (a) In view of 4.26 it remains to show that if f strictly increases the pp-type of some
element a of N then f must be in J(S). So given such f and a let gES. It will be enough
to show that pp(a-gfa)=pp((1-gf)a)=pp(a): for then, by 4.13, 1-gf will have an inverse
and so f will be in J(S).
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Suppose, for a contradiction, that pp((1-gf)a)=, pp(a): say ip is pp with
Lp(a-gfa)nlip(a). Let p(v)ES,+(0) be maximal extending pp(gfa) and consistent with
ip(a-v). Since N is pure-injective, pnip(a-v) is realised in N, say by c. Since
pp(c)=_pp(gfa) there is (by 2.8) some hES with hfga=c.

Since (hgf+1)(o-c)=hgfc-hgfc+a-c=a-hgfc, one has pp(a-hgfc)2pp(a-c)
(2.7). Since, by choice of c, ip(a-c) holds, one concludes ip(a-hgfc). Thus one has
pp(hgfc)=_pp(c) and ip(a-hgfc) so, by maximality of pp(c)=p, it must be that
pp(hgfc)= p=pp(c).

Therefore by 4.13 h9f is an automorphism of N. Certainly then f is an automorphism -
for it cannot increase the pp-type of any element, contradicting pp(fa)=)pp(a).

(b) This now follows since (by the first paragraph of the proof of (a)) it has just been
shown that if f E J(S) then 1-f is invertible. o

Exercise 1

(i) Show directly that, supposing 1 S=EndN where 11 is pure-injective, if fEK(S) then
f strictly increases the pp-type of every non-zero element of N. [Hint: use 4.5]

(ii) If every non-zero pp-definable subgroup of the pure-injective module Al contains a
minimal non-zero pp-definable subgroup (e.g., if N is E -pure-injective=totally
transcendental) deduce that J(S)=K(S)=H(S).

NO Find conditions for J(S) to be the nilradical of S, and for J(S) to be nilpotent.
(iv) Identify S, J(S) and S/J(S) for S=EndN, N being an indecomposable pure-

injective abelian group (see §2.70.

Now we come to a key notion. The pp-type pES+(0) is irreducible if its hull is
indecomposable. This generalises the terminology for right ideals where, for the definition, the
following equivalent conditions may be used: (i) I is n-irreducible in the lattice of right
ideals; (ii) the injective module E(R/I) - the injective hull of an element with annihilator
precisely I - is indecomposable. There will be a similar equivalence for pp-types (8.2).

The result which follows the next lemma is an extremely useful syntactic characterisation
of irreducible pp-types, due to Ziegler. The term "irreducible" is extended to types via their
pp-parts.

Proposition 4.28 [Zg84; proof of 11.4] Let N=N(a) be decomposed as
N=N1®N2 with Set a=(07, 52) E 4/1®N2. Then the pp-type of a is
strictly contained in both pp(o1) and pp(a2).

Proof Of course pp(a)=_pp(ai) by 2.7. Since a2 is in /1(07), there is (4.10(d)) some pp
formula ip with 1p(a,a2)n-np(a,0). On projecting ip(a,i72) to the first coordinate one obtains
tp(a1,0). Now, were pp(a,)=pp(a) this would imply ip(5,0) - contrary to choice of ip. o

Theorem 4.29 [Zg84; 4.4, 4.5] Let p E S(0) be any non-zero type. Then p is
irreducible if f for all 1pl,tp2 E p- there exists ipE p+ such that
(ipntp1) + (ipAJ2) E P-'

More generally, p is irreducible iff for all tp1,...,tpn E p- there exists ipEp+
such that E; lpny,i E p-.

Proof Suppose that p is irreducible but that the right-hand side of the equivalence fails.
Let a realise p in /1(p) and let X01,4,2 E p- provide a counterexample to the right hand side.

Note that p+(U1)np+(U2)ntp1(U1)A p2(U2)n(5=U1+U2) is a consistent set of formulas
(in Th(N(p)) with a as parameters): for otherwise there would be tp1,ip2 E p + with
(ip1nip1)(U1) A (ip2A4J2)(U2) A (ul+U2=a) not satisfied in /1(p). But this would mean,
setting ip=Lp1ALp2(Ep+), that ipAIp1+LpA J2 was not in p+, contrary to choice of p, and
p2. So realise this set of pp formulas by b,, b2 (say) in /1(p).



Chapter 4: Hulls 86

Since p+(bi) holds there is fi E EndN(p) with f15=Ti (i=1,2). Since Wit p, fi is
not an automorphism (i=1,2). But a=b,+b2=(fI+f2)5. So by 4.13 f1+f2 is an
automorphism of N(p). This contradicts EndN(p) being local (4.27), as required.

If p is not irreducible then take o realising p in N(a)=N(p) and set
N(a)=4/104/2 with Let n.1,rc2 be the canonical projections. Now, 5=1115 +rc2a
and, by 4.28, pp(nia)Dpp(a) - say Wi is pp with \pL(ni5)n11Vi(07) (i=1,2). Then,
clearly, the syntactic criterion of the statement of the result fails, as required.

The more general statement follows by an easy induction (exercise). a

Corollary 4.30 Suppose that the pp-type of a is irreducible. Then 5 cannot be a
sum I, '_5i of tuples Ti with strictly larger pp-types. In particular if
pp(b),pp(T)>pp(a) then a#b+T. a

Exercise 2 Here is another way of expressing 4.29. Let N be an indecomposable pure-
injective and let S be its endomorphism ring. Take any non-zero element a of N. Then So
strictly contains I(Sb : bEN and pp(b)>pp(a)).

Proposition 4.31 Suppose that a and b are linked. Then the hull of 5 and the
hull of b have isomorphic non-zero direct summands.

Proof Let p be the type of 5. Suppose that tp is a pp formula linking a and T.
ip(5,b)ALet q(u,b)=pp(a/b). The pp-type q is finitely satisfied in N(b) (which
is pure in Al). Since N(b) is pure-injective, q is therefore realised in N(F). Working
modulo the implicit over-theory, let us take a realisation c which is such that qo = pp(T) is
maximal possible (there is such - let q'(U) be a maximal pp-type such that q(v, b) A q'(v)
is consistent, then extend to a maximal pp-type over b - this is realised in N(b) by 4.6). If
pp(T) = pp(5) then we are finished.

Otherwise pp(c) > pp(5) (since q certainly contains the type of a over 0). Since both
5 and c satisfy p, certainly p(5-c) holds. From lp(a,b)nlp(T,b) one also has tp(a-c, 0).
Let p, be the pp-type of a-T. Since 07= (a-T) + c, the following pp-type over 5 is
consistent: 5= u+Fo n p1(u) A qo(w). Let (d, e) realise this in N(5).

The pp-type of e over b extends that of 5. For if V(5, F) holds then so does w(T, b)
(by definition of c) and hence tp(U, 0) E p1. Therefore x,(d, 0) holds. Since w(a, b) is just
ip(d+e, b), one concludes w(e, b), as required. Therefore e satisfies ip(U,b) and also
pp(e) 2 qo = pp(T). So, by maximality of pp(T), tp(e) =tp(c). Hence the hull of e is
isomorphic to that of c, and so N(o) and N(b) have a non-zero direct summand in common. o

Corollary 4.32 Suppose that a and b are linked and that the pp-type of o is
irreducible. Then the hull of b contains, as a direct summand, a copy of the hull of
a. o

One may note that to prove the corollary, one may terminate the above proof at the stage
when one has the element a expressed as the sum of two elements with strictly greater pp-type
(contradicting 4.30).

The next corollary of 4.29 is a rather general method for constructing irreducible pp-
types while retaining some control over their properties. This sort of construction was used
first for pp-types in [Pi84a] and [Zg84] and in fact generalises a reasonably familiar
argument from ring theory (in which right ideals replace pp-types). Recall that an ideal of a
lattice is a subset which: contains the least element of the lattice; does not contain the largest
element; is downwards closed; is closed under finite unions.
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Theorem 4.33 [Zg84; 4.7], [PP87; 6.6] Let '' be a collection of pp formulas
which defines an ideal of subgroups (in models of T). Let poES+(0) be a pp-type
(i.e., a filter of pp-definable subgroups) such that pon'=0.

Then there is at least one pp-type pES+(0) maximal with respect to: p=_po
and pn'Y=. . Every such pp-type p is irreducible and, together with i'1, defines
a complete type (where iY'={-itp : tpE'Y}).

Proof Existence of such a pp-type p is immediate by Zorn's Lemma (and the compactness
theorem).

To show that p is irreducible we suppose that 81,82 E p-. By maximality of p there are
1P11LP2 E p such that lp,A6, and LP2 A82 are in T. (For, inconsistency of 81 A P A 1'T means
that there is some ip,E p and 1p1,...,1pn E'Y with lp,Ae1- V; Vi but, identifying formulas
with the sets they define, U;Wi 1, tpi; whence lp,A81 E'Y (for 'Y is closed under "+", and
is downwards closed).)

Replacing lp, and LP2 by their conjunction lp, one has that lpAe1 and LPA82, hence
lpAe1+lpAe2, are in T. In particular lpAe,+ipAe2 is in p-. Hence, by 4.29, p is indeed
irreducible.

Finally, observe that we showed that a is in p- iff there are lp in p and tp in ' with
8Alp-tp - that is, with lpA-Itp4-1e. Thus pu-i'Y proves pu-ip- which, by 2.20, is
complete. o

Corollary 4.34 [Zg84; 4.7] Every complete theory of modules has irreducible
types.

Proof Take T=(v=o) and po=(v=v) in 4.33. o

The above result is stated under the conventions that the zero module is not indecomposable
and that the trivial theory Th(0) is excluded from consideration.

For any theory T of modules we set Z(T) to be the set of all (isomorphism types of)
indecomposable pure-injective direct summands of models of T. We shorten Z(T*R) to ZR:
recall (§2.6) that T*R is the largest complete theory of R-modules. Also we shorten Z(Th(M))
to Z(M). For example Z' consists of all the indecomposable pure-injectives listed after
2.7111: Z(71)={7L(p): p is prime) u (Q); Z(712 ®7140°))=(:Z2,2!4);
1(71(p))={7l(p),Q}. Actually Z(T) carries the structure of a topological space, and that
structure will turn out to be very important but, for the moment, Z(T) is merely a set. Given
a theory T and pp formulas lp, tp we write lp>tp iff T proves p-j lp A n(lp- tp) (and so
lp(M)>tp(M) in every model M).

Corollary 4.35 [Zg84; 4.8] If Inv(T,lp,tp)>l then there is an irreducible pp-type
p which contains lp but not w: we write lp/tp E p. Thus there is an indecomposable
pure-injective module NEZ(T) with lp(N)>ip(N).

Proof Take '1' in 4.33 to be 1i (or rather the ideal of pp-definable subgroups generated by
y,) and take po to be the pp-type generated by tp. o

Corollary 4.36 [Zg84; 6.9] Every module is elementarily equivalent to a direct
sum of indecomposable pure-injective modules, equivalently, to a discrete pure-
injective module.

Proof Let M be any (non-zero) module and let M, be a very saturated module elementarily
equivalent to M. By 4.A14 the pure-injective model M, has the form Md®Mc where Md is
the pure-injective hull of a direct sum of indecomposable pure-injectives, and Mc has no
indecomposable direct summands. It is claimed that Md=M.
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If this were not so then, taking note of 2.23(a), there would be tp, W with Inv(Md,tp,W)
finite and Inv(Mc,tp,W)>1. So there is by 4.35, some pure-injective elementary extension M'
of Mc realising an irreducible type p with tp/W E p: say M'=M" (DN where Al is an
indecomposable pure-injective with inv(N,tp,W)>1. Since M, was chosen to be very saturated
we have Mi=M,®N and so Md=Md®N. Hence Inv(Md,tp,W) must be infinite - the required
contradiction. a

For modules over a commutative regular ring, the above was proved by Garavaglia [Gar79;
Cor 1].

Corollary 4.37 Suppose that M is a continuous pure-injective module. Then
MeM O

Exercise 3 Give a simpler proof of 4.36 for the case M=_M o.

Exercise 4 Use 4.36 and 2.718 to give a proof of 2.715.

Corollary 4.36 is also immediate from the next result and 2.24.

Corollary 4.38 [Zg84; 6.14] (cf. [FS85; XI 2.8]) Let T be complete. Every
continuous pure-injective summand of a model of T is a direct summand of a direct
product of members of Z"(T). In particular, every continuous pure-injective module
is a direct summand of a product of indecomposable pure-injectives.

Proof First we note that it is sufficient to treat the case that the continuous pure-injective E
is the hull of a single element a: for by Zorn's Lemma there is a direct sum of hulls of single
elements which is pure in E and has E as its hull (alternatively, one may add a little
argument at the end of the proof).

Let p be the pp-type of a. For each W in p- let qW be maximal with pp-part
containing p+ and omitting W. By 4.33, q,, is irreducible : realise q,, by a, in the
indecomposable NW. Consider the element b = (bW)w in TT NW. Certainly pp(b) > p +
and, if WEp - then, since -1 W(b,) holds, one has -iW(b). Thus tp(b) = tp(a). Hence E, the
hull of a, is isomorphic to a direct summand of TT W NW1 as required. a

Here is another corollary of 4.29. Complete theories which are closed under product are
much more amenable than those which are not - for example the link between model theory and
algebra is much more direct in the former case - and so we often will replace a complete theory
T by Tao. This would not be so useful if the models of these two theories were wildly
different; but that is not the case. Indeed, the next result says that no new indecomposable
pure-injectives appear when we move from T to Tao.

Corollary 4.39 Let T be any complete theory of modules. Then Z(T)=Z(To).
Proof Of course Z(T)=_Z(T o). So take Al EZ(T1o): Al is the hull of some irreducible 1-
type, p, over o (a type modulo T'o). If we can show that there is some 1-type po in
ST(0) with po+=p+ then, by 4.15, it will follow that and hence
NEZ"(T), as required.

If there is no such type then it must be that p + u -ip- is inconsistent with T. Therefore
there is tpE p+ and Wi,...,Wn E p- such that T V; Wi. Since p is irreducible there is,
by 4.29, some tpo E p+ such that 1:; tpo AWi E p-, and it may as well be supposed (replace
tpo by tp A that tpo S tp.

Now TKaF3v(tpo(v)A-1 (1,tpoApi).(v)) (since p is consistent for Tao). Thus
Inv(T -,Lpo, 1, LPoAWi)>1. Hence Inv(T,tpo, 1:+ LPoAWi)>1. But T F tp-V, Wi certainly
implies TF tpo 4 V, tpo AWi. Also U , tpo AWi X+ To AWi. Therefore, in T one has
tPo<_1:+ tPoAk'i - contradicting Inv(T,tpo, 1:; tp0AWi)>1. 0
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It should not, therefore, come as a surprise that the difference between (discrete) pure-
injective models of T and those of Tis simply that some indecomposables may be
constrained to a fixed finite number of occurrences in the decomposition of each pure-injective
model of T (4.63, 10.24).

As a corollary, no new continuous pure-injectives can appear either.

Corollary 4.40 Let T be a complete theory of modules. Suppose that a E M P T'&&

is such that N(a) is continuous. Then the hull of a is also a direct summand of a
model of T. Therefore, any continuous summand of a model of T"a is also a
summand of a model of T.

Proof Let p be the type of Zr in M. By 4.38, p is in the closure of the set of irreducible
types in the space of 1-types modulo T'A-. By 4.39, these irreducibles all are contained in the
image of the canonical inclusion S,T(O) S,T' o(o) which, by 2.33, is a closed set. Hence
N(p) is a summand of a model of T.

Since every continuous pure-injective is the pure-injective hull of a direct sum of hulls,
N, of single elements and, by 4.37, these all satisfy N-N o, the second statement follows.
0

4.5 Limited and unlimited types

Consider the following example.

Example 1 The ground ring is the ring of integers and the theory is that of 722(A0) c 714. It
is easy to check (using the invariants) that the models of T are just those modules of the form
22(K) (D 24 with K infinite. Now, although it is true that one may find infinitely many distinct
copies of 714 as direct summands of 722(A0) c 714, it is the case that, in any decomposition of
any model, only one copy of 714 appears. Once this has been recognised, the indecomposable
direct summand 724 becomes, in some sense, irrelevant to the purpose of classifying models and
only the one cardinal, K as above, is needed to parametrise them.

It will be useful, therefore, to identify those indecomposable pure-injective direct
summands of models which, like 724 in the example above, are "limited" in the number of their
occurences. This is of course a notion which is entirely relative to the over-theory T.

Denote by Zs'(T) the class of (isomorphism types of) pure-injective direct summands -
components - of models of T.

A pure-injective (isomorphism type) NEW(T) is said to be T-unlimited, or just
unlimited if T is understood, if whenever M is a model of T then so is MEN a model.
Otherwise N is (T-)limited. For a type or pp-type p, say that p is (T-)(un)limited if
N(p) is so. (See §5.3 for the more general notion of being unlimited over a set of parameters.)

Lemma 4.41 [Pr8l; 5.8], [PP87; 1.2] The following conditions on the module
NC b'(T) are equivalent:
(i) p is unlimited;
(ii) there exists MkT with McN1=T;
(iii) for any K and any MkT one has McN(K)kT;
(iv) for any pair tp, W of pp formulas (in one free variable) if Inv(N,ip,ip)>1

then Inv(T,Lp,W)=oo.

Proof (i)#,(ii) This is trivial from the definition.
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(ii)=(iv) Suppose that tp(N) strictly contains p(d). From (ii) one has
Inv(T,tp,V)=Inv(M(D N,to,y,)=Inv(M,tp,ip)xInv(N,tp,x,) and this equals
Inv(T,tp,tp)xlnv(N,tp,tp). Since Inv(N,tp, xp)>1 it must be that Inv(T,tp,y,) is infinite.

(iv)r(iii) This is immediate by 2.18.
This is immediate from the definition. o

Proposition 4.42 Let pEST(0). Then the following conditions are equivalent:
(i) p is limited;
(ii) there are tpEp+ and tpEp- with Inv(T,tp,xp) finite.

Proof (i)=>(ii) Suppose that the condition (ii) is not satisfied. Let M be a pure-injective
model of T, and consider the set of formulas I(U)= p+(U) u (-iyi(v-m) : mE p+(M) and
1pE p-}. It is claimed that '(U) is finitely satisfied in M.

Otherwise there would be E p+(M), tp1,...,'pk E p- and tpEp+ such that
tp(U)- U;Wi(U mi). By Neumann's Lemma (2.12) this implies that Inv(T,tp,Wi) is finite for
some i - contrary to assumption (ii). Thus T(U) is indeed consistent.

Therefore there is T realising ' in some elementary extension M' of M. Since M is
pure-injective there is a decomposition T=(Z ,Z) E M ®N=M'. We will see that T, realises
p.

Since p+(T) holds, certainly it i s the case that both To and Ti satisfy p + . Let V E p-:
then i (T-TO) holds by definition of 1. That is, ny,(Tl) holds. Therefore tp(T,)=p.

Hence M ®N(p) is a direct summand of M' (by construction of hulls) and, by 2.25, it is
a model of T. Hence p is indeed unlimited (by 4.41), as required.

00 =0) This is immediate by 4.41(i)= (iv). o
Notice that it is not obvious from 4.42(ii) that being limited is a relatedness invariant on

types (i.e., depends on the hull, rather than on the particular type). The next corollary is
immediate from 4.42.

Corollary 4.43 A type p over 0 is unlimited iff G(p)=Ga(p).
Minimal non-zero pp-definable subgroups have a technical importance in many arguments

(see for example §6; also compare 6.23): they tend however to exist only in rather restricted
situations. The next definition provides what turns out to be a useful generalisation, which has
applicability in much wider circumstances. In model-theoretic terms, we are going from
regular types to types of weight one (regarded in another way, we are moving to regular types in
Teq - see §10.T). The notion appears in essence in [Gar80a] and was heavily exploited in
[Zg84]. Its main uses will be later (Chapters 9 and 10), but we note that it has some relevance
here.

Suppose that ip, p are pp formulas. Say that tp/W is a T-minimal pair (or minimal
pair for T) if Lp strictly contains ip but no pp-definable subgroup lies strictly between ip
and p. That is, Lp is a cover of ip (in any, equivalently every, model of T). Similarly, ip/.p
is an N-minimal pair if tp(N) covers iv(N) in the lattice of pp-definable subgroups of N.
Garavaglia [Gar80a; §6] made some use of minimal pairs ("simple pairs"), but it was Ziegler
who made decisive use of them.

Corollary 4.44 Suppose that p is a type in ST(0). Then p is limited iff
there is a T-minimal pair tp/tp E p with Inv(T,tp,tp) finite.
(In particular such a type, if irreducible, is neg-isolated -see §9.3.)

Proof By 4.42 it will be sufficient to establish just one direction: that if p is limited then
there is such a minimal pair. Moreover, 4.42 implies that if p is limited then there is
tp/y, E p with Inv(T,tp,ip) finite.
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Since ip) is finite, the interval [ip,y,]T in the lattice of pp-definable subgroups
of (models of) T has finite length. So clearly there are pp formulas ip', y,' with
ip(N)>Lp'(N)>V'(N)>ip(N), with tp'/W' a T-minimal pair and with tp'/y,' E p. Also,
Inv(T,ip',ip')Slnv(T,tp,ip) is finite, as required. o

Proposition 4.45 Suppose that pEST(O) is limited. Then there is n(p)Ew such
that if M k T is any pure-injective model then N(p) appears no more than n(p)
times in any direct-sum decomposition of M.

Proof This is immediate from 4.42: for n(p) one may take Inv(T,ip,ip)/Inv(N(p),ip, .p)
in the notation of that result. a

A sharper result than this is true: it will be obtained in the U. case in §6 (as 4.60); and
in the general case as 9.5. The next result is immediate from 4.41.

Lemma 4.46 Suppose that T'-<T and let p' be a T'-type over 0. If jp'
(notation as in 2.33) is T-limited then p' is T'-limited. o

Lemma 4.47 Let p be any pp-type. Then iff p is unlimited in
the theory of Th(N(p)).

Proof If N(p) is not elementarily equivalent to its infinite powers, and hence (2.29) if
N(p)sN(p)®N(p) then it is immediate from the definition that p is Th(N(p))-limited.

If conversely p is Th(N(p))-limited then by 4.42 there are pp formulas ip,.p with
Inv(N(p),i.p,ip) finite, so clearly N(p)sN(p) o. o

Note that if T= T '& then there are no limited types.

Example 2 (for 4.47) Take R=71: since Q=Qd'J1o, I is not limited in its own theory or,
therefore, in any theory. Since 7L2*22 R°, 7L2 is limited in its own theory: similar is 7l(2).

Exercise 3 If N is a(n indecomposable) pure-injective all of whose invariants are 1 or 00

then N is unlimited in every theory.

Given a complete theory T, we may define the unlimited part of T to be that complete
theory, Tu, which is given by the condition:
Inv(Tu,ip,ip)>1 iff Inv(Tu,Lp,4J)=oo iff Inv(T,ip,yi)=oo.

If M is any model of T and if M' is any IMI+ -saturated elementary extension of M, then
one sees (exercise) that M'/M is a model of Tu. This notion was defined in [Pr80a] and in
[BR84a].

Let M be a DTI+-saturated model of T (in particular M is pure-injective). Decompose
M according to 4.A14. Note that, by 4.40, the continuous part of M is unlimited. Split the
discrete part of M as the pure-injective hull, Ml, of the direct sum of all the T-limited
indecomposables, plus a complement for this (the latter is unlimited). Thus, one has
M = Ml ®Mu, where Mu is a model of Tu.

Given any pure-injective model M' of T, one may split M' similarly, to obtain
M' = M'i ® M'u. It will follow from the results in Chapter 10 (cf. after 10.24) that M'l is a
factor of Ml (and of course, M'u E b'(Tu)). Thus, one may say that T itself decomposes as
Th(MI) ®Tu (cf. [Pr80a]) although, of course (consider, for example, T=Th(1(2))), it may
happen that Th(M1) = T.

4.6 H structure theory for totally transcendental modules: part 11

In this section we improve on 3.14 by describing the indecomposable factors which occur in
the decomposition of a totally transcendental module and we relate the decomposition of a module
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to the decompositions of modules elementarily equivalent to i t . I n particular the models of a
given totally transcendental theory will be classified in a way which slightly extends the
stability-theoretic classification of models in terms of realisations of types: the difference is
that here the prime model may be described in the same terms as the other models, so the
classification is over 0 rather than over the prime model.

While the main results here are self-contained, I have also included some observations and
results which relate to ideas introduced later in these notes. The reader unfamiliar with the
terms used may safely skip over such points and perhaps return to them later.

The main result of this section, which comes from [Pr81], was also proved independently
as part of a more general result in [Zg84). This more general case will be dealt with in §10.4
after the appropriate machinery has been assembled. Although things are simpler in the totally
transcendental case and the results are more complete, in that they refer to all models, a
surprising amount of what is developed in this section does generalise (see 9.5, 10.24).

Recall that, if T is the ubiquituous totally transcendental theory of this section, then any
model M of T is a direct sum of indecomposable submodules (3.14) in an essentially unique
way (4.A14) and every pp-n-type over any set of parameters is finitely generated (3.1(c)). If
p is a pp-type equivalent (modulo T) to the single pp formula ip then we say that p is
(finitely) generated by ip. Beware that this notion is relative to T; one may emphasise this
by saying that p is T-finitely generated.

First I introduce some terminology, notions and results which are directly generalised from
the (purely algebraic) E-injective case. The theory T is implicit, but it is not yet assumed to
be totally transcendental.

Suppose that AlED'(T) and that p is a pp-1-type such that M(p)=N. Say that p is ()V-
)critical if p(N) is minimal among the non-zero /A-pp-definable subgroups of Al. Extend
the definition to types via their pp-parts. Observe that this notion does not depend on the over-
theory T.

Say that pES1T(0) is T-critical if p+ defines a minimal /9-pp-definable subgroup in
a sufficiently saturated model of T. This notion does make real reference to the over-theory T
(as opposed to the local notion of "critical").

Recall that, given (pp-)types p, q over 0, one says that they are related and writes p.q
iff Thus pES1(0) is critical iff its pp-part is maximal in its relatedness class
of pp-1-types.

Example 1
(i) R=71, N=7Lpoo. Then there is just one 7lpoo-critical type - namely the type of an element

of order p.
(ii) R=K[X,Y]/(X,Y)2. As a module over itself, R is totally transcendental. There are

SKI+1 critical types for RR (since there is this number of minimal non-zero pp-
definable subgroups).

(iii) R=72, N=7l(p). There is no 7l(p)-critical type since there is no minimal non-zero
pp-definable subgroup. There is, however, a T-critical type (Exercise 2 below) as,
indeed, there must be (by 4.49). This example shows that, in the definition of T-critical,
one does need the model to be sufficiently saturated.

Exercise 1 Show that if T is t.t. and if pE SIT(0) is T-critical then p has Morley rank 0
or 1.

Exercise 2 Let T be the theory of the abelian group 7(p). Let p be the type of the element
(0, 1) in the model 7_(p_) (D Q of T. Then p is a T-critical type.

Lemma 4.48 Let T be any complete theory of modules.
(a) If pES1T(0) then p is T-critical iff p+ is a maximal non-zero pp-type

over 0 for T.
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(b) Any T-critical type is critical.
(c) Any critical type is irreducible.

Proof (a) This is clear.
(b) Let pES,T(0) be T-critical, and let a realise p. Suppose that bEN(a) lies in

some M -pp-definable subgroup of N(a) which is strictly contained in p+(N(a)). Then
pp(b) has pp-part strictly containing that of p. Hence b=0 and p is critical, as required.

(c) Let p be a critical type and let a realise p. If N(a)=N,eN2 and if
is decomposed accordingly then, by minimality of p+(N(a)), one has pp(ai)=p+ or of=0
(i=1,2). By 4.28 it follows that a,=0 and a2=0 - so a=0, as required. o

Lemma 4.49 Let T be any complete theory of modules.
(a) Every non-zero type in S1T(0) is below a T-critical type.
(b) If T is totally transcendental and if p is an irreducible 1-type over 0 then

there is a critical 1-type q over 0 related to p and with q >_ p.
(c) If T is totally transcendental then every T-critical type p is isolated by a

formula of the form lp(v) A V#O where ip is a pp formula generating p
(modulo T).

Proof (a) If p is a 1-type over 0 then, by the compactness theorem, there is some 1-type q
over 0 with q-> p (recall that this means that q+=p which does not contain the formula
"v=0" and is maximal such.

(b) Let T(0) : q-p and q_>p). Since T is t.t., so is N(p). Therefore (by
3.1) X has a maximal element and such an element will be as required.

(c) Suppose that p is T-critical. Let ip be pp generating p modulo T. If y,E p- then
clearly Tk(ipAy,)(V)-+v=0, and so Tkip(v)AV*O-4-ip(v). Thus ip(v), together with v*0,
implies p (by 2.20). o

Part (a) of 4.49 is an improvement on the algebraic situation (cf. [LM73], [01751). It
generalises the fact that if a hereditary torsionfree class (in the sense of §15.2) is of finite type
(equivalently, 15.9, is elementary) then every right ideal is below a critical right ideal for this
class.

A type is said to be isolated if it is equivalent to a single formula (the notion of a pp-type
being finitely generated is the positive version of this). The terminology arises because
p E ST (R) is isolated in this sense iff it is an isolated point of the topological space ST (,q) (see

§1.1). Observe that the notion makes sense only for types in finitely many free variables.

Example 2
(i) A type need not even be related to a T-critical type (take T to be the theory of the abelian

group 7l4( o) ®7le( )). In Teq the situation improves somewhat (cf. §10.T).
(ii) Let T be the (superstable but not t.t.) theory of the abelian group 2(p) and let pn be

the type of an element divisible by pn but not by p77+1 Then pn is isolated by the
formula pniv A pn+1,4'v. Yet pn is not even related to a critical type (Exi(iii) above).
Again, in Teq, the situation improves.

Lemma 4.50 Suppose that T is totally transcendental. Let R=_M and let b be a
finite tuple in (a copy of) N(A). Then tp(b/)q) is isolated by a single pp formula.

Proof This is immediate by 4.17 and 3.1. o

Example 3 T=Th(72200). Take an element a with hull Ql and let b be a non-zero element of
some chosen copy of the hull of a: say bm=an (m,n non-zero integers). Then vm=an
isolates the type of b over a.
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The classification which I give here of the models of a U. theory is somewhat more detailed
then one might expect from consideration of the classification theorem for non-multidimensional
w-stable theories (see [Pi83a]). There, one must be content with classifying models up to
isomorphism over the prime model. Here, it will be possible to describe the prime model in the
same terms as the other models. To do this, one considers an algebraic notion of independence
which is rather finer than the model-theoretic one (viz. non-forking - see §5.1). Consider the
next example.

Example 4 Consider the theory of the abelian group 7l4 (D an w-stable theory. Let
a=(1, 0) E 7l4 (D 220k) and set p to be the type of a.

Now, p is not an algebraic type since, given any element b of order 2, the sum a +b
realises p (and there are infinitely many such "b"). It follows that given any cardinal K, a

model may be found containing at least K independent realisations of p: independent in the
model-theoretic sense.

Such realisations will not however be independent in a stronger sense of the term. For if
a, and a2 are distinct realisations of p then al-a2 is an element of order 2. In particular
there cannot be a direct summand (of any model) of the form N1®N2 with ai ENi (i=1, 2).
In this section I will use this stronger notion of direct-sum independence. (Section 5.3 explores
the relationship between these two notions of independence.)

Exercise 3 In the example above, the limited type p is at least related to an algebraic type.
Show that this is not a general phenomenon, even in the U. case.

Let a,b be in M. Say that a and b are direct-sum independent (ds-independent)
if there is N ® N' pure in M with o in N and T in N'. In the example above it is clear
that no two realisations of p can be ds-independent. This is so because T forces there to be at
most one (in fact exactly one) copy of 7l4 appearing in the direct sum decomposition of any
model of T (consider the invariant Inv(T,v=v,v2=0)).

Lemma 4.51 Let pEST(0). Suppose that a,b are ds-independent realisations of
p. Then a-b realises p.

Proof Take N ® N' pure in M with a in N and F in N'. Then
pp(a-b)=pp((a, b))=pp(a)npp(b)=p+np+=p+ (by2.10). o

For purposes of the discussion which follows, say that a set of tuples is (p-) equiptype if
all its elements have the same type (p). Although there will be no upper bound on the
cardinality of such sets unless p is algebraic there will be some constraint if p is limited. If
X is a p-equitype set, say that X is weakly independent if for any distinct a,a' in X one
has tp(a-a')=p (cf. [Gareoa; Defn5], also [Mrt75; p 331]). In particular direct-sum
independence implies weak independence (by 4.51), but there is one more component to weak
independence, and I examine this next. Perhaps I should point out that this notion is not
comparable with the model-theoretic notion of independence (see §5.1); the "weak" refers to
comparison with ds-independence.

If there is an upper bound, necessarily finite (exercise!), on the cardinality of weakly
independent sets of realisations of p in models of T, then set wkdim(p,T)=k. Otherwise set
wkdim(p,T)=oo. For NEZ(T) define wkdim(p,N) (finite or an infinite cardinal)
similarly, restricting the realisations to N. We examine this weak dimension now. When
considering those types p with wkdim(p,T) finite, the next lemma allows us to restrict
attention to limited types. The lemma is a direct consequence of the definition of unlimited and
4.51.

Lemma 4.52 If pEST(0) is unlimited then wkdim(p, T)=00. o
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The converse, at least for the t.t. case will follow from 4.53.

From now on in this section assume that T is totally transcendental.
Suppose that p is irreducible. Since N(p) is the prime model of its own theory (3.9; so

we are already using the assumption on T) it follows that if po is that type over 0 in the
theory of N(p) with p+ = po + then po is isolated (prime models, where they exist, realise
precisely the isolated types). There is a pp formula ip such that po is equivalent modulo
Th(N(p)) to ip (3.1). Since po is isolated there are pp formulas pi,..., Wn with
Th(N(p))f- P0 H lp A A -1pt. It is an easy exercise using 4.29 (see 9.19) to show that one may
take n=1: say po is isolated by LPA-iW. Note that W is the unique maximal pp formula below
ip in N(p). Suppose now that p is T-limited so, by 4.46, po is Th(N(p))-limited; hence,
by 4.41, Iip(N(p))/W(N(p))I is finite. The next result shows that this value equals
wkdim(p,N(p)) and that this integer is actually an invariant of N(p).

Proposition 4.53 [Pr81; 5.10] Suppose that N=N(p) is an indecomposable
totally transcendental module. Let LPA-lW isolate p (in Th(N)) with ip,.p pp and
with ip equivalent to p+ (in Th(N)). Let DN be the division ring
EndN/J(Endh(). Then ip(N)/W(N) has the structure of a 1-dimensional vectorspace
over DN and wkdim(p,N(p)) = p(N)/W(N) = ID,II = d,y (say).

Proof If a and a' realise p in A/ then a-a' realises p+, so satisfies ip. Therefore,
since W is the unique maximal pp-definable subgroup below ip, one has pp(a-a')* p+ iff
W(a-a') holds, and this is so iff o and a' lie in the same coset of W(N). Therefore
wkdim(p,N)=[lp(N):W(N)].

If a realises p in Al then, by 2.8, p+(N)=S0 where S=EndN. So define a left S-
linear map e:S-) (ip(N)/W(N)) by ef=fa+W(N). Then fEkere iff f5 E W(N), iff
pp(fa)> p, and this happens (by 4.27) iff fEJS. Thus (by 2.8, a is onto), ip(N)/W(N) is
isomorphic to S/JS under the left action of S, so carries the induced structure of a 1-
dimensional D,y-space. So the result follows. o

Corollary 4.54 Suppose that N_N(p)-N(q) is indecomposable and totally
transcendental. Then wkdim(p,N)=wkdim(q,N)=d/. o
Corollary 4.55 Suppose that N is an indecomposable totally transcendental
module and let ip,W be pp formulas with ip(N)> W(N) and T/V an At-minimal
pair. Then [i.p(N):W(N)]=d#.

Proof Choose any a E Lp(N)\W(N) and let ip' generate the pp-type of a. By modularity of
the lattice of pp-definable subgroups (2.2) it follows that (ipAip'=lp' )/ pAlp' is an N-minimal
pair and so, by 4.29, lpALp'/WALp' isolates the type of a. By 4.53 it follows that
[(ipAip')(N)/(WAip')(N)]=d,y. Since, using the fact that t/W is a minimal pair, one has the
isomorphism of groups ip/W (ipAtp')/(WAip'), the result follows. a

Corollary 4.56 Suppose that N is an indecomposable totally transcendental
module and let p be a (pp-)type with Then:
dN=min(Inv(N,ip,W) : Inv(N,ip,W)>1)

=min(Inv(N,ip,W): ip/WEp).
Proof This is immediate by 4.53 and 4.55. a

Corollary 4.57 If N is an indecomposable totally transcendental module and if
ip(N) is any minimal pp-definable subgroup of N then Iip(N)I=d,y. o
Although not obvious from the definition, it follows from 4.53 that the cardinal dy is

independent not just of the particular type but also of the number of free variables. In
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particular, in 4.56 one may take ip and ip to have n(Ew) free variables and still obtain the
same minimal index of pp-definable subgroups.

These results will be generalised in 9.6.

Example 5 Consider: (i) R=71, N=71poo; (ii) R=71, N=71pn; (iii) R=K[X,Y]/(X,Y)2
(K a field), N=R. Then 4.56 shows that the uniformity, in each example, of minimal non-zero
indices of pairs of pp-definable subgroups is no accident.

Consider also (iv) R=71, N=71(p). Although this is not t.t., it is clear that the proof of
4.56 works for this example. In fact one has the following.

Exercise 4 Suppose that H is an indecomposable pure-injective such that every pp-type
realised in H is finitely generated modulo Th(N) (Piron's example 7.2/6 shows that even a
superstable indecomposable pure-injective may fail to satisfy this condition). Then the above
analysis and (marginally modified) conclusions go through by the same arguments. Observe that
if T=Th(71(p)) then each NEV(T) satisfies this condition.

The next result is essentially [Gar80a; Lemmal9] (see also various arguments towards the
end of [Gar80]). It says that the action of each element of the division ring associated to an
indecomposable t.t. module is (pp-)definable (also cf. §9.2).

Theorem 4.58 Let N be an indecomposable totally transcendental module. Let a
be a non-zero element of N; let p> p be pp formulas such that LP Anyi isolates the
type, p, of a in the theory of N. Then, using a as a parameter, each element of
the division ring D,y is interpretable in N.

Proof Let fEAut(N) and set b=fa. By 4.11, there is a pp formula e(u,w) with
8(a,b)A-18(a,0): it may be assumed (replace 6(u, u/) by e(v,w)Alp(v)Atp(w) if
necessary) that 3w8(v,w) is equivalent to ip(v) and that 3ve(v,w) is equivalent to ip(w).

I claim that the relation e(c, d) induces, by c+ip(N) -d + ,(N), the isomorphism
f+J(S) from the factor group ip(H)/4,(N) to itself. For, by choice of e, if e(c,d) holds
then so does Lp(d). Also, if 8(c, d) holds and d is in u,(H) then so is c: for otherwise, since
c realises p, there is d' realising p and with e(c,d'). Then we have 6(0, d'-d). Now
d'-d satisfies SPA n,: that is, satisfies p. But then, since b and d'-d have the same type,
we obtain e(o,b) - contradiction. This argument shows (by symmetry) both that we have a
well-defined map from ip(H)/ p(H) to itself and that this map is monic. Since it has the same
action, modulo J(S), as does f, it must equal f modulo J(S), as required. o

The essential content of the result above is set in a more general context in §9.2. We obtain
the following corollary, which will be used in §16.1.

Corollary 4.59 [Garao; Lemma9] Suppose that R is a commutative ring and that
H is an indecomposable totally transcendental module. Then the minimal non-zero
pp-definable subgroups of H are all isomorphic as R-modules.

Proof Let ip(H) and ip'(H) be distinct minimal non-zero pp-definable subgroups of H.
Take non-zero elements a in ip(H) and b in Let e(v,w) be a pp formula linking a
and b and chosen as in the proof above. Essentially by that argument (exercise or see 9.7), e

induces a group isomorphism from ip(H) to ip'(H). Since every element, r, of R is central,
one has that e(c,d) implies 6(cr,dr); so this map is an R-isomorphism. o

Now I want to show that if N is T-limited (T t.t.) and indecomposable then H occurs
exactly wkdim(p,T)/d,y times in the direct sum decomposition of any model, where p is any
type such that N_N(p). The only point which prohibits the conclusion being immediate from
4.52 and 4.53 is the possibility that there are non-isomorphic indecomposables H,H' E Z(T)
and pp formulas ip, i4 such that tp/ip is a minimal pair for T and such that ip(H) > p(H) and
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tp(//')> We will see later (9.3) that indecomposable pure-injectives sharing a minimal
pair must be isomorphic. I n the U. case one may proceed directly.

For any pure-injective module M (t.t. or not) and any indecomposable pure-injective N,
define the multiplicity of N in M, to be the number of copies of N which occur in a direct
sum decomposition, in the sense of 4.A14, of M (by 4.A7, this is well-defined).

Proposition 4.60 [Pr81; 5.14] Suppose that T is totally transcendental and let
pEST(o) be irreducible and T-limited (so isolated). Then the multiplicity of N(p)
in any model of T is n(p)=wkdim(p,T)/dN. Moreover
n(p)=lnv(T,tp,ip)/Inv(N(p),tp,tp) where tp/tp is a T-minimal pair such that
tp(N(p)) > ip(N(p)).

Proof Take tpAftp isolating p in T (4.44 and proof of 4.55). Note that by 4.53
dN=wkdim(p,N(p))=Inv(N(p),tp, tp). Moreover, by 4.44, Inv(T,tp,tp) is finite.

Let M be a model of T and set M=N(p)(K) ® N' where N' contains no copy of N(p).
Then Inv(M,tp,tp)=lnv(N(p)(K),tp,ip)xInv(N',tp,ip): this equals Inv(N(p),tp,tp)K since
tpArtp isolates p (and K is finite); this in turn is d,yK. Thus, Inv(T,tp,tp)=d/1K where
K=77(p) is the number of appearances of N(p) in the decomposition of any model (being
independent of choice of M), as required. o

Now we have enough to give a complete description of all possible models of a U. theory in
terms of their direct-sum decompositions. Let T be U. and, as before, let Z(T) contain
exactly one copy of each indecomposable direct summand of the monster model.

Let M be any model of T. By 3.14, M has a decomposition in an essentially unique way as
a direct sum of indecomposable submodules: say M- ®(N(8N) : NEZ(T)) for suitable
cardinals s//. Following a suggestion of Simmons, I present the restrictions on the number of
times each indecomposable can occur as restrictions on the decomposition function of M:
the map s/y:Z(T)--Card (the class of all cardinals) given by sM(N)=sN as above - the
multiplicity of N in M.

Conversely, any function s:Z(T)-->Card determines a module
M,= ® { 41(6N) : //E Z(T)). So the question of describing all the models of T may be phrased
as: for which "decomposition functions", s, is Ms a model of T? By sMp I will mean
SM(N(p)).

Among those irreducible types whose hulls appear in the decomposition of some model of T
we should first distinguish between those which are isolated (those whose hulls must appear in
every model) and those which are non-isolated. Since T is t.t., it follows easily that if p is
isolated and irreducible and if q- p then q is isolated.

Within the isolated case there are essentially three possibilities, described in the next
result.

Proposition 4.61 Suppose that T is totally transcendental. Let pEST(O) be
irreducible and isolated - say by tpA-iip with tp, W pp (cf. before 4.53). Then
exactly one of the following possibilities obtains.
(a) p is T-unlimited: this occurs iff Inv(T,tp,tp)=oo. In this case either:

(i) N(p)=_N(p)'o
prime model

and then for any model,
Mo of T, sMp=1; or

M, of T, s1p>,1, and in the

(ii)
prime model

and then for any model,
Mo of T, Shop=?2,.

M, of T, sop>'ri and in the

Case (i) occurs iff lnv(N(p),tp, tp) is infinite.
(b) p is T-limited: this occurs if Inv(T,tp,tp) is finite and then for any model,

M, of T, shop=n(p) (as in 4.60).
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Proof This now follows directly from 4.42, 4.60 and the fact that the module
Mo= ® (N(K) : for some isolated irreducible q(ST(o), and K=1 in case (a)(i),
K=)k, in case (a)(ii) and K=n(q) in case (b)) is the prime model of T.

To see this, let M be any model of T and let q be irreducible and isolated by I.pn,L4 say.
By 3.14 and 4.60 M=N(q)(K) ® N' for some N' containing no realisation of q and hence
with Inv(N',ip, )4,)=1. It should be clear that K is restricted as described in the proposition
(consider Inv(-,ip, tp)) and that if M is the prime model then K has the minimal possible
value. Since (3.14) every model is determined by its indecomposable direct summands the only
point which remains to be checked is that Mo really is a model of T (i.e., that realising all
irreducible isolated types ensures that all isolated types are realised). But this is again a
consequence of 3.14: clearly Mo is a direct summand of the prime model, it already has enough
copies of each "isolated" indecomposable pure-injective, and the prime model realises no non-
isolated (irreducible) type. o

Corollary 4.62 [Pr81; 5.15], [Zg84; 9.1] Let T be totally transcendental. Then the
prime model Mo of T is given by the decomposition function so where:
soN=1 if N is isolated (T-unlimited) and N(p)=_N(p)ko (IUI)

=A2, if N is isolated T-unlimited and N(p)*N(p)ko (IUF)
=n(N) if N is (isolated and) limited (IL)
=0 if N is non-isolated (N). o

Since to the prime model may be added any unlimited NEZ(T), the main theorem now
follows.

Theorem 4.63 [Pr8l; 5.15], [Zg84; 9.2] Suppose that T is totally transcendental,
and let Z(T) contain one copy of each indecomposable direct summand of models of
T. Then the models of T are given by those decomposition functions
s:Z(T))Card (by sHMs=(D (N(8N): NEZ(T))) which satisfy the following
conditions (and, by uniqueness of decomposition, 8x8' implies Ms*Ms,):
8N31 if N is isolated (T-unlimited) and N=Nko;

>,'k, if N is isolated, T-unlimited and N$Nko;
=n(N) (finite, determined as in 4.60) if N is limited (isolated and) N$Nko;
30 if N is non-isolated. o

For 1-injective modules, 4.62 and 4.63 are [Pr82; Thm 18]: the consequences for
commutative noetherian rings and for general noetherian rings are spelled out after that
theorem.

Corollary 4.64 [Gar80; Thm 6] (see §3.2) Let T be an w-stable theory of modules.
Then the number of countable models of T is either 1, 'ri, or 2k&. o
Thus Vaught's Conjecture for w-stable modules follows directly from the structure theorem

(it is known to hold for any w-stable theory [HMS84], also see [BoLa83], but that is a much
deeper result!). Vaught's Conjecture is that, for any countable theory T, the number
of non-isomorphic models of T of cardinality 'ik, is either countable or 2ko. The conjecture
is important for us (for its general significance, see [Las85a]) in that one expects that, in
order to be able to settle it for a particular class of theories, one will likely have to develop a
reasonable structure theory for the models. Here I have followed this course, but it was pointed
out in §3.2 that a direct proof due to Garavaglia [GarBo; Thm 6] may be given, using uniqueness
of decomposition (3.14) prime and universal models, and some idea of unlimited type. In
another case (§7.2) we will have a decent structure theory for the models which, nevertheless,
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is not fine enough for Vaught's Conjecture (in that case, Vaught's Conjecture was proved by
Buechler working from a much more general standpoint).

Notice also that 4.64 gives that the number of countable models, if finite, is 1. In fact this
is true for arbitrary theories of modules ((6.32) and beyond this see [Pi848]).

Exercise 5 Describe the possible uncountable spectrum functions (, H n(X,T) for -A > i,)
for w-stable theories of modules. Give an example for each case and show that your list of
possibilities is exhaustive (cf. §7.1). Note that even if T is uncountable and t.t., all that is
needed to count the number of models in a given infinite cardinality is the function NHI,V for
NEZ(T).
Exercise 6 Theories of abelian groups illustrate various cases in 4.63.
(i) T=Th(Q). Here only the case (IUI) occurs, and the models are Q(K) K-> I.
(ii) Here only the case (IUF) occurs and the models are 22 (K) K>'Tk,.
(iii) T=Th(712n). The only case ocurring is (IL) and the only model is 2Z 277.

(iv) T=Th(712(' o) (D Q). The cases which occur are (IUI) and (IUF), and the models are
7L2(K) e (Q(;) where K)'tr, and ) 1.

Adding on, say, one copy of 713, one also has the case (IL).
(v) T=Th(712oo('a)). Here one has the cases (IUF) and (N), the models being 2200 (K)

with K>_'lk. and -A->o.
A copy of 7l3 added on also gives (IL).

(vi) T=Th(712oo). Here one has (IL) and (N). The models are 712ooe Q W with K>0.
Observe that since there is only one indecomposable pure-injective 71-module, At, with

N=4'1ka (namely Q), and since O is the only possibility for a non-isolated
indecomposable in a U. theory of 71-modules, one must look over other rings to combine
(IUI) and N.

(vii) R=71x71. Set e,=(1,0) and e2=(0,1) in R and let T=Th(e1Q (D e2712o0). Then one has
the cases (IUI), (IL) and (N), and the models are (e1Q))(K) e (e2712o0) (e2Q)(' where
K_>1 and 'A30.

For (t.t.) examples with infinitely many non-isolated indecomposables take, for
example, the theory of a large enough injective module over K[X,Y] (K a field) - the
non-maximal primes give non-isolated injectives. Alternatively, take the theory of the
pre-injective modules over the path algebra of an extended Dynkin quiver over an infinite
field (see [Len83], [Pr85a]; cf. §13.3).

From the classification theorem 4.63 various consequences concerning categoricity,
saturation, as well as effective listings of theories, are immediate. Note that the dimension of
T, j(T) (see §6.4), is just the cardinality of the subset of Z(T): Z.(T) _ {A/ EZ(T) : N
falls into one of the classes (IUI), (IUF) or (N)). For any complete theory of modules T, we
will define Z*(T) = (A/EZ(T) : N is T-unlimited) = Z(Tu).

Corollary 4.65 Suppose that T is totally transcendental and let K->ITI. Then the
K-saturated model of T of cardinality K is given by sN=K in all cases except
(IL), where SN=n(N), a
The saturated abelian groups (not just the t.t. ones) are described in [EF72; §3].
Many of the ideas and results of this section (which is based on [Pr81; §5]) are seen in

more general contexts in later chapters (9 and 10) of these notes based on [Zg84] (which was
independent of [Pr81]). A number of the key ideas may be found more or less explicitly in
[Gar8Oa].
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4.C Categoricity

Let T be a countable theory: T is said to be )t,-categorical if there is, up to
isomorphism, only one countable model of T; T is AL,-categorical if there is, up to
isomorphism, only one model of T of cardinality 'rA, equivalently ([Mor65]), if for any
uncountable cardinal -A there is just one model of T of cardinality 'a; T is totally
categorical is T is both 'A.-categorical and IR, -categorical.

A countable complete theory is A.-categorical iff, for each nE w, there are only finitely
many n-types over 0 and this is so iff, for each nEw, there are, up to logical equivalence,
only finitely many formulas in the free variables u1,..., vn ("Ryll-Nardzewski Theorem" - see
[P0185; 10.11]).

If the complete theory T is Ai,-categorical then T is totally transcendental ([Mor65]):
indeed, the notion of a t.t. theory and the associated (Morley) rank was introduced by Morley
when he proved the equivalence mentioned in the definition of Ai,-categoricity.

Until further notice, R is a countable ring. What follows is rather immediate from 4.63
and is also spelled out by Ziegler [Zg84; 10.6].

At,-categoricity Suppose that T is 'k,-categorical. Since S1T(0) is finite, it follows that T
is totally transcendental (3.1) and of finite Morley rank (5.13 and 5.18). (It is an open question
whether, in general, a stable k.-categorical theory is totally transcendental.) Also, since
S1T(0) is finite, Z(T) is finite: say Z(T) = {N1,..., Nk). Let Mo be the prime model of T.

Referring back to the notation introduced in 4.62 in connection with the description of the
models of an arbitrary t.t. theory, we may ask what kinds of indecomposable summand can occur.
(i) There can be no non-isolated point N of r(T) (type (N)). For otherwise, we have Mo

Mo®hl both countable models, but non-isomorphic (by 4.A14 and 4.63), so
contradicting A. -categoricity. So r(T) carries the discrete topology. (Alternatively,
since the Morley rank is finite, each irreducible type has a minimal pair, so its hull is
isolated in Z(T) by 9.23.)

(ii) There is no indecomposable N which satisfies N=NAo (type (IUI)). For again one
would have two non-isomorphic countable models: Mo and Mo eNxo.

NO So Z(T)= {M ,..., )Vt, Nt+1,..., Ilk ) where each Ni ict) occurs a fixed, finite
number of times, ici, in every model and each of Nt+1, Nk occurs at least ', times
in the decomposition of every model.

(iv) Since each member N of Z(T) satisfies NSN'A-, by 4.55, each minimal index (>1) of
one pp-definable subgroup in another is finite. But k.-categoricity implies that there are
only finitely many inequivalent formulas (in particular, only finitely many pp-definable
subgroups). Hence each NEZ(T) is a finite module.

(v) Therefore, each model of T has the form M = N' e Nt+,Kt++ ® ... ® NkKk, where N' is a
finite module, each Ki is infinite and each N1 is a finite indecomposable (pure-
injective) module.

(vi) Conversely, any module of the above form is Ago-categorical (exercise).
(vii) It may as well be assumed that R is a finite ring since, if M is k0-categorical then

R/ann M is finite. For ann M = ann(N' (D Alt +1 (D ... ® Nt) is the annihilator of a finite
module, and a finite module has only finitely many endomorphisms!

The conclusions (v)-(vii) are due to Baur [Bau75; Lemma2, Thm 2]. Also, see [EF72] for
the abelian groups case.

Exercise 1 Show that an abelian group is 'k,-categorical iff it is of bounded exponent.

Exercise 2 If a module is 'A,-categorical, need its injective hull be 'k,-categorical?
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Example 1 The following are non-IR.-categorical, so not all types in finitely many variables
are isolated but, in the first example, all 1-types over 0 are isolated and, in the second
example, all irreducible 1-types are isolated even though S1(0) is infinite.
(i) T= Th(Q): one has to look at 2-types in order to see that this is not 'A.-categorical.
(ii) T=Th(R) where R is the ring Q[X,Y]/(X,Y)2, considered as a module over itself.

There is just one non-isolated 1-type, and it is reducible (cf. Ex 6.4/3 below).
Exercise 3 [Gareo; §2] In general, for (C,-categoricity, one needs to check finiteness of
SnT(0) for all nEw. For modules, S2T(0) being finite is enough.

Total categoricity The complete theory T is totally categorical iff it satisfies the conditions
above and, furthermore, k=t+1 - that is, if every model has the form N'eNK where N
and N' are finite, N is indecomposable and K,> 'A.. For, if there exist two indecomposables
which can occur infinitely often, then we get non-isomorphic models of cardinality 'J2, of the
form X (D Nk-1(ko) e Nk( +) and X e Nk-1('k,) ®,yk(`A°).

'ti,-categoricity The characterisation of `A,-categorical abelian groups is [Mac70; Thm 2].
As already mentioned T 'A,-categorical implies that T is totally transcendental. As in the
argument above, there can be only one indecomposable with infinite multiplicity in models of T
(and this condition suffices for a t.t theory to be 'R, -categorical).

There can be infinitely many indecomposables (but there can be only one cluster point in
Z(T)). Consider, for example, the theory of ® (2poo : p prime): the typical model just adds
K(>0) copies of Q.

Uncountable rings If R is uncountable then the situation regarding categoricity changes.
For example, let R be the ring of p-adic integers, 7l(p) and consider this a module over

itself. This is not IRJ= 2'Ao-categorical, since R and R e Q are elementarily equivalent as R-
modules (where Q is the field of quotients of 7l(p)). But it is a-categorical for all -A >

If R is arbitrary and T is )-categorical for some -A> iTJ1TJ (note that T has a discrete
pure-injective model of cardinality >IRIIRI (6.31)) then T is "unidimensional" in the sense
that there is just one unlimited indecomposable pure-injective and there are no continuous
pure-injectives. So, by 7.9, T is superstable (the above example shows that T need not be
t.t. ).

It would be appropriate at this point to mention the paper [BCM79], which has given rise
to a great deal of further work, since the authors do use (and, in an appendix, extend) Baur's
results from [Bau75]. The main results of [BCM79] are: any 'A,-categorical stable group is
nilpotent by finite; any !C,-categorical t.t. group is abelian by finite and, this uses the work on
modules, they give a complete description of the totally categorical groups [BCM79; Thm 641.

Exercise 4 In [Kre82], [Kre84] Kremer considers a notion (introduced by Belegradek) -
"almost categoricity" - for modules. It is shown in [Kre82] (see [Kre84; Fact4]) that a
module M is almost categorical iff Z(M) is finite and if every point in it is isolated, with an
isolating neighbourhood of the form (ip(v)/v=0) (i.e., every indecomposable realises a
Th(M)-critical type). It follows by 6.28 below that M is totally transcendental of finite
Morley rank (this uses only the fact that Z(M) contains no non-isolated points). Kremer shows
the following [Kre84; Thm 1, Thm 2,Thm 31:
(i) Every module is almost categorical iff R is semisimple artinian.
(ii) Every injective module is almost categorical iff R is right artinian.
(iii) Every projective module is almost categorical iff R is left artinian (actually, [Kre84;
Thm 3] says "iff R is right perfect and left coherent", but finite Morley rank of the theory of
projective modules forces R to be left artinian (cf. [Pr84; 3.18]): note, re. Kremer's proof,
that eiRe,jm0 need not imply e1R=e,jR).
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4.7 The space of indecomposabies
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In [Zg84] Ziegler provided a topology on the set, Z(T), of isomorphism types of non-zero
indecomposable pure-injective direct summands of models of T, under which the components of
T "are" precisely the closed sets. (This ties in with [Pr80e], where the author had suggested
that the "components" (in the sense of §2.6) of a theory T (complete and closed under products)
should be regarded as localisations of that theory.) Moreover the order proposed in §2.6 (cf. also
[Gar?9; §1]) on theories closed under products is just inclusion of the corresponding closed
sets (so this poset is the dual of a complete Heyting algebra). This indicates that the subject of
this section may reasonably be said to be the "spectrum" of the theory of R-modules (I haven't
explored the connection with the topos-theoretic notion).

So, from now, Z(T) may be either of two things: simply the set of (isomorphism classes
of) indecomposable pure-injective direct summands of models of T; or this set equipped with
the topology ([Zg84]) generated by open sets of the form (gyp/gyp)=(NEZ(T) : Inv(#,i.p,ip)>1)
where ip, ip are pp formulas in one free variable (and we may suppose that ip implies ip in all
modules). This actually gives a basis for the topology (4.66).

Herzog has pointed out [Her87] that this topology is simply that induced from the relative
topology on the irreducible 1-types. Let X be the subset of S, T(0) consisting of all the
irreducible types, equipped with the relative topology. Now identify two points of X if they
have isomorphic hulls: the result, equipped with the quotient topology, is precisely Z(T).

Throughout this section, unless specified otherwise. all theories considered are assumed to
be closed under products (so for example, in referring to a point hl of Z(T), I have in mind
Th(N o) rather than Th(M), if these are different). This exclusion of theories T not
satisfying T=T a and the concentration on indecomposables is justified by 4.39, 4.40 and by
4.36 (and, a posteriori, by the analyses in Sections 4.6 and 10.4).

Let us first note the basic properties of this space.

Theorem 4.66 [Zg84; 4.9] Let T be any complete theory of modules. The sets
(ip/ip) form a basis for a topology on Z(T). With this topology, Z(T) and in fact
every basic open set, is a compact space (but not even To in general). If pEST(0)
is irreducible then a neighbourhood basis for N(p) is given by ((ip/ip) : Lp/ipE p).

Proof The last statement is proved first: from this will follow the first assertion So let
pEST(0) be irreducible, and suppose that N - N(p) lies in the intersection of (ipi/ip1) and
(ip2/ip2). It must be shown that there is Lp/y, E p with (ip/.p) _- (ipi/tpi)n(1p2/l4,2).

Let a realise p in N=//(a). By assumption, there are ai,a2 in N with
ipi(ai)A-1Wi(ai) (i=1,2). Since ppW(ai/a)itp/(ai/a) (by 4.17) there exists
ei E ppN(ai/a) such that ei(w,a) proves ipi(w)A-11Vi(w) (modulo T) (i=1,2). So the
formulas 3w(ei(w,v)Atpi(w)) and i3w(ei(w,v)A1pi(W)) are formulas in p(v).

Set ip'(v) to be 3w (61(w,v)AI.p,(w)) A 3w (62(w,v)Aip2(w)) - a formula in p.
Also, since p is irreducible, 4.29 gives that there is ipE p which (replace it by ipAip') may
be taken with ipStp' such that the formula ip(v), being
[lp(v) A 3w(61(w,v)Akpl(w))]+[i.p(v) A 3w(62(w,v)AlP2(w))], is in p-.

Thus (ip/ip) E p and hence NE(ip/ip). It must be checked that (ip/y,) is contained in

(ip,/tpi)n(ip2/tp2).
So suppose that N'E(Lp/ p) - say b E ip(N')\tp(N') - and let iE(1, 2). Since ip(b)

holds, certainly 3w (ei(w,b) AIpi(w)) holds. This formula, being pp, is satisfied in N'
which is pure in the monster model of T, so take cEN' with ei(c,b)ALpi(c). It will be
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enough to show that -nvi(c) holds. For then one will have Inv(At',tpi,wi)>1 - that is,
N'E(ipi/ipi).

Since one has -iy,(b), one concludes i(tp(b) A 3w (ei(w,b)Awi(w))). Together with
ip(b) this gives ,3w (ei(w,b)Awi(w)). Since one already has ei(c,b) the conclusion
iti(c) follows - as required.

The proof of the result is completed by showing that each basic open set (tp/y,) is compact
(see §1o.V for examples showing that this space is not even To). Notice that Z(T) is the
special case (v=u/v=0).

Therefore let {(Ti/Wi) : iEl) be a cover of (ip/y,) in Z(T) (we're already using what
has been shown above). Suppose that there is no finite sub-cover. Then the set
{3U (Lp(U)Alyl(U))) U (VU(lpi(U)-,yli(U)) : i.El) u "T1,<T" is consistent (exercise) where
"TEST" is the set of sentences Inv(-,ip',y,')S lnv(T,cp',y,') for those .', ip' with
Inv(T,ip',ip') finite.

Let M be a saturated model of the above set of sentences. By 2.9 and 2.30, M E 2'(T) and
hence Z(Th(M)) Z(T) as topological spaces (another exercise in the definition of the
topology). By 4.35, there is an irreducible type p (for Th(M)) with ip/y, E p. By
construction, one has (for N(p) a direct summand of M) Inv(N(p),'.p1,Wi)=1 for all iEl.
Since the topology on Z(Th(M)) is just the relative one, we have N(p) in (t.p/y,) but not in
any (tpi/xpi) - contradiction, as required. o

There is a very satisfying and useful description of the closed sets in this topology.

Theorem 4.67 [Zg84; 4.10] Suppose that T=T'&. Then the map T1f--* Z(T1) is
an order-preserving bijection from the poset ( T,: T1=T1'& and T1<T) of
component theories (closed under product) of T to the set of closed subsets of
Z(T), ordered by inclusion.

Proof Observe first that Z(T1) is a closed subset of Z(T). For N lies in Z(T)\W,) iff
there are ip, tp with Inv(N,ip,y,)> Inv(T,,Lp,y,) (by 2.30) and this is so iff there are ip, y,
with Inv(N,ip,y,)>1 and Inv(T1,tp,y,)=1 (since T,=T1 o), that is, iff there is a (basic)
open neighbourhood of N not intersecting Z(T1).

Suppose, conversely, that S is a closed subset of 1M. Let M = ®( N('t'L&) : N E S ). Set
T1 to be the theory of M: so T,<T and T,=T,R°. It will be shown that Z(Ti)=S: the
inclusion Sc_Z(T1) is by construction. Therefore let N'EZ(T1) and take (Lp/y,) to be any
basic open neighbourhood of N' - so Inv(N',ip,ip)>l. Since M=M (D N' (clearly!), it must be
that Inv(M,i.p,tp)>1 and hence, for some NES, Inv(A/,ip,W)>1. Thus every open
neighbourhood of N' intersects S. Since S is closed it follows that N'ES, as required.

Finally note that if T2<T1(ST) then Z(T2)=_z(T1). Furthermore, T,=T2 iff
Z(T1)=z(T2). One direction is trivial. In the other direction, if fT1)=z(T2) then, by
4.36, one has M'= ®(N('-) : N E Z(T1)=Z(T2)) is a common model of T, and T2; so
T1=T2. a

It follows that the poset of complete theories closed under product (introduced in §2.6) is the
dual of a complete Heyting algebra, since the closed sets of any topology form such a structure.

It will be seen from Ex2 below that, when applied to primes over a commutative noetherian
ring, the topology is almost the "opposite" of the Zariski topology (Zariski open sets are closed
in VT)). On the other hand, this topology does exactly generalise that Pierce spectrum (Ex3).
The peculiar relation to the Zariski topology is actually seen in the algebraic theory of non-
commutative localisation (see [Gola0]) and corresponds to a distinction which has to be made
between primes and localisations. Also, comparison with this algebraic theory suggests that one
should be prepared to forget the points of 12(T) for some purposes and work instead on the level
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of frame morphisms (consider the relation from ZS to ZR induced by a ring morphism from
R to S), see [Si81], [Si84].
Exercise 1

(i) Show that Z(M1 ®M2) = Z(MI) U Z(M2).
(ii) A closed set is irreducible if it cannot be expressed as the union of two closed proper

subsets. Deduce that Z(M) is irreducible iff, whenever M=M, ®M2 one has either
M=-Ml or M=M2 (this is a weak version of Garavaglia's "T-indecomposability in §2.6).

Example 1 Take R=71. Then, as a set, ZZ is the union of the sets (after 2.7111): (71pn : p
a prime, n->1); (71poo : p a prime); (7l(p) : p a prime); (IQ). The topology will be
described by giving a neighbourhood basis at each point (and, for convenience, the closure of
each singleton X, denoted X-).
71pn: {71p,); (71pn) =(71pn); so 71pn is isolated.
moo: ( poo)u(71pm : min) for nil; (71poo) =(71oo,Q).
Z(p): {z(p))U{71pm : m>n) for n_>1; {gy(p))

=(7Z(p),Q ).
Q: (lU)u(71poo : p a prime)u(7l(p) : p a prime)u{71p.: n>1, p a prime, pn>m) for
m>-2; (Q) =(Q)u{71poo : p a prime)u{7l(p) : p a prime).

This space is layered by the Cantor-Bendixson analysis (see §5.2): the 71p, are the
isolated points; the PrUfers and p-adics are isolated once those are removed; and this leaves (Q
as the only point of CB-rank 2.

Exercise 2 Describe ZR for: (i) R=K[X]; (ii) R=K[X,X-1]; (iii)
R=K[X,X-1,(1-X)-'], where K is a field, and note the similarity to the case of 71.
Exercise 3 Suppose that T is totally transcendental with Z(T) infinite. Then there is a
non-isolated irreducible 1-type over 0 (cf. [Pr84; 3.10], §9.3, §11.4).
Example 2 Let R be a commutative noetherian ring and let SpecR be the set of prime ideals
of R, endowed with the Zariski topology. A basis of open sets for this topology is given by
the D(I)={Q : Q does not contain I) where I is any ideal of R (P and Q will be used to
denote prime ideals in this example). Given any ideal I, let U(I)={Q : Q contains I ). On

account of the ring being noetherian, this topology has dcc on closed sets and one has the
following characterisation:
typical Zariski closed: 1/(I)=U(P1)u...uU(Pn);
typical Zariski open: D(1)=D(P1)n ... nD(Pn); where the Pi are the minimal primes above
I

How should we try to encompass SpecR? The only natural solution seems to be that taken
in localisation theory (see [LM73], [Go175]), where the prime P is "identified" with
Ep=E(R/P) - the injective hull of an element, 1+P, whose annihilator is exactly P. This
approach does give a module-theoretic interpretation of SpecR which makes sense also in the
non-commutative case (although there is the "direction" of the topology to be explained).

In our terms therefore, it seems that the relevant theory is the largest theory of injective
modules: Tinj=Th(®(Ep(o) : PESpecR)) (which is also the model-completion of the
theory of R-modules - see 15.36). Then the set SpecR has been captured in the form
Z(Tinj)=( Ep : PESpecR). Let us compare the Zariski topology with the topology on the set
SpecR which is induced by that on Z(Tinj)

Consider the open set (vP=0/v=0) (if P is generated as a (right) ideal by rl,..., rn
then "vP=O" may be taken to be the formula A, vri=0). One has EQ E (vP=0/v=0) iff
there is a non-zero element aEEQ with aP=0 - that is, with ann a-> P. But aEEQ implies
that ann a is Q-primary ([Mat58]) and hence that Q> P.

Thus U(P) = (vP = 0 / v=0) is open in Z(Tinj ). Hence (see above) each Zariski-closed
(resp. open) set is open (resp. closed) in Z(Tinj).
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In any but the most trivial case, infinite unions of Zariski-closed sets need not be Zariski-
closed. So to get the topology on Z(Tinj) one must "reverse" the basic sets of the Zariski
topology and then close under the infinite operations. I now justify this remark by showing that
there are no more closed sets in Z(Tinj) beyond infinite intersections of Zariski-open sets.

A typical intersection of Zariski-opens has the form (see above)
s= now-A) : ^ AE A )=(O : Q contains no PX). Since R is noetherian every member of S is
below a maximal member of S and so S has the form {Q : Q,<Qu for some p}....(*) for a
suitable set (Q>a)y, of primes. Conversely and similarly, any set of this form is an intersection
of Zariski-open sets.

It must be shown that every I(Tinj)-closed set has the form (*). By 4.67 the z(Tinj)-
closed sets are "really just" the component theories of Tinj. These have been classified already
in [Pr82], where Example 2 shows that the components of Tinj are indeed just those given by
sets of the form (*).

Observe (exercise) that these correspond exactly to all the possible localisations (given a
set S to be inverted, form (Q : QnS=0) - a typical set of the form (*)). More on injectives
may be found in §6.1.

Example 3 Let R be a commutative (von Neumann) regular ring. The Pierce spectrum
([Pie67]) on SpecR has as basic open sets the Ge=(P ( SpecR : e&P} where e2=e is an
idempotent of R. All such sets are clopen, since 0e has as complement (5,_e. It is easy to
check that this coincides with the Zariski topology on SpecR. Since there is a basis of clopen
sets it should be no surprise (cf. Ex2 above) that this topology turns out to be that on Z(Tinj)

ZR in this case).
Using the fact that T has complete elimination of quantifiers (see 16.16), one deduces

(16.18) that the basic open subsets of Z(Tinj)=ZR have the form (ve=0/v=0) where e is
an idempotent. This clearly defines the open set G1_e in the Pierce topology, so the topologies
do coincide.

Question The definition of the Pierce topology makes sense over any ring. Does this
correspond to r(T) for suitable T? (also, cf. [BV83], [BSV84])
Example 4 it is quite possible to have an indecomposable pure-injective (even t.t.) module N
such that Z(N) is infinite.

Take R = K[X,Y](X y) - the ring of polynomials over the field K in two indeterminates,
localised at the maximal ideal (X,Y). This ring is local, with unique simple module
S= R/(X,Y), so it follows (exercise) that every injective module is a direct summand of a
power of the injective hull, E(S), of S. Hence Z(E(S)) contains the set of all
indecomposable injective modules. But, for each aEK, the injective hull of R/(X+aY) is
indecomposable, and distinct values of a give non-isomorphic injectives (see [Kap70;
Thm 35]).

Given and WE 6)(T), define the subset u(N)={IV'EZ(T) : N' is a direct
summand of N) of L(T). Note that this may be stricly smaller than Z(N), which, if hl is
discrete, is the closure of 2((4) in f(T). It will be convenient in what follows to restrict
attention to discrete pure-injectives (or at least to those elementarily equivalent to their
discrete parts): let 6)d(T) denote the collection of such pure-injectives.

Problem Are there other topologies on the set of indecomposable pure-injectives which are
useful? (say, which are more similar to the Zariski topology, or which allow some sort of sheaf
representation).

Lemma 4.68 [Zg84; 4.11] Let T=T o and suppose that NEtPd(T). Then 2Z(4)
is dense in Z(T) i f f No is a model of T.
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Proof Let tp, y, be pp such that Inv(T,ip,ip)>1. By assumption, there is
N' E V(N)n(ip/W); hence Inv(N,ip,yj)>1 since Inv(N',ip, ip)>1. Thus
Inv(N -,ip,V)=oo=Inv(T,i.p,yV). Therefore Th(N'&)>,T. The other inequality is immediate
since NEb'(T).

Let (ip/W) be a non-empty basic open subset of Z(T). From Inv(T,tp,v)>1 one has
Inv(N a,i.p,ip)>1 and hence Inv(N,Lp,y,)>1. Now we use that N is discrete to conclude from
2.23 and 2.27 that there is N'E2((//) with Inv(N',ip,tp)>1 - that is, with N'E(tp/ .p), as

required. o

Example 5 [Bou79; 11.2.2] Let R be commutative regular and let T* be the largest theory
of R-modules. A module M = ® ( (R/1)(KI) : I E X SpecR) which is a direct sum of simples
is a model of T* iff M=M"'t- and X is dense in SpecR.

Corollary 4.69 If T=T o has continuous part zero (see after 4.A14) and if
NEb'(T) then Nom- is a model of T iff 2((N) is dense in Z(T). o
I will now use the topological space Z(T) to give a rather abstract generalisation of the

results of §4.6. More concrete and detailed results will be presented in §10.4. The remainder of
this section is taken from [Pre2a].

First define the equivalence relation ' " on I(T) by: NON' if N'E{N}- and NE{N')-
- that is, if each point is in the closure of the other, so that they are topologically
indistinguishable. Clearly Mc I' iff N and N' belong to precisely the same (basic) open
sets, hence iff {N)-=We will work in the factor space Z(T)/;U where these
topologically indistinguishable points have been identified. The next lemma says what this
means in terms of pp formulas.

Lemma 4.70 Let N, N' E Z(T).
(a) WE {A(')- iff for all 1p, W one has that Inv(N,ip,yi)>1 implies

Inv(N',ip,y,)>1.
(b) NON' iff for all &p, tp one has Inv(N,tp,W)>1 exactly when Inv(N',ip,tp)>1,

and this occurs iff N a=(//')' . o
It follows that if N#N' then, whenever copies of N appear in the decomposition of a

model of T=Tao, they may all be replaced by a suitable number of copies of N' to yield a
model. For purposes of classifying models, therefore, there can be no real distinction between
such indecomposables (the only point to be watched is that if d,y (see 9.6) is not equal (mod oo)
to dN' (can this happen?) then there will be limitations on such replacements). So, for some
purposes, we may as well identify such points and work in the corresponding quotient space
Z(T)/pi. By 4.70 the topology (on the level of open sets) is the same, and is now at least To
(namely, given any two points, there is an open set containing just one of them). For
convenience I will identify each WE IM with its image N/c in Z(T)/' when no confusion
should arise.

It was found in §4.6 that for a U. theory T satisfying T=T'& the indecomposables of
Z(T) fall into two classes: those which must appear in every model (i.e., those realising an
isolated type) and those which need not. Here I attempt to make the same division insofaras this
is possible. The connection with notions of isolation and the generalisation of the more precise
results of §4.6, I leave until §9.1 and §10.4.

Say that NEtP(T) is ommissible if whenever MEZPd(T) is such that 21(M(D N) is
dense in 2(T) then J(M) already is dense (cf. 4.68). Thus N is omissible iff whenever
M ®N(K) is a discrete model of T then so is M. Examples are ig when T =Th(7lpoo o) and
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also when T=Th(72(p)ko). The question of describing the omissible indecomposables is largely
answered in §10.4. Here I just note the topological description.

Lemma 4.71 Suppose that T=Tko and let NEZ(T). Then N is omissible iff
(N)- is not a neighbourhood of N (i.e., does not contain an open set).

Proof 4= Suppose that M E 2'd(T) is such that U(M (DN) is dense in Z(T). To establish that
Al is omissible it is enough to show that NE 2((M)-.

So suppose that NE(ip/y,): by hypothesis there is N'E (ip/y,)\{N}-. Since N' is not in
the closure of (N} there is (1p'/y,') containing Al' but not N. Thus Al' E (ip/y,)n(ip'/V') -
in particular this set is non-empty - and N J (1p/y,)n(ip'/y,'). Since 'U(M (DN) is supposed to
be dense, there is N" in the intersection of this set with (ip/ p)n(Lp'/V'). It cannot be that

N" E (Lp/V)n2l(M) - which in non-empty, as required.
Suppose that (N)- is a neighbourhood of N: say N E (T/ V) _ {N}-. Let

M'_ ®( N'( : N'EZ(T), N' ( (ip/y,)). Then, by construction, 2l(M') (a closed set) is not
dense in Z(T). On the other hand U(M' ®N) clearly is dense in Z(T). So N is not
omissible. o

Lemma 4.72 Suppose that T=Tko and let NEZ(T). If N/pj is isolated in the
space Z(T)/sy then, in the decomposition of every discrete pure-injective model of
T, there occurs some Al' which is s'-equivalent to Al.

Proof The hypothesis implies that there is some (ip/y,) with (ip/y,)=(N' : Np4N). So if N1
is not -equivalent to N then Since Inv(T,ip,y,)>1 the result is clear. o

I finish this section with a characterisation of when prime and minimal models exist for the
category of discrete pure-injective models. If C is a category of models with elementary
embeddings then NEC is prime for C if it embeds in every object of C, and M' is minimal
for C if it has no proper subobjects.

Theorem 4.73 [Pr82a; 1.26] Suppose that T=Tko. Then:
(a) T has a prime discrete pure-injective model if f

(i) whenever N/;u is isolated and N'saA then N'-N, and
(ii) the isolated points of Z(T) are dense;

(b) T has a minimal discrete pure-injective model iff Z(T)/s= is the closure of a
discrete (with the relative topology) subset S such that each point of S
contains some NEZ(T) with NeNk-;

(c) T has a model which is both prime and minimal in the category of discrete
pure-injective models i f f
(i) whenever N/ is isolated and N'=y# then and
(ii) the isolated points of Z(T) are dense, and
(iii) if NEZ(T) is isolated then N=Nko.

Proof (a) If the conditions are satisfied then let M be the pure-injective hull of
®{N(K(N)) : NEZ(T) is isolated, K(N)=1 if N=Nko, K(#)= X. if N$Nko ). It is
claimed that M is the prime discrete pure-injective model of T.

Certainly M is a model of T: for given ip<,p with lnv(T,ip,y,)>1 there is (by (ii)) some
isolated NE(ip/ p). So, by construction, Inv(M,ip,W)=oo.

Furthermore, by 4.72, every discrete pure-injective model must contain at least one copy
of each indecomposable direct summand of M. So to show that M embeds in every such model it
remains to show that if N$Nko is isolated then at least '* copies of Al occur in the
decomposition of every model.
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Since N is isolated there are ip, W such that Inv(N,ip,tp)>1 but, for any N'Ej(T),
H' N implies Inv(N',Lp,tp)=1. So clearly the result follows.

As for the converse: suppose condition (ii) fails. Then if M were a prime discrete pure-
injective model one would have (4.68) 2((M) dense in z(T). So there would be some non-
isolated point, N, in 2l(M). Set M.=ED {NP&&): N1Ez(T), N1*U). Since N is not
isolated it is in the closure of 2((N and hence U(Ml) is dense - so M, is a model of T. But
Mi does not contain a copy of N and so M cannot embed elementarily (hence as a direct
summand) in Mi: therefore M is not prime - contradiction as required.

If, on the other hand, condition (ii) holds but condition (i) does not, and if M purports to be
a prime model, then choose points N, N' in z(T) which are ps-equivalent, non-isomorphic,
with isolated image in z(T)/cs and such that N occurs in M (since 21(M) is dense in z(T)
there are such points). Replace the copies of N in the decomposition of M by 1 or 'At, copies
(as appropriate) of V. Again (by 4.68) one has a model of T with no possible embedding of M
into it - contradiction, as required.

(b) If the conditions are satisfied then choose, for each point of S, some NEZ(T) in its
class with N=Nko. Define M to be the direct sum of all these (one copy of each).

Since S is dense in z(T)/- the corresponding set of indecomposables is dense in z(T)
so (4.68) M is a model of T. Since S is discrete in the relative topology, no proper subset is
dense. Thus, if any summand of M is deleted, one no longer has a model. Hence M is a minimal
discrete pure-injective model.

Conversely, if the condition fails, and if M purports to be a minimal model then consider
the dense (4.68) set 2((M).

If 2((M) contained a discrete dense (in 2((M), equally in Z(T)) subset S, then all
points, N, of some member of S would (by the assumed failure) satisfy N$N'a. Let (ip/tp)
be a neighbourhood of such an N/M isolating it from the other points of S. Since NsA'ko,
there is some i.p>tp with Inv(N,ip,tp) finite. Since Inv(M,ip,tp) is infinite, it follows (by
isolation) that some infinite direct sum of members of N/cs purely embeds in M. But then any
one of these points may be omitted, while retaining a model, so M is isomorphic to a proper
direct summand of itself and hence is not minimal - contradiction.

Therefore U(M) does not contain a discrete subset which is dense. Let S denote the set of
points of 2((M) which are isolated in the relative topology. Then there is N in 2t(M)\S and
this set is a relatively open neighbourhood of N in U(M) which does not intersect S. Hence
N is a limit of points of 2((M) which are themselves non-isolated in 2((M).

Set M=M, ® pi(N(K)) where M, splits off no copy of N (actually minimality of M
implies K=1). I claim that Mi is a model of T, thus contradicting minimality of M.

So let ip, tp be such that Inv(N, ip, tp)>1. Then the relative neighbourhood (ip/tp) n 2((M)
of N contains some N' E 22(M) non-isolated in 2l(M) and with N' * N. So I nv(M1, p, v)>'-
Since N' is a direct summand of M, one draws the conclusion one needs that

is infinite.
Since M is minimal, 2((M) is T. in the relative topology (it is an easy exercise -

compare with the first part of the argument - to see that U(M) cannot intersect any cs-
equivalence class in more than one point).

The relatively open neighbourhood (tp/tp)n(2((M)\S) is therefore a To space with no
isolated points - hence is infinite. So M. has infinitely many indecomposable direct summands
N', apart from N, with Inv(4',i,tp)>1. Hence Inv(M1,i.p,tp) is infinite, as required.

(c) This follows directly from (a) and (b). o
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CHAPTER 5 FORKING AND RANKS

Linear independence in vectorspaces and transcendence in algebraically closed fields both
are kinds of independence. In fact, they are rather simple examples of a very general notion of
independence which has arisen in model theory and which is dignified by the name "non-
forking". Stability theory is concerned with classifying and investigating structures using this
and derived concepts.

We begin by characterising (non-)forking in modules. Thus we give meaning to the phrases:
the type q is a non-forking ( =free) extension of the type p; the element a is independent
from the set B over the set C. The description is in terms of the groups 6(-) introduced in
§2.2. Since some of the material in this and the next two chapters is used in algebraic
applications, I do not assume that the reader has already encountered ideas from stability theory
and so I give illustrative examples and state (and, I hope, explain) the main background
theorems. All of that is in the first section.

In the examples which I mentioned above, there is a dichotomy - algebraic(= completely
dependent)/independent - but most theories are more complicated than this, with elements
exhibiting degrees of dependence on one another. In at least some cases there are ordinal ranks
which measure degree of dependence: these are discussed in §2. It turns out that the rank of a
type, p, is the foundation rank of the connected component of the associated group 6(p) in the
lattice of such connected groups. It follows that, for modules, the various stability-theoretic
ranks coincide in so far as they exist (this is not true of arbitrary stable theories).

The characterisation of independence given in §1 is in terms of formulas represented in a
type: in particular, it is not very "algebraic". But it turns out that independence is, more or
less, direct-sum independence (of hulls). More specifically, if two sets A, B are such that
there is a pure-injective model with a decomposition N ® N' ® N" with A=_ N and B Al',
then A and B are independent over 0. In the case where the theory is closed under products,
the converse is true also so, there, independence over 0 is just direct-sum independence (cf.
§4). In the general case, the converse is a little more subtle. The section (§3) actually
considers independence over an arbitrary set in place of 0.

The description of independence is more clear-cut when the class of models is closed under
products, and the simplified theorems are stated at the beginning of §4. Then we go on to show
that, under the hypothesis T=To, independence is exactly pushout in an appropriate
category. The relevant category is not just (a part of) 772R since (cf. above paragraph) the sets
A and 8 need not be pure in a model: in fact the category is (part of) pnR, enriched by adding
information about pp-types.

5.1 Forking and independence

At the centre of stability theory is a notion of dependence/independence. The formalisation
of this as forking/non-forking gives precise meaning to the statement "A and B are
independent from each other over C" where A, B and C are sets of parameters.

Example 1
(i) Let T be the theory of algebraically closed fields of a given characteristic (this theory is

complete, because any two uncountable algebraically closed fields of the same cardinality
and characteristic are isomorphic - or see [Poi85; 6.04]). Then subsets A, B of the
monster (or "universal") model are independent over the subset C iff
acl(A)n acl(BuC)=acl(A)n acl(C), where "acl" denotes algebraic closure.

(ii) Let T be the (complete) theory of infinite vectorspaces over some given division ring.
Then subspaces A and B are independent over the subspace C iff An(B+C)=AnC.
In each of these examples an element is either completely dependent on (i.e., algebraic
over), or completely independent of, a given set. But most theories are much more
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complex than this, with elements exhibiting varying degrees of dependence. The stability
ranks are introduced to give an ordinal measure of degree of independence, at least in the
totally transcendental and superstable cases.

(iii) Let T be the theory of one equivalence relation E (i.e., structures are sets equipped with
a distinguished equivalence relation) with infinitely many infinite equivalence classes.
Then a is dependent on b over 0 iff aEb holds, but a will not be algebraic over b
unless a= b. So dependence is strictly weaker then algebraicity. if M is a model then a
will be independent from M over 0 iff a is in a new E-equivalence class (i.e., one
which does not intersect M): existence of such classes is consistent since there are
infinitely many E-classes.

Were this example to be modified by the requirement that every E-equivalence class be
finite, then dependence and algebraicity would coincide. For if aEb and b E M then a E M
also.

(iv) Let T be the theory of two equivalence relations, E, and E2, each with infinitely many
classes, such that each EinE2-equivalence class is infinite. Let a and c be elements of
a model. Then a is independent from c over 0 iff a is in neither the same E1-class
nor the same E2-class as c. If o is in the same Ei-class as an element b then a does
depend on b over 0. If also a does not lie in the same E2-class as b then a still has
two "degrees of freedom over b": one is its E2-class, which is not yet specified; but even
if one chooses some element b' in the same E2-class as a then a still has one degree of
freedom over (b,b') (since its E1nE2-class is infinite).

I will now quickly review some basic stability theory, leading up to the precise definition of
the notion of (in)dependence which has been seen in simple form in the ahove examples. As usual
we work within the monster model.

Let pES(A) and suppose that 82A. We want to select from the various extensions of p
to B (that is, from those types q over 8 with qrB=p) those extensions which are non-
forking or "free", in the sense that they contain no more information than they have to, given
that they do extend p to B. The amount of information in the type p is measured by the
class of p - the set of formulas represented in p: cl(p)=(ip(v, y) : ip(U,a) E p(U) for
some a (in AD.

It seems only reasonable in our case to consider the set of pp formulas represented in p:
cl+(p)=(tpEcl(p) : (p is pp). Actually something very like cl+(p) has already been seen in
§2.2, where g (p) was defined to be the filter of subgroups/formulas obtained from cl+(p) by
replacing the parameter-variables y by zero-tuples 0. Since it is possible to have ip(v,0)
equivalent to with ip, y, quite different pp formulas, g(p) contains a little less
information than cl+(p), but it will be seen that this lost information is not important and,
indeed, q (p) is actually the better invariant of p.

It was shown in 2.17 that tp(a)=tp(a') iff pp(a)=pp(a') (the presence of a complete
theory modulo which we work is presumed throughout this chapter). That is, p=q iff
p + = q + for any types p, q. It will be seen below that for types p, q over a model one has
cl(p)=cl(q) iff cl+(p)=cl+(q) and pro=qro; in fact cl(p)=_cl(q) iff cl+(p)=_cl+(q)
and pro=qr0 (5.8).

Next, some account must be taken of the possibility that a certain formula is not
represented in a type, yet must be represented in any extension of that type to a model.

Exercise 1 Let T be the (complete) theory of algebraically closed fields of characteristic
zero and let p be the type over 0 of a square root of 2. Find a formula which is not
represented in p but which must be represented in every extension of p to a model of T.
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In our case this phenomenon typically arises as follows: there is app formula ip(u, a) E p
and there is W pp with the index [ip(U,0):ip(v)] finite. If M is any model containing a then
(exercise) M must contain a representative of each coset of W in Thus any extension
of p to a (complete!) type over M must represent the formula 'p(v-y). Here is a concrete
example.

Example 2 Take the abelian group 7l4 (D 7l2(-), let b be the element (1, 0) of
7L4 (D 7l2(a) and let p be the type over 0 of an element of order 4. It is not difficult to see
that if q is any extension of p to a model - say to 7l4 ®7l2(K) - then q(v) must contain the
formula (v-b).2=0. So the formula (v-y)2=0 must be represented in q, yet clearly it is
not represented in p (that is, (v-0)2=0 is not in p).

If the numbers 4 and 2 were to be replaced by 9 and 3 then there would be a choice to be
made between cosets (exercise).

In cases such as that just described, one considers that, in adding such formulas and if
necessary in making such choices, no essentially new information has been added beyond the
necessary minimum. It would be quite a different matter were (as above)
infinite. For then it would be consistent that a tuple be in Lp(v,a) yet not be in any "named"
coset of W(u) (even over a model).

Therefore, it is best to consider cl(p) only for types p over models, and the following
theorem makes the situation clear. It says that there is a set of formulas which must be
represented in every extension of p to a model; moreover, there is an extension of p to a
model which represents just these formulas.

Theorem 5.A ([LP79], see [Pi83; 3.4]) (T a complete stable theory)
Let R=_M and suppose that p is a type over R. Then the set (cl(q) : q is a type
over a model containing /1 and q extends p) has a (unique!) minimum element
(with respect to inclusion) which is denoted p(p) and is called the bound of p. If
M is any model containing A then there is at least one type q over M extending
p and with cl(q) = p(p). o
(The set of all classes of (say 1-)types over models is termed the fundamental order; see

[Poi85; Chptl3]. Thus the bound of a type is the least point of the fundamental order which
contains the class of that type. The description of the fundamental order for the largest theory of
injectives over a right coherent ring is due to Bouscaren [Bou79] and, independently, to
Kucera (see [Kuc87; 2.4]) for the noetherian (=t.t.) case. We will not have ocassion to refer
to this order explicitly, but its translation-invariant version - the "stratified order" - shows
up in §6.1.).

Now one can make a sensible definition of "free" extension of a type and hence, of
independence.

Suppose that pES(A), that R=8 and that gES(8) is an extension of p. Say that q is a
non-forking extension of p if it has the same bound as p (one always has the inclusion
p(q)=-p(p)) One also says that q does not fork over A in this situation (note that
4tR=p)

Given parameters a,b,T say that a and b are independent over c, and write a ,b/T
if tp(a/b^T) is a non-forking extension of tp(a/T)_ The notation and terminology is extended
in the obvious way to sets (in place of tuples). It is a theorem (see [Pi83; 3.9]) that, as is
implicit in the terminology, this relation is symmetric. The terms, forking and dependent,
have the expected meanings.

Forking is a finitary property: alb/T iff there are finite sub-sequences a' a and

b'=_b with a',.,b'/T - for forking is witnessed by a single formula.
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A point which I will use repeatedly is the existence of non-forking extensions (for stable
theories): given a type p over A and a set B containing A, there is at least one gES(B)
which is a non-forking extension of p (this follows quickly from 5.A).

Since modules are stable (3.1) it follows that, given any "situation" inside a module and
given any new data - say a submodule B - there is a copy of the original situation, in some
elementary extension of the over-module, which is free with respect to B. From the algebraic
point of view it is not clear that any precise meaning could be given to this statement. Stability
theory does provide a formal rendering of the statement. The existence of free extensions is
guaranteed; and the resulting notion of "free" surely does generalise those cases - for example
vectorspaces - where there is a clear meaning for the term.

One should note exactly what 5.A says. Although any type p has a unique bound it need not
have a unique non-forking extension to a given model. In fact, the number of distinct non-
forking extensions to any model is an invariant of p (see [P1183; 3.27]), called its
multiplicity and denoted mult(p). One has (see [Pi83; 3.24]) mult(p)-< 21T1 for a type,
p, in finitely many variables. If mult(p)=1 then p is said to be stationary. More will be
said below concerning this, but one may note the following examples.

Examples 3
(i) Let T be the theory of the abelian group 719'3(o). Let p E S,(0) be the type of an

element of order 9. Note that [ v= v: v3 = 0 ] = 3 so, by the argument for Ex 2 above, if q
is a type extending p to a model M then q(v) contains the formula (v-m).3=0 for
some mEM (that is, q has to decide in which coset of M.3 does "v" lie). Note that
m&M.3, since q extends p and the latter contains the formula v.3x0. Apart from this,
there is no restriction on m, so there are essentially two possibilities (conjugate over 0)
for "m". Therefore mult(p)=2.

One may note that in Ex2 above, the type p was stationary.
(ii) Let T be the theory of the abelian group 71(p) and let pES1(0) be the type of any one of

the non-zero elements of 71(p) (there are 'k, types - see Ex 2.1/6(ii )). It is left as an
exercise to show that mult(p)=2''o (the proof of shows the sort of
argument to use).

Exercise 2 Prove that if T=Th(71,4 (D 220A-)) then every 1-type over 0 is stationary. Is

the same is true for 2-types? Rothmaler [Rot83c; Thml] shows that, for modules, every n-
type over a set A is stationary iff every non-algebraic 2-type over A is stationary. I n

[BR84; 3.7] it is shown that this is true for any stable theory.
Exercise 3 (for those who know what is meant by a definable type) Since modules are stable
(3.1), all types are definable. Show this directly.

In this section, these basic notions of stability theory are interpreted in modules.

There is another way of looking at non-forking extensions which will be quite useful to us:
this is usually presented by making use of "ideal types" (types over the monster model) but, for
purposes of presentation, I use a slightly different approach. One uses the following fact (1.5):
given a set A and a cardinal K, there exists a model M which contains A, is (2 TI)+-

saturated and is such that, whenever b, c are finite tuples from M and have the same type
over A, there is an A-automorphism of M taking b to T. The group of A-automorphisms of
M is denoted Aut,q M.

Let p be a type over A. Observe that Aut,q M has an action on the set, S, of types over
M extending p, as follows. If gES(M) extends p and if fEAut,gM, then set
fq(v) _ { p(v,fm): p(v,m) E q(v)} (If T realises q in the monster model and if M' is a
sufficiently saturated elementary extension of M containing T, then there is at least one
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extension, f', of f to Al'; then f'c realises fq(u). Since f' fixes A and is an
automorphism, one has tp(f'c/A) = p.) An approach to non-forking may be based on the fact
that there is a unique "small" orbit in S under this action, where "small" means of cardinality
no greater than 21TI. This orbit consists precisely of the non-forking extensions of p to M
(and the cardinality of the orbit is the multiplicity of p).

So: given a type p and an extension, q, of p to the set 8, one may "test" whether or not
q is a non-forking extension of p by taking such a large "containing" model M for 8, then
using the fact that q is a non-forking extension of p iff q has an extension to a type in the
small orbit of extensions of p to M.

Lemma 5.1 Let p be a type over the set A and let q be an extension of p to a
model M. Then 4(q)240(p).

Proof Let ip(u, y) be pp with tp(u,0) E B,o(p), say ip(u,a) E p+ is such that
[tp(U,0):Lp(v,0)Aip(U,_ )] is finite. Let be a complete set of coset representatives
of Lp(U,_)Atp(u,0) in tp(u,a). Then MIVU(tp(u,a)-V;tp(u So, since q isa
complete type over M, one has, say, tp(u-m1,0) Eq. Thus tp(u,0) E (,'(q). a

Thus one may say "p(p) B,o(p)". More precisely, if tp(u,y) is a pp formula such that
ip(u, 0) E q'o(p) and 3y tp(u, y) E p(u), then tp(u, y) E p(p). The converse will be proved.

Lemma 5.2 [PP83; 2.5], [Zg84; 11.1] Let p be a type over the set A. Then there
exists an extension of p to a type q over a model with G(q) = 60(p). Any such
type q is a non-forking extension of p.

Proof Let M be a large containing model for A. Consider the following set of formulas:
p uX, where X = {-tp(u, m): tp(t,o(p) and m is in M). This set if consistent. For
otherwise there is ip(u,a)E p+, e1(u,a1),...,en(u,an)E p- and

X such that ip(u,a)S V;ei(u,ai) v V, tpj(u,mj). Since, by
consistency of p, the ei(u,ai) do not suffice to cover Lp(u,a), it must be, by Neumann's
Lemma (2.12), that at least one of the subgroups tpj(U,0) has finite index in tp(u,o) - in
contradiction to the defining property of X. Thus the set is indeed consistent, so has an
extension to a type q over M. Clearly G(q) = 60(p).

If f EAut,AM then, for the type fq, one has (clearly) G(fq) = Go(p). But an extension
of p satisfying this equation is completely determined by specifying, for each subgroup lying
between G(r) and G0(p), which coset of that subgroup is "in" the type. There are, therefore,
at most 21Tpossibilities for such a type. Hence (any such) q belongs to the orbit of non-
forking extensions of p, as required. a

Some more information is extracted from this proof in 5.11 and 6.44 (where the non-
forking extensions are counted). The previous two results combine to give us the following
characterisation of non-forking.

Theorem 5.3 [PP83; 2.6], [Zg84; 11.1] Let p be a type and suppose that q is any
extension of p. Then q is a non-forking extension of p iff 60(q)=60(p). a
Corollary 5.4 Let p be any type. If Go(p)=G(p) then p is stationary.

Proof It is sufficient to observe that, in the proof of 5.2,'if 60(p)=G(p) then the set of
formulas shown to be consistent is actually a complete type. Hence p has just one non-forking
extension to a model, as required. o

The converse fails (consider Ex2 above).

Corollary 5.5 [PP83; 2.6] Let A,8,C be sets of parameters. Then B,(,C/A iff
for any pp formula tp such that tp(b,c,a) holds (where 5 is in A, b in B and
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T in C) there holds a pp formula ip(b,a') with a' in fl and the index
[Lp(v,o):Lp(v,o)A1W(v,o,o)] finite. n
Corollary 5.6 cf. [Gar8l; Lemma3] Let B and C be sets of parameters. Then
BJC/O iff there is a pp formula tp with tp(b,T) for some b in 8 and T in
C and such that for every pp formula tp with ip(b), the index
[ip(u):ip(v)Atp(U,0)] is infinite (in particular, itp(b,0) holds). o
As a consequence, the bound of a type may be described. Garavaglia [Gar8l] has this in the

casewhere T=T o and A=O.

Corollary 5.7 [PP83; 2.5] Let p be a type over R. Then the pp formula,
ip(U,q), is in the bound of p iff tp(U,0)Ego(p) and 3q.p(U,q)E p(U). a
One may also specify when the class of one type is contained in the class of another. This

was proved for modules in [PP83} and for the more general normal theories (see just below) in
[Sr84] (also see [Rot83b]).

Corollary 5.8 [PP83; 2.3], [Sr84; §5.B] Let p, q be types over the model M.
Then:
cl(p)=cl(q) iff cl+(p)=cl+(q) and pro=qro.

Proof Of course the right-hand conditions are necessary and, by 5.7 and 5.1, they are also
sufficient, for cl(p) to be contained in cl(q). a

Another approach to 5.3 is taken in [PP83] - one which involves first characterising the
bound of a type by proving 5.8. The direct proof of 5.8 (given by Garavaglia [Gar8l] in the
T= To case and generalised in [PP83]) does have one advantage: it does not depend on
Neumann's Lemma but, as pointed out by Hodges, only on the following combinatorial property of
pp formulas:

LP (5,b)ALP (a',b')ALP (a',b) LP (a,b') .... (**).
This property ties in with Pillay's definition [P1184a] of a "normal" theory, and Srour's

definition of an "equational" theory [Sr81o:], [Sr81].
In [Sr81oe] and [Sr81] (see also [Sr84; §5.B]) Srour considered what he termed

"equations" and "equational theories". A formula ip(U,q) is an "equation " in this sense if one
has the dcc on intersections of sets of the form tp(/,a). A theory is "equational" (of sort "_"
- see below) if every formula is equivalent to a boolean combination of "equations" (since these
are not equations in the usual sense, I retain quotes around them, so as to avoid any
misunderstanding). This notion includes that of a normal theory (see below) and so, in
particular, modules. Srour independently developed a good deal of the theory of the "pure-
injective" models of an "equational" theory (generalising 3.1(a), every equational theory is
stable). He also generalised a number of results on the stability theory of modules to this
context. He payed particular attention to the case where the "equations" are closed under
existential quantification, since the theory may be developed further under that hypothesis.

Independently, Pillay introduced the notion of a normal theory. Say that a formula ip(v,q)
is normal (more precisely, U-normal) if, for all a, a', one has that either ip(M,a) and

are equal or have empty intersection (this generalises the coset property). Clearly
normality of a formula is equivalent to the property (**) above (note that each presupposes a
certain fixed partition of the free variables). A theory is normal if every formula is
equivalent to a boolean combination of normal formulas.

Some normal theories are: modules; any theory of equivalence relations which has
elimination of quantifiers; any w-stable theory of Morley rank 52 (for sort "= ") ([PS84;
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6.5]); also see [Pa185]. Examples of "equational" theories include: algebraically closed fields;
differentially closed fields of characteristic zero (see [Sr81]).

Pillay and Srour together developed these ideas further, using a framework suggested by
algebraic geometry (see [PS84]). They also introduced the notion of a weakly normal theory: a
formula ip(U, y) is weakly normal if every intersection of infinitely many distinct sets of
the form tp(M,ai) is empty, and a theory is weakly normal if every formula is equivalent to
a boolean combination of weakly normal formulas (such a theory is "equational"). An example of
a weakly normal, non-normal, theory is that of un-ordered pairs (two distinct conjugates of a
pair may intersect, but no more than two). This notion of weak normality has turned out to
connect with ideas arising from other investigations in stability theory but, before I say a little
about that, let me present the generalisation of 5.8 for normal theories.

Let C be a class of U-normal formulas. Say that the theory T is (U-)normal with
respect to C if every formula 'c(u) is equivalent modulo T to a boolean combination of
formulas in C. Thus 2.16 says that any theory of modules is normal with respect to the class of
pp formulas. Define clC(p) from C just as cl+(p) was defined from the class of pp
formulas - namely as C n cl(p).

The following result, for modules, is just 5.8 above. I sketch its proof (for details,
presented in the modules case, see [PP83; 2.3]).

Proposition 5.9 Let T be complete and let C be a class of normal formulas.
Suppose that T is normal with respect to C. Let p and q be types over a model
M.

Suppose that pro=qro and clC(p)=_c1C(q). Then cl(p)=_cl(q).
Proof (The proof here is that used in [PP83]: another proof may be given using the fact that
the non-forking extensions of a type form the unique small orbit (see earlier in this section)).
It is immediate that we may suppose that C is closed under conjunction; moreover
disjunctions give no problem. It suffices, therefore, to check the conclusion for formulas which
are the conjunction of a formula in C with negations of formulas in C. Let a realise p and
realise q in M. Suppose that are in C and are such that the formula
(ip A A nyii)(u, y) is not in cl(q(u)). It may be supposed that each set yPi(b,M) is non-
empty - say di is in M with Vi(b,di); for otherwise, since clC(p) clC(q), -iWi may be
removed .

Suppose, for a contradiction, that we had Lp A A, n ,i in cl(p). So in particular ip(u, y)
would be represented in p(U) - hence, by assumption, represented in q(u) - say ip(b,T)
holds with c in M.

Now, since there is m in M with lp(u,m) A A 1 p1(u,m) E p(u), one has that tp(a,M)
is not contained in the union of the wi(a,M). So (since Lp(a,M)=MnT(a,M) etc.), the same is
true with M in place of M. Thus Mi 3y (Lp(a,y) AA Therefore the formula
3y (ip(u, y) A A l is in the restriction of p to 0 and hence, by asumption, in the
restriction of q to 0. Thus ip(b,M) is not contained in the union of the Wi(b,M).

Therefore one has Mk T(b,T) A A'1pi(b,di) A 3y (lp(b,y) A An -1vi(b, y)). Since the
T,di are in M (<M) there exists b' in M such that M satisfies the formula above but with
b' in place of T. Choose m in M to witness y in that formula.

Thus we have T in ip(b,M)nip(b',M), and also ip(b',m) holds. So, by the combinatorial
property (**) above, Lp(b,m) holds. Similarly, from the fact that di lies in
y,i(b,M)nvi(b',M), from iyii(b',m) one deduces ,wi(b,i ). Therefore one has
Lp(b,m) A n; ny,i(b,m) and in in M contradicting that the formula LP A n; ny,i is not
represented in q. Thus the result is proved. c
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Note that one of the points of the proof is that if b is arbitrary and if Lp is normal then
Lp(b,M) is definable with parameters in M via the same formula: that is, there is some b' in
M with Lp(b,M)=tp(b',M) (in general, one has rather less: see [PS84] for more on this).

Suppose that tp(v,y) and lp(v,y) are normal formulas: write t>ip if each i.p(v,o) isa
disjoint union of ip(v,y)-classes. One might try to define the index of tp in ip, however, this
"index" may depend on a.

Exercise 4 Show this dependence.
[Hint: take E1, E2 to be equivalence relations such that each E1-class is the union of a certain
number of E2-classes.]
Srour has some results on this (personal communication).

The definitions of "equational" and (weakly) normal were adequate for what we have
discussed so far. However, the work that I describe next is placed in the context of Teq (see
§10.T), so now the definitions of these notions should be strengthened so that every formula (with
variables of whatever sort) is a boolean combination of "equations", or (weakly) normal
formulas, (with variables of the appropriate sorts). So, for the discussion below, understand
the terms in this stronger sense.

It has turned out that many stable theories are weakly normal. By results on
"normalisation", one has that every )k0-categorical w-stable theory is weakly normal (this is
implicit in [CHL85] and is explicitly pointed out in [PS84; 6.8]). Pillay ([Pi84b]) showed
that any countable stable theory is either weakly normal or "type-interprets" a pseudo-plane
(for the definition of this, see [Pie4b]). This was strengthened in [HP87], where it is shown
that the following conditions on a complete theory are equivalent: T is weakly normal; T is
stable and 1-based; T is stable and does not type-interpret a pseudoplane. The condition of
being 1-based arose in the work of Buechler [Bue86b] and Pillay [Pi84b]: T is 1-based if
whenever p is a type over a saturated model M of T, there is a subset q of M over which
p does not fork and there is a in M realising the restriction of p to A, such that p is a
non-forking extension of its restriction to OF (cf. 5.11 below).

Hrushovski and Pillay prove the following about weakly normal groups. If the language is
that of groups then a group is weakly normal iff it is abelian-by-finite: beyond this, if G is a
definable set (in some language) with a definable group operation and G is weakly normal (for
definable subsets: definable subsets of 62 are needed) then G is abelian-by-finite [HP87;
3.2] (this should be interpreted in Teq, so 6 could be a definable quotient for example). They
also show that if G is a weakly normal group (in the second, stronger sense) then every
definable subset is a boolean combination of cosets of subgroups definable with parameters from
the algebraic closure of the empty set (and conversely) [HP87; 4.1]. This may be phrased in
terms of abelian structures: if G is a weakly normal group then 6 is bi-interpretable
(perhaps using parameters) with an abelian structure (see [HP87; §4]).

A number of results in this chapter and the next have generalisations (see [Sr84]) or
analogues in other contexts (see [SPS85]).

5.2 Ranks

It is very useful to be able, not only to detect forking, but also to measure degree of forking.
The various stability ranks provide a measure of this. I will concentrate on the U-rank of
Lascar [Las76] which is defined directly in terms of forking: I include the relevant
definitions, specialised to modules. Then it is shown that the other ranks - in particular Shelah
degree and Morley rank - coincide with U-rank when they are defined (U-rank and Shelah degree
are defined for all types exactly if the theory is superstable; Morley rank is globally defined iff
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the theory is t.t.). Thus for modules the only differences between the ranks are their domains of
definition (for general theories one may have UR(p)<D(p)<MR(p)<oo). The common
description of these ranks in modules is in terms of a more algebraic one which will have uses
elsewhere and which is given in terms of pp-definable subgroups.

Let T be any stable theory and let p be a type; the U-rank of p, UR(p), is defined as
follows (see [Pi83; 5.11], [Poi85; §17.a]). For a an ordinal set UR(p)>a iff p has a
forking extension q with UR(q)>- o: - one begins the inductive definition by setting UR(p)30
for all (consistent) types p. Thus UR(p)=0 iff p is algebraic; UR(p)=1 iff p is not
algebraic but every forking extension of p is algebraic. Set UR(p)=oo if UR(p)>a for all
ordinals «.

I will use the fact (see [Poi85; p445]) that if UR(p)=a<oo and if p<oo then p has an
extension q, necessarily forking (since UR(q)<UR(p)), with UR(q)=p. Since forking is
witnessed by formulas, it follows that UR(p)=oo iff UR(p)>ITI (for p a type in finitely
many free variables). One sets UR(T)=sup{UR(p) : pES1T(0)}.

Example 1

(i) Let T be the theory of equality. There are only two kinds of types: realised types and the
single unrealised type (over any given set). The former have U-rank 0; the latter must
therefore have U-rank 1 since any forking extension is a realised type.

(ii) Let T be the theory of an equivalence relation E with infinitely many infinite
equivalence classes. Then, over any given set, there are: the realised types - of U-rank 0;
the unrealised types which nevertheless specify an E-class - these are of U-rank 1 since
the only way to extend them by (non-trivial) information is to specify an element; the
type which specifies no E-class - so is of U-rank 2. Therefore UR(T)=2.
In this example we see how U-rank measures "degrees of freedom" or extent of forking.

One may note that the Cantor-Bendixson rank (see below) of S1T(.0) is just 0 (since
it contains just one point - all elements look the same over 0) - parameters are needed to
display the full complexity of the type structure. This is somewhat less the case for
modules.

NO Refer back to Ex2.2/5 (T=Th(7L,4o)). With notation as there, one sees that the only
forking extensions of p and q are realised types; so p and q have U-rank 1. There is
a type over Mo of U-rank 2 - the type of an element of order 4 whose difference from
any element of Mo is still of order 4. There are no more kinds of types in this example,
and so UR(T)=2.

Exercise 1

(i) Show that UR(Th(718o))=3.
(ii) Find UR(Th(712(D714X.)).
NO Show that UR(Th(7l(p)))=1 (use the results of §1).

Theorem 5.B (see [Pi83; 5.15]) A stable theory T is superstable iff every
(1-)type has U-rank (i.e., has U-rank<oo). o

The U-rank is actually the smallest rank among those which satisfy certain reasonable
conditions which one would want to impose on an independence rank [Las76]. An implication of
5.B is therefore that these stability ranks will be useful mainly in the case of superstable or
even nicer theories. It will be seen in Chapter 10, however, that for modules there do exist
certain useful and more widely defined ranks.

Define PP0(77) to be the set of those /A-pp-definable subgroups of M(n) which are
connected - that is, (5.10 below) those of the form 6o(p) for some pESn(0). Order PPo by
inclusion: by 2.3 this is a modular lattice.
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Exercise 2 Show that a (D -)definable connected group is (M-)pp-definable. Is this still
true for non-connected groups? (I don't know).

Now, it is immediate from 5.3 that if p is a type and if the interval
[60(p):o]=(HEPPo : H<G0(p)) is well-founded (i.e., has the dcc), then UR(p) exists and
is bounded by the foundation rank of [Go(p):0]. The foundation rank of a point, x, in a
poset is defined to be 0 if it is minimal and is defined to be sup(1+foundation rank of y : y <x )
otherwise. So a point acquires foundation rank (less than oo) iff the poset of points below it has
the dcc (exercise).

To prove that UR(p) is exactly this foundation rank, it must be shown that if HEPPo lies
below G0(p) then there is some extension q of p with G0(q)=H.

Lemma 5.10 Let HEPPon. Then there is pESn(0) with G(p)=H.
Proof Use Neumann's Lemma (2.12) to show that the following set is consistent and generates
the required type: ('.p(u) : ip is pp and ip is pp and tp(M) does not
contain H). o

Proposition 5.11 [PP87; 2.8] (also cf. [Sr84; V.C.9-12]) Let pES(A) and suppose
that HEPPo is such that H<G0(p). Let c realise p.
Then there is gES(c) with G(q)=Go(q)=H such that the unique non-forking
extension of q to A^c extends p.
In particular there is an extension q' of p with G(q')=H.

Proof By 5.10 there is goES(0) with G(qo)=H. Let b realise the non-forking extension
(5.4) of qo to c and set q=tp(c+b/c). Therefore q+(u)=(ip(u-c) : tp(u) E qo+ ) (by
5.3) and q is stationary by 5.4 since Go(q)=Go(go)=H.

Let q' be the (unique) non-forking extension of q to A^c. It must be shown that q'
extends p; it will be enough to establish that (q'tA)+ = p+

Therefore let ip(u,a) be in p+: so .p(c,a) holds and also tp(u,o) is in G(p), hence
H. So by construction, ip(u,0) is in qo+; hence ip(u-c,0) E q q'. Together with

ip(c, a), this yields that i.p(u, a) is in q' and so tp(U, 5) E q'IA.
Conversely, if tp(u,a) is a pp formula in the restriction of q' to A then, since

tp(u,0) E G(q')=G(q)=G(qo), one has ip(u,0) in qo. So, by construction, one has
tp(u-c,0) E q s q'. Combining these formulas in q' yields ip(c,a). Since c realises p the
conclusion is that tp(U,5) is in p, as required. a

Let ppo-rk denote the foundation rank on PPo.

Theorem 5.12 [PP87; 2.10] Let p be a type. Then UR(p)=ppo-rkGo(p). In
particular UR(p) < oo iff the interval [Go(p):0] in PPo has the dcc.

Proof The proof is by induction on a = ppo-rk&o(p). If a=0 then 60(p)=0, so (exercise)
every extension of p to a model is algebraic and hence p itself is algebraic - that is
UR(p)=0.

Now suppose the truth of the result for ordinals p <a. Let q be a forking extension of p;
so by 5.3 we have G0(q)<G0(p). Thus ppo-rkGo(q)<ppo-rkGo(p)=o: and so, by the
induction hypothesis, UR(q)=ppo-rkGo(q). Then it is immediate from the definition of the
two ranks, UR and ppo-rk, that o

As an immediate corollary of s.B, 5.12 and 3.1, one has the following.

Corollary 5.13 The theory T is superstable iff PPo has the dcc, in which case
UR(T)=ppo-rkPP0 - the foundation rank of (the top element in) PPo. o
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Now I digress briefly to present some examples which show that the statements of 5.11 and
5.13 cannot be weakened in certain ways, and which are perhaps of independent interest.

Example 2 PPo is not a sublattice of the lattice of all A-pp-definable subgroups.
Let R=71(2)[X,Y] - so an R-module is a 71(2)-module equipped with two commuting

endomorphisms (given by the actions of X and Y). Let N be the module whose underlying
71(2)-structure is 71(2)('A') ®71 (D 2(2)('k'), with the actions of X, Y given as follows.

On the first copy of 71(2)0° the action of X is multiplication by 0, and that of Y is
multiplication by 2. On the second copy of 72(2)('A°) the roles of X and Y are reversed. On
712 both X and Y act as 0.

Then N,=71(2)0) (D 12 ® 0 is defined by the pp formula vX=0. Similarly
N2=0 ® 712 (D 71(2)0-) is defined by vY=O. Both N, and N2 may be seen to be connected
(*). But their intersection, 0 ®712 ® 0, is not. So in PPo, the meet operation is "(-n -)," not
"n". [(+) For example, on N,, the action is just that of K[Y] so, clearly, there is a non-
trivial morphism from the first component to the second. So by 2.2(i), any pp-definable
subgroup which contains the first component must contain the second; thus the only possibility
for a pp-definable subgroup of finite index in N, is eliminated.]
Example 3 In 5.11 we need H to be connected.

Take T to be the theory of the abelian group 714 ®7l2(Xo). Let pES1(0) be given
(isolated) by v2#0. Set G3=MI=T, G2=(mEM : m2=O), G,={mEM : 3m'EM (m=m'2)),
Go=O. Then G(p)=G3. Now G(p)>G, but note that [G1:Go]=2. I will show that there is no
extension, q, of p with G(q)=G,.

If q is a non-forking extension of p then G(q) _> (63)0 =G2 (by 5.3).
If q is a forking extension then it is fairly clear (by 2.711) that q must represent

2I (v-y) (representation of (v-y).2=0 does not give forking) - say (21v-a) Eq. Then either
v= a, in which case G(q)=0, or u* a, in which case v-a is a non-zero element divisible by
2. But there is only one such element, b say. Thus v-a =b. Since "u" has order 4 and "v-a"
has order 2, necessarily a has order 4. Therefore a2=b and so v=a3 - hence G(q)=Go.

Thus there is no extension q of p with G(q)=G,.
Example 4 In order that T be superstable it is not enough to have dcc on connected pp-
definable (as opposed to connected , -pp-definable) subgroups.

Let K be a finite field and let R="K{T}v" - the K-span of (Ta : a<v) equipped with
multiplication given by T°TP=Ta+P (so we choose v so that a,p<v implies a+ P <u). If
v> w then this is a non-commutative ring.

Define the module MR by: as a K-vectorspace M= ® (x«K : a<v); the action of R is
given by x,TP=xa+p. Let T=Th(M).

The pp-definable subgroups of M are (exercise) these: Mp= ®(x«K : p5a<v) (for
p<v), which is defined by 3w (v=wTP); and no others, apart from 0. Clearly the index
[Mp:Mp+,]=IKI is finite. So the only connected pp-definable subgroup is 0.

But if v>002 then T is not superstable: {TPI v : p<,x) for limit 'defines a connected
A -pp-definable subgroup G-A and, if -A<-A' are limits, then G,>G X-.

Next I consider the other stability ranks (see [Pi83; 6.13ff], [Poi85; Chpt17]). These all
have the form R(-,-A) for some -A (an ordinal or oo) - and there are two main ones,
corresponding to ,_ k. (Morley rank) and ),=oo (Shelah degree). Unlike U-rank, these
ranks are defined in the first instance on formulas, as follows.
R(p, ^A)=min {R(tp,),) : LpE p} where p is any type in finitely many free variables.
R(Lp,-A)'0 iff W is consistent.
R(ip, -A) o if for each p <o and each p <-A there is a set A and there are pairwise
contradictory qi E S(A) for 1 such that ip E qi for each i and R (q i, ^A) 3 p for each i.
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Note that R(p,-A)=a iff there is some tpE p with and for all tp'E p one has
R(tp',A)3a and then one has that any type q with ipEq satisfies R(q,%)SR(p,^A) (in
general, though not in modules, one cannot define U-rank of types in terms of some rank on
formulas). Thus the ranks R(-, -A) are continuous: they are continuous maps from the spaces
of types, S(R), to the class of ordinals equipped with the order topology.

The rank R(-,)\,) is called Morley rank and is denoted "MR". The rank R(-,oo) is
Shelah degree "D".

There is an alternative way of looking at Morley rank. Let X be a set endowed with a
topology. The Cantor-Bendixson derivative of X is the (closed) set X'= X \ (p E X : p is
an isolated point) with the induced topology. The higher derivatives are defined by induction:
X(a+1)=(X(a))'; X("")= fl (X(a) : a<)) if A is a limit ordinal. There is a least ordinal a
such that X(a+1)=X(a) (that is, such that X(a) has no isolated points). If this X(a) is
empty and if X is a compact space then (exercise) a cannot be a limit ordinal, so one can
define the Cantor-Bendixson rank of X, CB-rk(X), to be a-1. If pEX(P)\X(p+1) then
set the Cantor-Bendixson rank of the point p to be p and write CB-rk(p)=p; if
p En (x(p): p an ordinal) then set CB-rk(p)=oo (and similarly with X).

Exercise 3
(i) Suppose that X is a compact space.

(a) CB-rk(X)=0 implies that X is finite: the converse holds if X is also Hausdorff or
at least if X does not contain topologically indistinguishable points.
(b) CB-rk(X)=max(CB-rk(p): pEX).

(ii) If X is the unit rational interval then X'=X.
NO Let a=(p : p<a) bean ordinal equipped with basic open sets of the sort (7 : p<7<a).

When is this space compact?. What is its Cantor-Bendixson rank?.

To connect this with Morley rank, let p be any type in n free variables. Let M be any
/k,-saturated model containing the set over which p is defined and let q be any non-forking
extension of p to M. Consider the CB-rank of q in the space Sn(M). Then MR(p)=CB-
rk(q) (exercise: one should first decode the definition of R(-, At,) into terms of definable sets;
see [Poi85; 17.17]). Note that the Morley rank of a type need not be equal to its CB-rank:
consider Ex1 above or T=Th(714 o), where one has CB-rk(S,T(0))=0 but CB-
rk(S1T(7l4('k1)))=CB-rk(S1T(:24('ko)))=2, so that MR(T)=2 (one should perhaps work
through this example if the definitions are new).

The remainder of this section is taken rather directly from [PP87]. It is all the time
assumed that we are working in a stable theory.

The following facts about the ranks R=R(-, -A) will be used, but not proved here (see
[Pi83; Chpt6]).
(i) R(V, ipi)=max{R(ipi) : 15iSn).
(ii) If R(tp)=a>p then there is ip which implies tp (so defines a smaller set) with R(w)=p.
(iii) If T has a group operation "+" then R(a+ip)=R(ip) (c lies in a+ip iff i.p(c-a) holds)

(exercise).
(iv) T is totally transcendental iff MR(v=v) is defined, and this will be so iff MR(p) is

defined for all types (in any finite number of free variables and over any set).
(v) T is superstable iff D(v=v) is defined, and this is so iff D(p) is defined for all

pESnT(R).
The first step in showing that all these ranks coincide (in so far as they are defined) is to

prove that they depend only on pp formulas. From now on we are back in the context of modules.
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Proposition 5.14 [PP87; 2.5] Let 'X(U)=lp(U,a) n A,-1tpi(U,oi) be a consistent
formula with tp,tp1,...,tp77 pp. Then R('X)=R(ip(U,5))=R(ip(U,0)).

Proof (S. Thomas) The proof goes by induction on n, the case n=o being trivial (the second
equality follows directly from NO above). So assume the truth of the result for n-1. One may
suppose, therefore, that for each j, 'X is inequivalent to lp n A { itui : 1 S i S n, i m j ). It may
also be supposed, as usual, that ip(U,0)>, tpi(U,0) for each i.

Choose iS in. Since X is consistent there is some coset tpi(u-ci,0) of tpi(U, 0) such that
tpi(u ci,0) __ ip(u, a) and such that the formula e(U), being W i(U-ci,0) n n; -itv j(U, a j), is
consistent. In particular, tpi(U ci,0)ntpi(U,ai)=0 (cosets are equal or disjoint). So 6(U)
is equivalent to the formula y,i(U-ci,0) A A(it (v,a j) : 1,<jcn, j#i).

Now e(u)-*'X(u) (clearly) so R(e)5R(X)=a say (the inequality is immediate from the
definition of the ranks). By the induction hypothesis, R(e(U)) = R(tpi(U ci,o)). So, by (iii)
above, R(tpi(U,ai)),<oo; and this holds for each 1,<n.

Note that ip(U, o) H x(U) v V, tpi(U,ai). So, by (i) above, and what has just been shown,
R(Lp(U,a))=a, as required. o

Corollary 5.15 [PP87; 2.6] Let p be a type. Then there is some ipEp+ with
R(p)=R(i.p).

Proof By definition of R there is 'XE p with R(x)=R(p). Then use 5.14. o

Corollary 5.16 [PP87; 2.7] Let tp(U,a) be pp with R(ip(U,a))=o:<oo. Let p<o:.
Then there is some pp formula tp(U,b) with and R(tp(U,b))=p.

Proof By (ii) above there is some formula , with and R(X)=p By property
(i) above, x may be supposed to be the conjunct of app formula and negations of pp formulas.
On replacing 'X by the equivalent formula 'Xnlp(U,a) it follows that the positive conjunct,
tp(u,b) say, of x may be taken to imply ip(U, a). Then apply 5.14. a

Lemma 5.17 Suppose that ip, tp are pp formulas with the index [tp(U,0):tp(U,0)]
finite. Then for any a,b one has provided both tp(U,a)
and tp(U,b) are non-empty. Conversely, if ip(U,a) and tp(U,b) are consistent
with rank<oo and the index [ip(U,0):tp(U,0)] is infinite, then
R(ip(U, a)) > R(tp(U,b).

Proof This is immediate from (i) and (iii) above (and properties of cosets). The second part
follows easily from the definition of the ranks R; also it is a consequence of 2.4 and 5.20
below. o

Theorem 5.18 [PP87; 2.11] Let p be a type with R(p)<oo where R(-) is any of
the ranks R(-,)). Then R(p)=UR(p).

Proof It is known (see [P183; 6.29,6.36]) that in general UR(p)SR(p). The proof that
UR(p)=R(p) goes by induction on R(p).

Suppose that R(p)=a and let p<o. By 5.15 there is some ip(U,a) E p+ with R(p)=u.
By 5.16 there is a pp formula tp(U,b) with V(!7,_b)-+Lp(U,5) and R(V)=p.

Let H be the connected component of the group tp(U,0); thus H= fl(ip'(U) : ip' is pp and
[1p(U,0):tp(U,0)ALp'(U)] is finite). Noting that, by 5.17, the index [kp(7,0):tp(U,0)] is
infinite, one has H<G0(p) (by 2.4).

So by 5.11 there is a, necessarily forking, extension q of p with G(q)=H. For
tp'EG(q) one has R(tp')>,R(y,(U,0))=p (5.17) and so R(q))p (5.14). Since also
tp(U,0) E G(q) it follows that R(q)=p. So, by the induction hypothesis, UR(q)=p.

Thus for every p<« there is a forking extension of p with U-rank p. So, since R(p)=a
and in general URSR, it follows that UR(p)=o:. o
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The coincidence of Morley rank and U-rank was shown by Bouscaren [Bou79; Prop4] for
the largest theory of injective (rather, absolutely pure) modules over a right coherent ring.

Corollary 5.19 [PP87; 2.13] If T is a superstable theory of modules then the U-
rank is continuous. In particular, if p is a type then there is a formula in its pp-
part which has the same U-rank as p. o
The result is immediate by 5.18, (v) above and 5.15.
It follows that in the context of modules it does make sense to refer to the U-rank of a

formula gyp: this should be defined as the foundation rank of So(,I,)= n { xp : to is pp and of finite
index in ip) in PPo. One then has as an immediate corollary of 5.18 and 5.12 the following
local or relative version of 5.18. It was obtained in the special case where T is the largest
complete theory of injective modules over a right noetherian ring in [Gar80a; Thm6]: also see
[Bou79; Prop4].

Corollary 5.20 [PP87; 2.12] Let ip(u,a) be pp with R(lp(v,7))<oo. Then R(ip) is
the foundation rank of Go(ip(v,0)) in PPo. If p is such that ip(U,a) E p and
R(p)=R(ip(U,a)), then this common value is also UR(p). o

Corollary 5.21 [PP87; 2.14] If M, M' are modules with M pure in M' and if
"X(U,a) is any formula with a in M, then RM(1)5RM (x), where superscripts
indicate the theory with respect to which the rank is being measured.

Proof This is immediate from 5.14, properties of pp formulas and 5.12. o

The next result is effectively [BR84a; Cori] and it follows from 3.1, 2.23 and 5.12 above;
the result after that is then an immediate corollary.

Corollary 5.22 Suppose that N > M are superstable. Let a E M\M. Then the U-
rank of a over M is equal to the Morley rank of its image a+M/M, regarded as
an element of the monster model of Th(M). a

Corollary 5.23 [Zg84; 2.3], [BR84a; Lemma3.2] Let T be a complete theory of
modules. Then T is superstable iff Tu, its unlimited part, is totally
transcendental. o

Example 5 For any integer n there is an abelian group with Morley rank n: take 72pn 'o
where p is any prime (so PPo is a single chain of length n).
Example 6 Let p be any prime. Then MR(7lpoo'*o))=w. One may check that
MR((D {72poo' o : p is prime)) also is w. Since (Exercise 3.1/6) every t.t abelian group has
the form ®, 2poo(K,) + (B(K) + B where B has bounded exponent (so finite Morley rank) and
K K are cardinals, it follows now, without much difficulty, that for any abelian group M,
MR(M)<w+w provided MR(M)<oo, and this bound is optimal [Rot76]. Hence (consider the
unlimited part) if M is a superstable abelian group, then UR(M) < w+w (and this bound is
best possible) [BR84a; Thm3].
Example 7 R=71, M=71(p). The only type in S1(0) with Morley rank defined is the trivial
algebraic type (v=0). The type pES,(0) given by p+(v)=(pn1v:nEw) has U-rank 1

(since IPP0I=2) and is stationary (by 5.4, since G(p) is connected). Since PPo is just a
two-point chain, every other type q in S,(0) has Go(q)=Go(p); hence UR(q)=i.

Therefore UR(T)=1.
Example 8 M=(7l4 +712^)71. There are exactly four types in S1(0) (there are two types of
elements of order 2) and it is easy to see that IPP0I=2. Since M is U. one therefore has (using
property (iv)) UR(M)=MR(M)=1.
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On the other hand, it is easy to see that, in M' o, PPo is a single chain of length 3; hence
MR(M'Ao)=3.
Exercise 4

(1) Show that MR(714'A.®7l2)=2.
(ii) Show that MR(714 A. ®71e o)=5 (cf. 11.39).
(ii) Suppose that M is an abelian group of bounded exponent. Give a formula for MR(M) in

terms of the canonical decomposition of M.

Exercise 5

(i) Let R be a left artinian ring. Find an algebraic estimate for MR(R). The estimate should
be exact if R is, for example, an algebra over an infinite central subfield.

(ii) Find the Morley rank of each of the examples in Ex2.1/6.

Example 9 [Gar8o; Thm 6], [Bou79; §1.41 Suppose that R is right noetherian and let T

be the largest theory of injective modules (so T is t.t.). Then the Morley rank of T is the
depth of the zero ideal (i.e., its foundation rank in the opposite of the lattice of right ideals of
R).

The ranks discussed above take no account of intervals where the quotient group is finite:
algebraically this may be inappropriate. So we may define the pp-rank, pp-rk(ip), of a pp
formula tp to be its foundation rank in the lattice of all pp-definable subgroups. Thus pp-
rk(v=v) < co iff T is totally transcendental, and then pp-rk(i.p) = MR(.p) for all pp '.p iff
T = T a.

5.3 fin algebraic characterisation of independence

In this section, independence will be given an algebraic characterisation - one in terms of
direct-sum decompositions of models. Roughly, it says the following: B and C are independent
over 0 iff they are contained in complementary direct summands of some pure-injective model.
But an example like T=Th(7l3 (D 712 o) and B=C=713 shows that the direction of the
"iff" above is literally false (for T. is algebraic so, trivially, is independent from any set). On
the other hand, the implication is an easy consequence of 5.5, and in fact the equivalence
between these model-theoretic and algebraic expressions of independence does hold if T= T'&
(5.36).

What we need is an analysis which allows us to take account of "trivial" independence such
as in the example just given. We will also want to be able to deal with the case "8 and C are
independent over A".

Let us prove the easy half immediately: this will also give us a goal to work towards for a
converse.

Proposition 5.24 [Gar8l; Lemma4], [PP87; 1.4] Given sets A, 8, C of
parameters suppose that there is a direct summand N=NI ®No®N2 of M with
B N1®No, C do ®N2, No=N(A) and such that BJ,No/A. Then B,, C/A.

Proof The criterion of 5.5 is used. So suppose that one has wp(b,T,a) with ip pp, with b in
8, c in C and 5 in A. Set and according to the given
decomposition of N. One has, in particular, ip(b,TO,a).

Since do is assumed independent from 8 over A, 5.5 implies that there is tp(b,5')
true with tp pp, 5' in A and of finite index in to(v,0).

But then one has the criterion of 5.5 satisfied for 8, C and A. Hence B,LC/A. o



Chapter 5: Forking and ranks 124

Corollary 5.25 Suppose that A is a direct summand of M. Suppose also that
B,C=_M are such that there is NEb'(T) of the form #=#149/1 01V2 with
B=#194 and C=_Aei2. Then 8,LC/A. o
It is necessary in 5.24 to take care over the choice of copy of N(A) - to ensure that it is

independent over A from at least one of B and C - before direct-sum decomposing. This
applies even if A is pure in M, indeed, even if A<M - as the next example shows.

Example l Let A be such that N(A) is not algebraic over A. For example A=:2(p) in
T=Th(A71). Let C=B=N(A) -a particular choice of copy of the hull of A. Then certainly
BAjC/A. On the other hand, taking N=No=N(A) one has the situation in 5.24, excepting the
requirement B,LN0/A.

In the example described at the beginning of this section the problem arises because 7l3 is
limited to one occurence in each (decomposition of a) model. Recall that we have encountered
this situation already (§4.5) and introduced the terms "limited" and "unlimited" for types and
members of b'(T).

The following may now be proved.

Proposition 5.26 (see [Pr85; 0.13]) Let p be an unlimited type over 0. Then p
is stationary. Also tp(17,9) is a pp formula in the bound of p iff tp(u,0)E p.

Proof By 4.42, G(p) = Go(p), so p is stationary (5.4), and also the description of the
bound of p follows (by 5.7). o

Corollary 5.27 (see [Pr85; 0.14]) Let p be an unlimited type over 0 and let M
be any model. Consider McN(p). Let a in N(p) be any realisation of p. Then
the type of o over M is pTM - the unique non-forking extension of p to M.

Proof Suppose that tp(u,y) is represented in tp(a/M): say tp(a,m) holds, where m is in
M. Projecting to N(p) gives tp(57,0) - so tp(U,0) E p(U). Thus, by 5.26 (and 5.A),
tp(5/M) is the non-forking extension of p to M. o

Next, I extend the notion of (un-)limited so as to be able to deal efficiently with
independence over sets other than 0. Let A and 8 be sets of parameters. Say that B is
unlimited over A if, when one sets N(Au8)=N(A)eN' for some N', one has N'
unlimited. Note that this is well-defined and that it is really a property of the type of B over
A (modulo the over-theory).

Generalising 5.26 one obtains the following.

Proposition 5.28 Suppose that B is unlimited over AEZP(T). Then tp(8/A) is
stationary and a pp formula is in the bound of tp(8/A) iff it is represented in
tp(B/A).

Proof Set N(Au B) = A (DA'. Let M be a model containing A, and consider M e N" where
N"=N' - this is a model since, by hypothesis, N' is unlimited. Applying an automorphism of
the monster model if necessary, it may be supposed that A("= V.

Suppose tp(v, m) E pp(B/M). As in the proof of 5.27, projecting to the factor A e Al' of
M 4 DA(' shows that tp(U, y) already is represented in tp(B/A). Then the result follows as in
the case A = 0. o

Now one obtains the converse for 5.25.

Theorem 5.29 [PP87; 1.5] Let A be a direct summand of M and suppose that
B, C are such that at least one of B, C is unlimited over A. Then B J,C/A if f
there is N=N1eAeM2 a direct summand of Al with B=_N,eA and C=AeA2.
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Proof The direction is 5.25.
For " ", one may suppose that B, C are modules which contain A. So one has 8= B1 ® A

and C=A®C2 for suitable modules B1, C2. Set Nj=#(B1), N2=N(C2) and let us suppose
that B, hence B1, is unlimited over A. Choose a model M containing N(C)=Ae#2 as a

direct summand. Note that there is a copy N1' of N, with N1' ® M a model. Let B1' be the
corresponding copy of B.

Thus we have N,' ® A ® N2 a direct summand of M. By hypothesis, B1 ,C2/A and, by
construction and 5.28, 81',LC2/A. By 5.28 the type of 8, over q is stationary; so
tp(B1/C2^A)=tp(B1'/C2 'A). Hence there is an automorphism f (of M) which fixes C2"A
and takes B1' to B1.

Then N=fN,' ®A ®N2 is the required direct summand of M, with appropriate
decomposition. o

In particular, one has the following corollaries (the second of which follows from the first
by Zorn's Lemma) and then the converse for 5.24.

Corollary 5.30 (cf. [Gar8l; Thm 1]) Suppose that at least one of 8, C is unlimited
over 0. Then BJ,C/0 iff there is a direct summand Nl®N2 of M, with B=Ni
and C=#2. o
Corollary 5.31 Suppose that 8i is unlimited over 0 for each iEl and also
suppose that Bi.,Ci/0 for each iEl, where Ci=U{Bj:jEI,j#i). Then
® i //(Bi) purely embeds in the monster model. o

Corollary 5.32 Suppose that at least one of 8, C is unlimited over A. Then
BJ,C/A iff, given N(A) chosen independent from BuC over A, there is a direct
summand M=N,®N(A)®N2 of M with 8=_N,®N(A) and C=_N(A)®N2.

Proof The choice of N(A) means that BJ,C/A implies BJ,C/N(A): then 5.29 applies (if
B is unlimited over R then, since BJ,N(A)/A, 8 certainly is unlimited over N(A)).

The direction follows from 5.24. o

5.4 Independence when T=TA.

The descriptions of independence and non-forking are simplified in theories closed under
product; indeed the main results of section 3 were first discovered by Garavaglia [Gar8l] in
this case (though he only considered independence over 0).

Here I quickly state these simplified forms as corollaries of results of the last section,
derive some results which hold in this special case, then give a category-theoretic
characterisation of independence in this context. This section is largely based on [PP83].

It is notable that in this (T=T' o) situation the main algebraic and model-theoretic
notions often coincide.

The first result is a consequence of 5.3 and 5.4.

Theorem 5.33 [PP83; 3.3] Suppose that T =T'ri, and let p, q be types with q

extending p. Then q is a non-forking extension of p iff p+ proves q+; this
is the case iff 6(q)=6(p).
Furthermore, every type is stationary. o
Actually, 5.33 is true in wider circumstances. This seems to have been discovered

independently by a number of people: indeed a number of such generalisations seem to be
"folklore" (the folk include Makkai, Srour, Saffe+Palyutin+Starchenko). I have taken the proof
below from [Kuc87], where it is attributed to Makkai.
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Theorem 5.34 Suppose that T is a complete stable theory, the class of models of
which is closed under formation of products. Suppose also that T has pp-
elimination of quantifiers. Let psq be types. Then q is a non-forking extension
of p iff p+ F q+. Moreover, every type is stationary.

Proof The first point to note is that, even in this generality, pp formulas commute with direct
product and direct summand (exercise). It will be sufficient to show that if pES(A) and if M
is a large containing model in the sense of §1 (before 5.1), then there is a unique extension q of
p to M with p+ F q + (for then the orbit of q under Aut,q M is just (q), and so q is the
unique non-forking extension of p to M).

The proof begins as does that of 5.2: it is sufficient to show that the following set of
formulas is consistent: p+ u ( -ltp(u,m): ip pp, m in M and p+ does not prove ip(v,m)}.
The difference is that we don't have Neumann's Lemma available.

If this set were inconsistent then there would be pp formulas ipi(U,mi) such that for each
i one had p+F-1tpi(u,mi) yet p+FV;For each i take Ti in M with
p+(ci) Anypi(ci,mi). Consider the element T= (ci)i E M"; clearly the (pp-)type of this is
p(+). Yet, on considering the components, we see that holds for each I. This
contradicts p+ i- V ," wi(v, mi), as required. o

If T is stable and Mod(T) is closed under products, then pp formulas are normal (under
any partition into free/parameter variables): indeed, T is normal. More generally, if T is
normal and closed under products then every formula is equivalent to a boolean combination of
those formulas which "commute" with direct products (i.e., the formula holds of a tuple from
the product iff it holds at each component), and these formulas are normal. These formulas are
the Horn formulas and certain others which may be explicitly described. The above theorem is
true under these weaker hypotheses. This is considered in [SPS85] (also see [BaLa73]).

The next result follows by 5.29, since all types are unlimited when T=T'a. The result
after that then follows by 5.33 and 5.35.

Theorem 5.35 [PP83; 5.3] Suppose that T=T'a. Let A be a direct summand of
M and let 8,C be arbitrary subsets of A1. Then B,I,C/A iff there is
N=N1eAeN2 - a direct summand of M - with 8=_N,eA and C=_AeN2. o
Corollary 5.36 [Gar8l; Lemma3, Thm 1] Suppose that T = T' °. Given B, C = M the
following conditions are equivalent:
(i) 8d,C/O;
(ii) whenever ip(b,c) holds with b in 8, c in C and tp pp, then ip(b,0)

holds;
(iii) there is a direct summand Y1eM2 of M with B=N1 and C=_N2;
(iv) o

If purity assumptions are added for some of A, B, C then the description of independence
simplifies further.

Proposition 5.37 [PP83; 5.2] Suppose that T=T'&. Let A, B, C be submodules
of M and suppose that A is pure in each of B and C.

(a) If 8 is independent from C over A then BnC=A.
(b) If A is pure in M then 6,LC/A iff, whenever b is in B, c is in C and

the pp formula ip(S,c) holds, then ip(b,a) holds for some a in A.
(c) If A is pure in M and if B+C also is pure in M then B is independent

from C over A iff 8nC=A.
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Proof (a) Observe first that (quite generally) if B LC/A then BnC is algebraic over A.
For let b=c E BnC and let Lp(v,w) be the formula "v=w" - so tp(b,c) holds. By 5.5 there
is ip pp and a in A with iv(b,o) true and ip(v,0) (=0!) of finite index in Hence
ip(u,o) is finite, so y,(v,a) is finite. Therefore, since .p(b,0) holds, b is indeed algebraic
over A.

In the T=T o case p(v,o), being finite, must actually be 0; so there is just one
solution of ,(u,5) in M, so (in particular) in B. But q pure in B implies that .p(A,a) is
non-empty. Hence bEA, as required.

(b) The direction is immediate from 5.5.
For "==>", 5.5 plus T=Tk implies that there is some pp u, and o in A with ip(b,a)

and tp(U,o)-ip(U,o). From ip(b,T)A\p(b,a) one has Mk 3U,w (ip(U,w)AgJ(U,a)). So,
since A is pure in M, A also satisfies this sentence. Thus there is a' in A with
(Ak) 3U(i.p(U,07')Akp(U,5)). Thus ip(U,07)nV(U,07)*0. Then, since W(U,o)-ip(U,o), one
concludes tip(U,a)-tp(U,a'). Hence ip(b,a') holds, as required.

(c) One direction follows from (a). For the other we apply the criterion for independence
in part (b). So suppose that tp(b,T) as in part (b) is 3U A jt j(b)+t j'(T)+t f(U) =0 where
the t (-) are terms (linear combinations). Since B+C is pure in M there is d=b'+T'
(say) with b' in B and T' in C, such that n jtj(b)+tj'(T)+tj"(b'+T')=0. By linearity
this yields A j t j(b)+t j"(b') _ -t j'(T) Then, since B n C = A, one has, for each j,
both sides equal to a jE A (say).

In particular this gives A j t j'(T)+t j" (T') _ -a j. Since A is pure in U, there are
a', a" i n A such that A

J

j"(a") _ -a j. Substitute this back, to obtain
A j t j(b)+t j"(b') _ -t j_(a')-t j"(a"). Re-arrange to get
Ajtj(b)+tj'(a')+tj"(b'+a")=0. Hence tp(b,a') holds, as required. o

When T=Tthere is a characterisation of independence as pushout. This is set in the
category CT defined below.

Consider the category XT which has as its objects submodules of models of T (i.e., models
of TV) and which is a full subcategory of MR. In passing from T to XT some information,
namely that whose expression requires quantifiers, is lost (consider Th(2l4('Aa) and
Th(2l2('K,) ®7l4( o))). The category CT is designed to retain such information. I define CT
abstractly at first and then show how "small" parts of it may be realised within M. Actually the
definition of CT makes sense for any complete theory (of modules or otherwise) and so the
definition is made in this generality.

Let T be any complete theory. The objects of CT are pairs (A, p=pA(U)) where q is
a set of symbols for constants, U is a sequence of variables indexed by A (as a) and p(U) is
a set of pp formulas which is closed under conjunction and pp-implication modulo T (p is to be
regarded as the pp-type of A), such that Tu p(U)u'ip-(U) is consistent, 'ip-(U) being

ip is pp and not in p(U)).
The morphisms of CT are of the form f:(A,pA)--(B, p8) where A s-8 is any map

such that if ip(a) E pA(a) then Lp(fa) E p8(b). That is, the morphisms of CT are the "pp-
type"-preserving maps (note that this implies, for example, linearity in the module case).

If M is the very saturated model, then one may interpret "small" parts of CT within M
by identifying (A, pA) with a subset, A, of M whose pp-type in M is exactly pA. The

morphisms of CT then become the pp-preserving maps between subsets of M. In the modules
case, these are the restrictions of endomorphisms of M and isomorphisms of CT are the
restrictions of automorphisms of M.
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The main theorem, 5.40 below, seems to be the result of a happy marriage between the fact
that it is precisely the pp formulas which are preserved by (algebraic) morphisms and the fact
that it is just those formulas which determine complete types in modules.

Before specialising to modules, a general result will be proved. Write R for (A, p,q)
when no ambiguity is thereby produced.

Recall that, given a diagram as shown in the category C, a commutative diagram as shown
in the middle is a (or "the" since it is essentially unique) pushout of the first diagram if it is
the least such commutative completion of the first diagram. That is, whenever one has the outer
diamond commutative in the third diagram below, there is a unique morphism h, as shown,
with hg'=g" and hf'=f".

91

C

A f >8 A f >B

C --> Df'

Af>

Pushouts in CT will be related to a generalised notion of definition by generators and
relations.

Consider a diagram of

(A,pA) >(8,p8)

91

(C, PC)

CT:
Expand the language L of T by constants symbols for the elements
of 8 and C in such a way that if aEA then "a" will name both the
element fa of 8 and the element go of C (since no confusion
should arise from my doing so, I do not distinguish between an
element and the corresponding constant symbol). So one may regard
p8(b)u PC(T) as the "pp-diagram" of this diagram of CT.

Proposition 5.38 [PP83; 4.1] Suppose that the diagram below
f is a diagram of CT. Then this is a pushout diagram

) (i) D is the union of the images of f' and g'; and(A,P )= (8,p8A

G
(ii) Lp(g'b,f'T) E p0(d) iff Tup8(U)upC(F )g'

LP (u,w).

iff:

proves

Furthermore, if this is the case and if f is strictly pp-
(C' PC) (D° pD type-preserving then so is f'.

Proof (i) Set Do=imf'uimg'

(A,PA)=f >(B,p8)

9I c 19'
(C,p )) (D P )C

I /)

and pDa="pprpo" and consider the diagram shown.
Here g,,f, are the obvious co-restrictions and k
is the inclusion (note that these are all in (3T).By

hypothesis, there exists h as shown. By the
uniqueness clause in the definition of pushout,
kh=1D. Hence k must be surjective, and D=Do
as required.

A
(Do, PDo

(ii) Certainly if Tu pB(u)upC(i )ILp(u,F) then, since p0(d) contains both PB(g'b)
and pC(f'T) (by definition of morphism), it must be that gp(g'b,f'T) is in pD(d).
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(R, PR)f (g, pg )

9 G bg

(C, PC)

f
:(E,pE)

°

Then consider the diagram:

(N,1
f)--)(6,P

A B

9'
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For the converse, suppose that T u pg(U) u pC(W) does not prove
ip(U,w). So there is a model for Tupg(U)upC(w)u(-iip(U,w)).
Restrict this model to the set E consisting of the parameters
corresponding to U^w, so that one has the diagram opposite in CT
with ip(g"T,f"E)(pE(e).

(C,p)--:(D,p ) w

C f' , , D %.* h-, y
.(E, p,

where h exists by hypothesis, making g"=hg' and

f"=hf'. But then, if one had tp(g'b,f'E) E pD(d),
applying h would yield tp(hg'T,hf'E) E pE(e).
That is lp(g"b,h"E) E pE(e) - contradiction, as
required.

Suppose that we are given a diagram as shown with the outer diamond commutative.
Since, by hypothesis, 0 =im g' u im f' one may define

(fl,pA)f;0 (S,p8a mapping of sets h:D- ) E by the conditions

gI
Ig,

g"=hg' and f'=hf'. It must be shown that h is
pp-type-preserving.

(d) (b MSo su ose that i ( b E) is in'f'pp p g p0, y(C )> (D ),, p
f' D this is a typical formula of po(d)). Then by (ii) one

has Tupg(U)upC(W)Ftp(U,w). Since g" and f"
(E p) are reservin one has-t e ( "b)u (f"E), gpp yp p pg g pCI. --TE

included in PE(e).
Hence ip(g"b,f"E) E PE(e); that is, ip(hg'b, hf'E) E PE(e) and h is indeed a CT-morphism.

Notice that h is unique by hypothesis (i).
Finally suppose that f is strictly pp-type-preserving. Let E be in C and let Lp(z) be a

pp formula in z w such that tp(f'E) holds. So tp(f'E) E pD(d): hence by (ii) it must be
that T u pg(U)u pC(i) proves i.p(z). It follows that if U= U\z then
Tu3Upg(z,i)upC(9) proves ip(i). But by assumption on f, one has 3Upg(2,U)
contained in the intersection of the pp-type of "z" with p q (this will be empty if no variable
in z corresponds to an element of /1) and hence 3Upg(z,U) is contained in pC(w). Thus
ip(E) is already in the pp-type of C. So f' is strictly pp-type-preserving, as required. a

The above result appears in [PP83], but with "monic" replacing "strictly pp-type-
preserving" in the last sentence of the statement. It was pointed out to me by Rothmaler that the
"proof" of that given there was certainly incomplete (indeed it is simply not true that if f is a
1-1 map then so is f': for a counterexample take T to be the theory of %) o ®2P A.; take

7l(p), 2(p), 7lp for R, B, C respectively; take f to be multiplication by p and take g to
be reduction mod p - the details are left as an exercise). The correct statement is as given
above: that is, "monic" has to be given what is, after all, its natural meaning in the category
CT. The last part of 5.38 is used implicitly in the way that 5.40 is stated.

Henceforth. T is a complete theory of modules.

Proposition 5.39 [PP83; 4.2] CT has pushouts iff T=T&.
Proof Given the diagram shown
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(A )f >(B consider the sets of formulas: 0 (u,w)={tp(U,w) : Lp is pp and
, p4 , p6 TupB(U)upC(w)'-ip(U,w)); L ={itp(v,w) : ip is pp and

91 Lp(u,w)4 A+(u,w)}. Set A=Lx uA -. By 5.38, any model of
TuA(U,w), reduced to the witnesses for v, w, will provide us with

(C, P ) a pushout for the diagram. So it need only be shown that Tu A is
'

C
consistent. But this is immediate since T=T ko.

Suppose that TxT'&. Then there are pp formulas ip(v), xp(v) such that
Inv(T,ip,tp)=n and 1<nEw.

C>(o b) = A Pick, in A, elements a1=01a2,...,an to form a complete set of
coset representatives of xp in ip. Let b be any element of
Lp(A)\tp(A). Set A=(a,,...,an) and B={o,b).
It will be shown that the diagram opposite has no pushout in CT.

(01,...,an) = 8

Suppose that there were such a pushout: say

a1=0C )(0,b) = A Then 5.38 would imply: D=(fa1,.... fan,gb) and, moreover,
e(fa,gb) E PD(d) iff Tu pq(v)up8(w)F e(u,w). It is then
easy to see that, for all i, ip(fai-gb) & pD(d). For i=1 this
is so since -iip(b) holds; for 1>1 note that p8(0,0) holds

(al an) - 8 c (D PD) but v(ai) does not, so tp(fai-gb) cannot be in pD(d).

However, by definition of CT, TupD(d) is consistent, yet TupD(d) entails the
existence of n+1 elements satisfying ip(u) but lying in distinct cosets of .p(v) - contradicting
Inv(T,lp,ip)=n.

Hence CT does not have pushouts (actually it has been shown that CT does not have
coproducts - 0 is the initial object of CT (if we exclude a)). o

Next, the main result of this section.

A C B Theorem 5.40 [PP83; 4.3] Let T=T'& be a complete theory of

r r modules and let A, B, C be parameters with A B, C. Then B and C
are independent over A iff the diagram shown, with canonical
inclusions, is a pushout diagram in CT.

C t )BuC

Proof The conditions of 5.38 are checked. Certainly the first condition is satisfied, so
consider the second.

One direction is trivial. So suppose for the other that ip(b,c) holds for some b in B, T
in C and pp formula tp. By assumption and 5.33, there is app formula y,(U,z) and a in A
with: by (w(v,0) 4 tp(v,0)) (a sentence of T); 3U(tp(U,a)A p(U,w)) (in pC(w));
y,(u,a) (in pB(u)). Taken together, these formulas imply (p(v,w), as required.

Let p(U) be the type of B over A; let p'(U) be its non-forking extension (note
T=T'&) to C and let B' realise p'.

Then B',),C/A so, by what has been proved already, the diagram opposite
A ;PB ht ii Ca pusouns r.G Since tp(B/A)=tp(B'/A) there is a CT-isomorphism over A between

In

8 and B' as shown below.

C t >B'uC



Chapter 5: Forking and ranks 131

So, by uniqueness of pushout, there is a CT-homomorphism between
B'uC and BuC as shown.
Hence B'uC and BuC are isomorphic in CT over R, so have the
same type over R. Since 8' and C are independent over A it
follows that 8 and C are independent over R. o

Exercise 1 Here is another proof of the direction above. Note first (cf. §1, before 5.1)
that it is enough to show that if M is a sufficiently saturated containing model for R with
IMI>JAI +2'o and if the diagram shown is a pushout in CT, then tp(c/M) does not fork over
R.

Suppose that M, A, c satisfy these conditions. Since the diagram
is a pushout it follows (5.38) that, if m,m' are in M, if ip(U) w)
is pp with parameters in R and if tp(m/R)=tp(m'/R), then/

AC (7. M"c Mktp(c,m) iff 14 p(c,m'). Let p=tp(c/M): it follows by

R"c

saturation of M and pp-elimination of quantifiers that if f is an R-
automorphism of M then fp=p. Thus, theAutAM-orbit of p is
(very) small; so p does not fork over R.

It has been remarked that there is no essential change produced if sets of parameters are
replaced by the modules they generate. It might be that one wishes to deal only with modules of
parameters. So it is useful to have at hand the statement of 5.40, modified for the full
subcategory CT* which has as its objects only the modules of parameters.

If i:CT*--_CT is the inclusion functor and if 7:(3T-) CT* is the functor taking
(B, pg) to (78,7pg), where 78 is the module generated by B and 7PB=P7B is the
corresponding pp-type, then clearly 7 is left adjoint to i. Hence CT* is a reflective
subcategory (see. e.g., [St75; §X.1]) of CT. This, together with the observation that B and C
are independent over A iff 7B and 7C are independent over 7R quickly yields the next
result.
R C>8

Cc>D

Theorem 5.41 [PP83; 4.3*] Let T=T'& be a complete theory of
modules and let A, B, C be modules of parameters with R B, C.

Then B and C are independent over A iff the diagram shown, with
canonical inclusions, is a pushout diagram in CT*. 0

Example 1 In order to illustrate the difference between XT and CT* consider the example
T=Th(2l(p) o). Within the indecomposable direct summand 7l(p) of R it is (Ex4.1/1, also
Exercise 4.2/3) possible to find non-zero submodules 8, C with intersection 0. Thus B+C is
the pushout of the diagram shown in XT.

However, by 5.36, B and C are not independent over 0 (this may be
01

C

>8 seen directly: there is 7L(p)®a(p) in Y(T) and a CT*-embedding of 8,
resp. C into the first, resp. the second, copy of 7l(p)). Hence B+C is not the
pushout of the diagram in CT* shown.
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CHAPTER 6 STABILITY-THEORETIC PROPERTIES OF TYPES

The notion of dependence (forking) considered in the last chapter is the raw stuff of stability
theory: for the analyses of models, we need some tools shaped from it. For instance,
vectorspaces over a field are "unidimensional" in the sense that only one parameter (the
dimension over the field) is needed to classify them. But, for classifying abelian groups of
exponent 4, we need two "dimensions" (the number of copies of 2 and the number of copies of
7l4). These "dimensions" (unfortunately, the term is overworked are exposed by using notions
such as orthogonality and weight. The chapter is concerned with this "structural" level of
stability theory.

Again, I have tried to include enough explanation for non-specialists, since some of the
results are used elsewhere, and since an understanding of the main points adds another
dimension to one's view of later results.

The first task is to extract that part of a type, its "free part", which controls the stability-
theoretic properties of the type. This is done in section 1.

An element is said to dominate another if, whenever a third element is independent of the
first, then it is independent of the second also. For instance, an element dominates all elements
in any copy of its hull (at least, that is so for unlimited types). The exact connection between
domination and hulls is clarified in §2. A type is RK-minimal if, whenever a realisation of it
dominates another element, the latter also dominates the first. Since domination corresponds to
realisation in prime pure-injective extensions, such RK-minimal types correspond to the
simplest building blocks of models. Indecomposable pure-injectives are among these simplest
blocks, but there can be others.

The idea in section 2 is that a pure-injective model can be built up around a skeleton of
elements which correspond to minimal blocks. One may come from the other direction, and split
a model into "orthogonal" pieces. Two types are orthogonal if (roughly) any realisation of the
one is necessarily independent of any realisation of the other. It turns out (in general) that the
minimal orthogonality classes are just the RK-minimal classes. In the third section, this is
shown directly for modules.

Particularly important examples of RK-minimal types are the regular types. These are the
types which are orthogonal to all their forking extensions, so they tend to enjoy properties
similar to those of prime ideals (since they are "critical"). Outside of the superstable case, our
main interest in them, as opposed to RK-minimal types, is that we may often show the existence
of regular types with prescribed properties. In the fourth section regular types are
characterised and a number of existence theorems are established for use in other parts of the
notes.

There is a brief supplementary section which interprets what has been done, in the context
of injective modules.

In the fifth section, saturation in modules is resolved into vertical and horizontal
components and various notions of saturation and homogeneity are compared.

The sixth section is devoted to strong types. The multiplicity of a type p is described in
terms of the index [G(p):60(p)], and we finish the section by looking at the number of
independent realisations of strong types in models.

Throughout this chanter, T is some fixed complete theory of modules, and M, M',M1, ...
will always be models of T.

6.1 Free parts of types and the stratified order

It has already been remarked that, outside the totally transcendental case, classification of
all models should not be expected. In superstable theories which satisfy some further
properties (see [Poi85; Chpt20], [Ho87] and references therein) which are satisfied in
modules, there are good classification theorems for the Fako-saturated models; it will be seen
(6.37) that for superstable modules these are precisely the weakly saturated pure-injective
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models. The results for modules slightly improve on the general situation, in that one normally
obtains theorems for pure-injective models (weakly saturated or not). The difference is not,
however, very great since any pure-injective model may be expanded rather trivially, by adding
on suitable direct summands, to obtain a weakly saturated model. Thus, again (cf. for example
§§5.4,12.3), the category in which we work is that of the pure-injective models (with
pure = elementary = split embeddings). It will be seen that most of what is said concerns
discrete pure-injectives; continuous pure-injectives have not been seriously investigated as
yet. We see first that this category has "prime extensions". (In the general stable case, one
would have only prime DTI'-saturated extensions - see [Poi85; §18.d].)

Given MkT and 5 (in M) set M(a)=N(Mu(a)). By 2.25, M(S) is a model of T. In

fact, since M is a direct summand of M(S), one has that M(S) is an elementary extension of
M. Moreover M(o)=M(a) (or rather, there is an M-5-isomorphism between any choices of
copies of the modules on either side of this equation).

Lemma 6.1 Suppose that p is a type over the model, M, of T. Let-5 and-S'
be realisations of p. Then there is an isomorphism f:M(S)--3M(5') which fixes
M and takes a to F.

Proof Since tp(5/M)=tp(07'/M) one has tp(M^S)=tp(M^S'). So, by 4.15, there is an
isomorphism with the stated properties between any chosen hulls, M(S) and M(S'). o

Therefore if p is a type over a model M, one may, without ambiguity, set M(p)=M(S)
where S is any realisation of p. This is, in the following sense, a prime model extension of M
by p in the category of pure-injective models.

Lemma 6.2 Let p be a type over the model M and suppose that M' is a pure-
injective elementary extension of M which contains a realisation a of p. Then
there is a copy of M(p) which contains M purely, contains a and is a direct
summand of M'. o
This lemma is an immediate consequence of the existence of hulls (§4.1).
Now I define the stratified (pre-)order of Poizat [Poi81]. This is a coarsening of the

fundamental order (§5.1) and, like the various stability ranks, allows one to compare types
which do not have the same restriction to the empty set. I give the definition and just state some
basic properties (refer to [Poi81] for details); then I compare this with ideas we have met
already. Poizat defines the stratified order in any context with a definable group operation.
Since our groups here are all abelian, I will use additive notation.

Let p(U) E S(R) and suppose that a is in A with 1(5)=l(u). Set a+p=tp(S+S/R)
where S is any realisation of p. Note that a+p is a well-defined element of S(A) since
X(u,b) E a+p(u) iff 'X(u+a,b) E p(U). If q is a non-forking extension of p then a+q is a
non-forking extension of S+p (exercise).

Let p and q be types over models. Set s(p) >_ s(q) if, for every formula 3 (U,i ), if
x(u+u,w) is represented in p(U) then it is represented also in q(u). The resulting
stratified order has the following properties (see [Poi81] for these, and more on the
stratified order. Also see [BR84a] for discussion of the stratified order for modules).
(so) If p and q are equivalent in the fundamental order (that is, since they are over models,

if cl(p)=cl(q)) then s(p)=s(q).
(Si) If p is a type over M and if a is in M, then s(S+ p)=s(p) (strata are "translation-

invariant").
(s2) If q extends the type p then s(q)=s(p) iff q is a non-forking extension of p.

It will be seen that the stratified order for types over models is identical with that induced
by inclusion of the corresponding groups 60(-). So, for types over models, the stratified order
is just PP0 (cf. §5.2).
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Example 1 Take T to be the theory of the abelian group M=22('Ao) e714('ko). Let M' be
the model M eT2 e714 and let mEM be any element of order 4. With the obvious notation, let
a=(0,1,0), b=(0,0,2), c=(m,0,2) and let p,q,q' be their respective types over M.

Now, c is an element of order 4 and b is of order 2, so their types are not even
comparable in the fundamental order. Yet q' is a translate, over M, of q: q'= m+ q and

hence (Si) s(q')=s(q). In fact, for most purposes of this chapter, q' is "equivalent" to q (q
is actually the free part q'. of q' - see below).

On the other hand, p is not equivalent in the stratified order to q.

Now we come to a central idea: that of the free part of a type. Consider a type p E S(M)
where MPT. Let o be any realisation of p in some model N containing M. By 2.23, the
factor N/M purely embeds in the monster model M and by 4.41 it is unlimited. Let c be the
image of a in ///M (<; M). Define the free part, p.x, of p to be the type of c over 0.
Observe that the free part of a type is unlimited (and is zero only if p is algebraic). The free
part of an arbitrary type, not necessarily one over a model, will be defined after 6.5 below.
First I show that the free part is well-defined.

Lemma 6.3 Let pES(M) with MkT. Let a in 1/ and o' in N' be realisations
of p in elementary extensions of M. Regard N/M and N'/M as being purely
embedded in the monster model of T and let c, c' be respectively the images of a
in N/M and 5' in N'/M. Then tp(c/0) = tp(c'/0).

Proof Let M' be a containing model for Nu//'. Since 5 and a' have the same type over M,
there is f EAutMM' with fa =571. There is induced an endomorphism f of M'/M, given by
f(m+M/M) = (fm+M/M). This is well-defined and an automorphism of M'/M since f is an
automorphism of M' fixing M. Regard M'/M as purely embedded in M. Since /5=5' it
follows that c and c' have the same type in M over 0, as required. o

The free part of a type (defined in [Pr85], following discussion with Bouscaren, see also
[Zg84; 11.3]) was originally defined only for types over pure-injective models. Indeed, that is
often the context in which I use them since, over a pure-injective model, the free part splits off.

Theorem 6.4 [Pr85; 1.1] Let p be a type over the pure-injective model M and let
p. be its free part. Then:
(i) M(p)=McN(p,).
(ii) If a realises p then, decomposing M(a) as MeN and accordingly setting

5=(50,51), the type of a1 over M is p.. In particular p=a0 + p,M
where p,M is the (unique) non-forking extension of p, to M.

Furthermore, p. is the unique unlimited type over 0 which is such that there
exists m in M with p = m + p,M

Proof I use the notation set up in the statement of (ii). Observe first that N is the hull of o1.
For certainly 41(51) is a summand of M(a). Conversely M^a is contained in M+ 071R so, by
minimality of M(a), we do have McA/(a1)=M(a). Thus (i) is proved.

Since (M (D #)/M = N, the type of a1 over 0 is, by definition, p,.
By 5.27, p,M is the type of a1 over M, so p=aO+p,M. Finally, the last statement

follows by well-definedness (6.3) of p. and the prescription for realising p,M (5.27). o

Corollary 6.5 [Pr85; 1.1] Let pES(M). Then s(p)=s(p,M) and G(p)=G(p,).
Proof If M is pure-injective then property (s1) of the stratified order, together with
6.4(ii), implies s(p)=s(p,M). The general case follows by property (s2) of the stratified
order.
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Suppose that .p(U,m) E p+. Then, immediately from the definition of p.,. (M is factored
out), one deduces ip(U,0) E p.. Thus G(p)>G(p*). This argument may be reversed:
alternatively, recall (5.3) that G(p) = G(q) if q is a non-forking extension of p, so it may
be supposed that we are in the situation of 6.4(ii). Then tp(U) E p* yields ip(o-a0) and hence
ip(U-o), i.e. ip(U), is in (,'(p). o

Exercise 1 Show that p* is the unique unlimited type in S(0) satisfying s(p..M)=s(p).
Exercise 2 Show that the splitting off of p. may not be possible if M is not pure-injective.
[Hint: consider M=%).]

It follows that we may define the free part, p., of an arbitrary type pES(ff) to be the
free part of any non-forking extension to a model or, more simply, as that type, q, over 0
with G(q) = G0(p). The next corollary is immediate from what has been shown, on noting that,
for unlimited types p', q', the equality G(p') = G(q'), implies p' = q', as does the equality
s(p') = s(q') (for types over models).

Corollary 6.6 [Pr85; 1.2] Suppose that p and q are types. Then the following
are equivalent:
(i) p*=q*;
(ii) 60(p)=G0(q)
If p and q are over models then another equivalent is:
(iii) s(p)=6(q).
If p and q are over a pure-injective model M then a further equivalent is:
(iv) p=m+q for some m in M. o
It is the invariant described (in a number of ways) in 6.6 which is important in

determining the stability-theoretic properties of a type p. For, after going to a non-forking
extension over a pure-injective model, one has p=m+pM for some (realised) m in M; so

it should not appear unreasonable that it is this free part p*M which controls those properties
of p.

Example 2 Continue with Ex 1 above. Let p1, p2 be the types over o of an element of order
2 which is divisible, respectively not divisible, by 2. Then p*=p2 and q*=q'*=p1.

I remark at this point that in various proofs I make a convenient choice of copy of an object
when the object is defined only up to isomorphism.

Before going on to the next section, I should say something about attributions. Many of the
results of this chapter are natural generalisations of what one sees in the special case of
injective modules over (commutative noetherian) rings. That "algebraic" case was studied
independently by Bouscaren, Kucera and the author: all three saw that the results could be
generalised.

Kucera concentrated on the totally transcendental case, using injectives over (commutative)
noetherian rings as his model (and also seeing to what extent that "algebraic" example is a good
model for U. structures other than modules). He independently obtained, for U. theories, many
of the results below (see [Kuc84], [Kuc87]).

In their general form, many of the results come from [Pr85]. A number of people had
some influence on that paper.

While still at Leeds and concerned with injective modules, I prepared a paper [Pr82] on
elementary equivalence of 1-injective (=t.t. injective) modules: in particular, that paper
included the classification of all the models of a U. theory of injective modules (cf. §4.6). After
hearing me give a talk on this late in 1979, Poizat pointed out to me that I was dealing with
special cases of concepts well-known in stability theory (regularity and orthogonality in
particular). Also around that time, I received Bouscaren's thesis [Bou79] and Kucera's
preprints [Kuc8o]: both these contained related ideas and went some way into stability theory
(a subject with which I was just starting to get to grips). Pillay gave a course on stability
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theory at Bedford College the next spring (from which sprung [Pi83]) and we collaborated to
produce [PP83]. Certainly the seeds of [Pr85] were sown.

In the spring of 1981, I visited Paris and, while there, had some discussions with Bouscaren
which resulted in the characterisations of regular and strongly regular types, as well as some
notion of the free part of a type. I went on from there, and produced [Pr85].

Finally, by the time I came to prepare [Pr85] for publication, I had seen the first version
of Ziegler's paper [Zg84], but the results were in place by then and, although there is
considerable overlap, there was no real influence.

6.2 Domination and the RK-order

The central question of this section is: given types p and q over a model, when does
realising p force a realisation of q? If one restricts attention only to pure-injective (or in
the general case, sufficiently saturated) models, then a well-behaved order on (classes of) types
is obtained - the (generalised) RK-order (RK=Rudin-Kiesler). The idea of orthogonality of
types also arises: when does realising p have no effect on realisations of q? These somewhat
different questions actually lead to the same structure - the RK-order. In this section I consider
the first, rather more algebraic, approach via the idea of domination (of elements and types).

If M is a pure-injective model and p, q are types over M, set q l *p if q is realised in
M(p). There are various ways of regarding this relation.

Theorem 6.7 [Pr85; 1.3] Suppose that M is a pure-injective model and let p and
q be types over M. Then the following are equivalent:
(i) q4*p;
(ii) M(q) is a direct summand, over M, of M(p);
(iii) q* is realised in N(p*);
(iv) //(q*) is a direct summand of //(p*);
(v) q*M4*p*M.

Proof (i)=(ii), (iii)#, (iv) These are immediate from the definition and properties of hulls.
(ii)#(iii) Set M(q)=M(b) where b is a realisation of q. By assumption, there is a

split embedding M(q) f->M(p)=M®N(p*) with f fixing M. Decompose fb accordingly as
E M 0 M(p*). Since f fixes M the type of fb over M also is q. So, by uniqueness

of q* (6.4), the type of bi over M is q*M; in particular its type over 0 is q*, as

required.
(iv)==> (v) By 5.27 one has and M(p*M)_M®N(p*). By

assumption, the former is (isomorphic over M to) a direct summand of the latter, which
therefore realises q*M, as required.

(v)=* (i) We know that M(q)=M®N(q*) by 6.4, and this in turn is isomorphic to
M(q*M) by 5.27. Similarly Thus (i) follows from (v). o

Corollary 6.8 [Pr85; 1.4] Let p, q be types over the pure-injective model M. Then
qd*p iff every pure-injective elementary extension of M which realises p also
realises q. n

Now this algebraic-looking notion will be compared with a more model-theoretic one.
Given parameters a,b,T, say that b dominates c over 5 (see, e.g., [Poi85;

Chpt19]) and write bDT/a, if every set of parameters which depends on T over a also
depends on b over Zr: d JT/a implies ddb/O. Given types p, q over a model M, we say
that p dominates q (over M), writing pDq, if there is some realisation b of p and a
realisation T of q such that b dominates T over M. It is equivalent (exercise) that for
every T realising q there should be a realisation b of p dominating T over M.
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Proposition 6.9 [Pr85; 1.5], [Sr81; Lemmal0] also see [Zg84; 6.41 Suppose that
the type of 5 over 0 is unlimited and let b be in the hull of a. Then a
dominates b over 0. In particular, 07i6/0.

Proof Let p(U,5) be the pp-type of b over a. Recall (4.10) that p is maximal in S+(57).
Suppose that c depends on b over 0: it must be shown that c depends on a over 0.

By 5.6, the dependence of c on b is witnessed by a pp formula: (we
note that since o has unlimited type over 0 so has b).

Let tp(U,0) be in p(U,0); then lp(c,b)nip(b,0) holds. Hence 3v (lp(c,u)nip(U,S))
holds. So, were c and 5 independent over 0, 5.6 would imply that 3v(1p(O,v)nip(U,5))
held. In particular one would have ip(O,u)np(U,S) consistent. Then maximality of p would
yield - contradiction. Hence c.tS/o as required. a

A similar result, with a similar proof, holds over models (6.11), but an extra lemma
(6.10) is required. An analogous result is true for arbitrary stable theories provided one works
over a ITV -saturated module (see, e.g., [Bale?]). This illustrates how the class of pure-
injective models behaves with respect to pp formulas (and so, for modules, often with respect to
all formulas), as does the smaller class of ITI+ -saturated models behave with respect to all
formulas in the general case.

Lemma 6.10 [Pr85; 1.6] Let M be a pure-injective model and let a be any set of
parameters. Let p be a pp-type over M^ and suppose that p is finitely
satisfied by tuples of M. Then p is realised in M.

Proof Set M(S)=M ®N and write S=(SO,Si) accordingly. Suppose that ip(U,3,m) E p(U).
Then by assumption there is m' in M with Lp(m',5,m). Projecting to M and to N yields
Lp(m',7 ,m) and (p(o,S1,o) respectively.

So the pp-type pl, which is as p but with So replacing S, is finitely realised in M.
Since M is pure-injective (and So is in M) p, is realised in M - say by mo. The claim is
that mo realises p. For a formula, (p as above, one now has ip(mo, ao,m) and
Adding these gives ip(mo,Z,m), as required. a

Theorem 6.11 [Pr85; 1.7] Let M be a pure-injective model, let S be arbitrary and
suppose that b is in M(S). Then 5 dominates b over M.

Proof Since b is in M(S)=N(M"S) one has, by 4.10, that pp(b/M"S) is maximal in

Let c depend on b over M: it must be shown that c depends on 5 over M; so suppose
not. Since i=tb/M there is (5.5 and 2.6(c)) some pp formula W and m in M, such that
ip(c,b,m) holds but such that, for every m, in M, one has

Let ip(U,S,m1) be in the pp-type of b over M^S. Then tp(c,b,m)n'.p(b,S,m1) holds;
hence so does 3u (tp(c,u,m)nip(U,S,m1)). From TJ,S/M one concludes that there is mo in
M such that 3u (ip(mo,v,m)n1p(U,S,m1)) holds. Therefore the set of pp formulas
{3v ip(U,S,m1) E pp(b/M- )) is finitely satisfied in M. So, by
6.10, there is mo in M realising this set. Thus { .p(mo,v,m)} u pp(b/M"S) is consistent.

Maximality of pp(b/M^S) then gives ip(mo,b,m); but mo is in M - contrary to choice
of the formula, iv, witnessing dependence. Hence cctS/M, as required. a

Example 1 The hypothesis of pure-injectivity of M in 6.11 cannot be dropped.
Take M to be the abelian group 2(p) and note that M is uncountable. So there is a

strictly increasing w-sequence of countable models:
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M=Mo<Mi<M2<..., all elementary submodels of M. Take b= CE H\ U N1. Since 7l(p) is
super stable, there exists (by "dcc" on forking, as measured by U-rank) nEw such that, for
each inn, the type of c over Mi is non-forking over Mn. Choose a E Mn+1\Mn.

One has b E Mn(a)=M. Certainly the type of c over Mn^b(=c) forks over Mn (for
cfMn): that is, c depends on b over Mn. Yet tp(c/Mn+1) - hence tp(c/Mn^a) - does
not fork over Mn: that is, c is independent from a over Mn.

Thus, although bEMn(a), a does not dominate b over Mn.

Lemma 6.12 Let M be any model and let mo be in M. Then for any parameters
c,b one has Fib/M iff cJ,(b+mo)/M. o
The lemma is actually quite general and the proof is left as an exercise. Now the algebraic

and model-theoretic notions above are linked.

Theorem 6.13 [Pr85; 1.9] Let p and q be types over the pure-injective model M.
Then the following conditions are equivalent.
(i) q4*p
(ii) If bi realises q*M then there is a, realising pM with a, dominating b,

over M.
(iii) If b realises q then there is 5 realising p with a dominating b over

M: that is, q l p.
Proof I use the fact (see [Poi85; 19.19]) (and exercise above) that, in order to check
(ii)/(iii), it is enough to show that there is some realisation of q*M, respectively q,
dominated over M by some realisation of pM, respectively p.

M==>(iii) Let 5 realise p. By assumption, q is realised in M(a). So (iii) follows by 6.11.
(iii)*(ii) Let b realise q. Set M(b)=M(bN(q*) and put b=(bo,b1), where 51

realises q*M (6.4). By assumption, there is a (in M) realising p and dominating b over
M. By 6.4, there is ao in M such that a1=a-ao realises pM. It is claimed that a1
dominates 51 over M.

Suppose then that c depends on 51 over M. By 6.12, c depends on b=b0 +b1 over M.
So, by choice of a, c depends on a over M. Then, again using 6.12, one concludes that c
depends on a,= a-ao over M, as required.

(ii)=:> (i) Choose 61 realising q*M. By assumption there is a realisation, o of p*M
dominating Ti over M. Consider M(071,61). Decompose this as M(51)®N' for some N'; set
51=accordingly. It will be shown that the type of 51' over M is q*M which, by
6.7, will be enough.

By 5.25, b' is independent from a, over M; so by choice of a1 one has that b' is
independent from 91 over M. Now suppose that the type of 51' over M were not q*M. Since
the type of bi over M is q*M, it follows, upon projecting, that pp(b,'/M) strictly contains
the pp-part of q*M. Hence there is a pp formula Lp and m in M such that
LP (b1',m)n-iLp(b1,m) holds. This immediately yields ,tp(b',o) and also T(b1-b',m). Since
b' and 51 are independent over M one concludes that there is mo in M with tp(b1-ff o,m).
Projecting this yields tp(b',0) - contradiction, as required. a

Corollary 6.14 [Pr85; 1.10] Let p and q be unlimited types over 0. Then N(q)
is a factor of N(p) iff gM4pM for some (equivalently, for all) pure-injective
models, M, of T.

Proof This is immediate from 6.7 and 6.13. o

Corollary 6.15 [Pr85; 1.11] Let M be pure-injective and let 57,_5 be parameters.
Then:
(a) b lies in some copy of M(a) iff 5 dominates a^b over M;
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(b) if the types of both a and b are unlimited, then b lies in some copy of
N(a) iff a dominates a^b over 0.

Proof One half of (a), resp. (b), is just 6.11, resp. 6.9.
Suppose then that oDa b/M; one argues as in Set M(7,5)=M(7)®N'

and write b=(b2,b') accordingly. By 5.25 (and 6.12) b' is independent from a over M;
so, by assumption, it is independent from a^b.

By projecting, one has pp(b2/M^7)2pp(b/M^5). Suppose, for the converse, that w is
pp and m is in M with ip(b2,a,m) - that is, with ip(b-b',a,m). Independence over M
yields ip(b-i 0,5,m) for some mo in M. Projecting this yields Lp(b',0,0). Combining this
with the original formula then gives ip(b,a,m).

Hence b2 and b have the same (pp-)type over M^a. So there is an M^a-automorphism
taking b2 to b. The copy of M(a) containing b2 maps to a copy of M(a) containing b, as
required.

The second half of (b) follows from (a) by choosing the pure-injective model M to be
independent from a^b over 0 (for each direction, this can be done). o

Example 2 Let T be the theory of the abelian group 7l4 tea. Let p <q<pp(o) (ordered by
inclusion of their pp-parts) be the types in S1(0). Note that the non-forking extensions of p
dominate those of q and vice-versa.

Let a be an element of order 4. Then the hull of a is just the module it generates. In
particular the only (non-zero) elements dominated by a over 0 are a, 20 and 30. On the
other hand 2a certainly dominates these elements over 0 (by 6.9) but also dominates many
others. For if c is any element of order 2 then (a+c)2=2a - so a + c generates a copy of
the hull of 2a and so, by 6.9, 2a dominates a + c over 0. It is easily verified, using 6.15,
that all elements dominated by 2a, apart from itself, are of this form (at least in this example,
one does not need "aDa^b" - just "5Db": how general is this?).

It is implicit above (and it may be checked as an exercise) that if p and q are types over
the pure-injective model M, and if M' is any pure-injective elementary extension of M, then
one has pDq iff pM'DgM'.

Now let p and q be types over a pure-injective model M. I f pDq and q D p then set
p=q and say that p and q are RK-equivalent. The order induced by "4" on the resulting
RK-equivalence classes is the (generalised, in that [Las82a] is concerned with the superstable
case) RK-order. This order will be discussed further in the next section, after orthogonality
has been described. Let us note the following for now and then go on to describe the RK-minimal
types.

Corollary 6.16 [Pr85; 1.12] Let p and q be types over the pure-injective model M.
(a) p dominates q iff p.M dominates q.M, and this will be so iff N(q.) is

a direct summand of N(p..).
(b) p and q are RK-equivalent iff p..M and q..M are RK-equivalent, and that

is the case iff N(p..) is isomorphic to //(q.).
Proof (a) By 6 . 1 3 , q 4 p is equivalent to q4 *p; this, by 6.7, is equivalent to q.M Q+pM
which, in turn, is equivalent to q.M 4 p*M

(b) The first equivalence is by (a); the second follows since two pure- injectives, each
purely embeddable in the other, are isomorphic (1.8). o

A type p (over a pure-injective model) is said to be RK-minimal if it is not algebraic
but is minimal such in the RK-order. This is the usual definition in the superstable case, but
now we encounter a potential problem arising from the generality in which we work. All the
above allows infinite tuples and types in infinitely many free variables, but then it seems that a
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choice must be made in the above definition: whether to retain this generality or to restrict to
the finite case. For instance, Th(71"*o) is not superstable and, if p is the pp-type of the
element 1 (in a copy of 1), then N(p)=7L=pi(®(7l(p) : p is prime)) has infinitely many
indecomposable direct summands. In determining those types q with qdp should we restrict
only to types in finitely many free variables or not? For it is not immediately obvious whether
or not every summand of //(p) is the hull of finitely many elements. Fortunately, every
summand of N(p) is the hull of a single element and, indeed, this is true in general (9.16).
Therefore no real problem arises, and one may regard the RK-order as applying just to types in
only finitely many free variables.

Theorem 6.17 [Pr85; 1.13] Let p be a type over the pure-injective model M. Then
p is RK-minimal iff every non-zero direct summand of N(p..) is isomorphic to
#(p*).

Proof If N(T)=N(q) is a non-zero direct summand of N(p*) (by 9.16, this is a typical
summand) then, noting that p.. unlimited implies q = tp(T) unlimited, 6.16(a) yields that
qM is dominated by p. So RK-minimality of p implies that it is RK-equivalent to qM.
Hence, by 6.16(b), it follows that N(p*)=N(q..M)=N(q), as required.

Suppose that q is a type over M (in finitely many free variables) which is dominated
by p. Then, by 6.16(a), N(q..) is a direct summand of N(p*). So, by assumption, either
N(q..)=0 or N(q..)=N(p..). In the first case q is a realised type; in the second case
6.16(b) yields that p and q are RK-equivalent. Thus p is RK-minimal, as required. n

Corollary 6.18 [Pr85; 1.14] Let p be a type over the pure-injective model M. If
p,. is irreducible then p is RK-minimal.

Proof This is immediate from 6.17, since irreducibility of p* is just indecomposablity of
N(p*). D

Corollary 6.19 [Pr85; 1.15] Suppose that the theory T has no continuous part.
If p is a type over the pure-injective model, M, of T then p is RK-minimal
iff p* is irreducible.

Proof The assumption on T implies that N(p*) must have an indecomposable direct
summand. So the result follows by 6.17. n

Example 3 For an example of an RK-minimal type which is not irreducible, let R be a
regular ring which has the property that every finitely generated (so cyclic) right ideal is
isomorphic to R itself. For instance, let R=End(UK)/soc(End(UK)) where UK is an
dimensional K-vectorspace (K a field) and "soc" denotes the socle (sum of all simple right
submodules). Another class of examples is provided by existentially closed prime rings
[Pre3a]. An example of the first kind is right self-injective, so is equal to its own hull (since
R is regular, pure-injective and injective hulls coincide - 16.14).

Take T to be the theory of RR (or (RR)A& if R*R'k ); M=R; p=tpM(1R).
From the condition on the right ideal structure of R it follows that p satisfies the

condition of 6.17. (For the non-self-injective case, a little argument is needed: note that a
finitely generated essential right ideal of R must equal R.) So p is RK-minimal. But,
provided R is not right artinian (i.e., (semi-)simple artinian), p will not be irreducible.
Example 4 Let T be the theory of the abelian group 26'k. The models of T are (exercise)
precisely those groups of the form 22k) (D 2l3(1) where K,) >_ 'k,. Let M be any (pure-
injective) model. The types over 0 are: p0(u)=(u=0); p2(u)=(v2=0AUm0
p3(U)=(U3=OAUxO); p6(u)=(v2m0Av3x0).
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Since N(p2)-712, N(p3)=713, //(p6)=26=22®7l3 it follows from
6.16 that p2M 4 p6M and p3M4 p6M and that there are no other non-

.\ j trivial relations between p2 M, P3 M, p6M in the RK-order. Since the
RK-order is determined by the free parts of types (so types over 0), it
follows that the RK-order (with the algebraic types included at the bottom)
has the shape shown.

Therefore, by 6.17, pES1(M) is RK-minimal iff p.=p2 or p.,=p3.

Note (from 6.6) that if pES(A), gES(8) are such that 60(p)=G0(q) then p and q
are RK-equivalent in the following strong sense: if p', q' are non-forking extensions of p, q
to a pure-injective module N Au8 and if M is any elementary extension of N, then M
realises p' iff M realises p, iff M realises q,.=p*; hence, iff M realises q'.

6.3 Orthogonality and the RK-order

Now we have a description of the RK-order in terms of algebraic conditions for q to
dominate p. There is another aspect to this order, illustrated, for example, by the theory of
716'x. Here there are two RK-minimal classes and these are in some sense strongly independent
(independent as RK-classes). This strong independence is termed orthogonality and in modules it
may be described in terms of direct-sum decompositions of pure-injectives.

Let p, q be types over the model M. Say that p and q are weakly orthogonal,
plwq, if whenever a realises p and b realises q then a and b are independent over M.

It is equivalent (exercise) to require that p(u1) u q(U2) be a complete type.
Let p,q be types over the model M. Then p and q are orthogonal, plq, if for every

elementary extension, M', of M the non-forking extensions of p and q to M' are weakly
orthogonal. If M is (IRI+'/`,)+-saturated then orthogonality and weak orthogonality over M
coincide for types over M (see [Pi83; 9.46]). That they need not coincide for types over
arbitrary models is shown by the following example.

Example 1 Take M to be the 71-module 71(p). Note that 71(p)=_71(p)®Q. The U-rank of M
is 1 (Ex5.2/7), so every extension of an unrealised 1-type over a model is either non-forking
or algebraic.

Choose an element c E M\M and let (00i E, be a sequence in M such that
ai E Mpz\Mpz+1 and pi +1lc-Ej:, aj for all j: that is, the ai describe that path through
the p-branching tree of pp-definable cosets which corresponds to c (cf. §2.71). Let p be the
type of c over M, and let q be the type of the element (0,1) E M19 Q. It is claimed that p and
q are weakly orthogonal but not orthogonal.

Consider any realisations of p and q. It entails no loss in generality (apply an M-
automorphism) to suppose that the realisation of p is the original one c. Let b be the
realisation of q. If b and c were not independent over M then (as remarked above) b would
be algebraic over M^c; but (the chosen copy of) M is a model extending M-c and does not
contain a non-zero element which, like b, is divisible by all powers of p. This would be a
contradiction. Therefore b and c are independent over M. So, by definition, p and q are
weakly orthogonal.

On the other hand they are not orthogonal: in fact they are RK-equivalent (clearly this
excludes the possibility that they are orthogonal). For G(p)=G(q)= fl (Mpi : iEca} (consider
the ai as above) and so, if M' is a pure-injective model extending M and if p', q' are the
non-forking extensions of p and q to M', then by 6.6 there is m' E M' with p'=m'+q'.
Hence (by 6.12) p' and q' are not weakly orthogonal - as claimed.
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Theorem 6.20 [Pr85; 1.16], [Zg84; 11.6], also see [Kuc87; 3.9] Let p and q be
types over the pure-injective model M. Then the following conditions are equivalent.
(i) p and q are orthogonal.
(ii) (p,.)M and (q.,)M are orthogonal.
(iii) N(p.) and N(q.) have, to isomorphism, no non-zero direct summand (which

may be taken to be the hull of a single element) in common.
(iv) If N is a direct summand of M and contains a realisation a of p, and a

realisation b of q., then, choosing any copies N(a), N(b) of the hulls of a
and in N, there is a decomposition of h( as N(a)eN(b)eN' for some
N' (compare §5.3).

Proof Since conditions (ii), NO and (iv) depend only on the free parts of the types
considered, we may enlarge M if necessary and assume that it is ITS+ -saturated. Therefore we
need check only weak orthogonality (exercise: show that pure- injactivity of M is actually
enough for "1w 1").

(i)<#(ii) By 6.4 there are 570 and F. in M with p=a0+p.,M and q=bo+q.M.
Therefore p(U1)uq(U2) is a complete type iff p(U1-ao)uq(U2-bo) is a complete type, and
this will be so iff p.M(U1) u q.,M(v2) is complete.

(iv) ==> (iii) This is obvious.
Let a realise p* and let b realise q.,. If a and b are not independent

then, by 5.6, there is a pp formula linking them. By 4.31 it then follows that the hulls of a
and b have a non-zero direct summand in common.

(ii)i (iv) Let 7,, N, N(a), N(b) be as in the statement of (iv) and suppose that (p.)M
and (q.)M are orthogonal - so a and b are independent over 0. Two applications of 6.9 show
that N(a) and N(b) are independent over 0. So by 5.30 there is a direct sum decomposition
as described. o

Corollary 6.21 [PP87; 3.5] Let p be any type. Then p is non-orthogonal - even
RK-equivalent - to a type over 0 (namely per.). o

Exercise 1 The definition of (weak) orthogonality makes sense over any set (in place of M).
Even when every model is pure-injective (i.e. the U. case) weak orthogonality and orthogonality
do not coincide). Show this by an example.
[Hint: try Th(7l2 e 714 ) and consider 1-types over 0.1

Corollary 6.22 [Pr85; 1.17] Suppose that p and q are types over a pure-
injective model. Suppose also that p is RK-minimal. Then p is orthogonal to q
iff N(p.) is not (isomorphic to) a direct summand of N(q.,).
In particular, if both p and q are RK-mini mat then they are orthogonal iff their
hulls are non-isomorphic.

Proof Certainly if p and q are orthogonal then, by 6.20, N(p.,) cannot be a direct
summand of N(q.). Conversely, if p and q are non-orthogonal so, by 6.20, if //(p.) and

N(q.) have a common direct summand, then this summand may be taken to be the hull of a
single element which, by 6.17, must be isomorphic to N(p.). The second assertion then
follows by 6.17. o

Let us consider again the RK-order restricted to RK-equivalence classes of types with
discrete hulls. With the results of this section and the last, it is clear that this is a A-semi-
lattice with (p/=)A(q/=) being given by the largest common direct summand (up to
isomorphism) of N(p) and N(q). Then one has plq iff (p./=)A(q./=) = 0, where 0 is
the class of algebraic types. This may be connected with the notion of spectrum in the case of
injective modules (cf. §6.1). An operation of product on stationary types is defined thus (see
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[Las82a]): given stationary types p, q (extended in a non-forking way to a common domain),
let a, b be independent realisations of p, q respectively. Then p®q is the type of the tuple
or-_F.

Let T be a theory of modules. Define the dimension of T, .u(T), to be the number of
orthogonality classes of weight one types (for weight, see §6.4; I exclude continuous pure-
injectives because I don't know exactly how I should count them). For modules, it follows from
what has been shown, that there is such a maximal number (every type is non-orthogonal to a
type over 0): modules are "non-multidimensional" (for a precise definition of the term, see the
texts on stability theory). An example of a "multidimensional" theory is that of a single
equivalence relation: as the models get larger, so do the number of dimensions/cardinals needed
to specify them up to isomorphism (each new class introduces a new dimension whereas, in
modules, we have addition to link new cosets to old ones).

6.4 Regular types

Regular (or even just weight one) types are particularly important in the stability-
theoretic classification of (sufficiently saturated) models. In some sense, they form the
skeleton, or correspond to the basic components, of a model. That this certainly is the case in
modules will be seen here and later. Regular types can also be seen as generalising various
notions of critical right ideal, both in their model-theoretic description and in some of their
uses (see the end of the section).

A non-algebraic type p( S(R) is regular if, for any model M containing R and for any
forking extension, q, and any non-forking extension, p', of p to M, the types p' and q

are orthogonal (p is "orthogonal to all its forking extensions").
Recall §4.6 that a type is critical if its pp-part defines a minimal non-zero /A-pp-

definable subgroup of its hull. The next result characterises regular types and at the same time
shows that regularity of a type is independent of the over-theory.

Theorem 6.23 [Zg84; 11.4], [Pr85; 1.18] (also [Sr8l; Lemmall]) Suppose that p
is a type over a model M. Then p is regular iff p. is critical.

Proof I give the proof for 1-types: for n-types, just put a bar above everything. We may as
well suppose that M is pure-injective.

Write M(p) as Met(p.) and decompose a realisation a=(ao,a,) of p in M(p)
accordingly. If p, is not critical then there is bEN(a,) realising p.+ but also with tp(b)
true for some pp tp not in p..

Consider the model M c N(a,') a N(a,), where a.' is a realisation of p. (since p. is
unlimited, there is such a model). If p, is the type of a over Me N(a,') then p, is the
non-forking extension of p to that model. Let p2 be the type of ao+o,'+b over M eN(a,').
We will see that p2 is a forking extension of p.

Observe first that the restriction of p2 to M is tp(ao+(o,'+b))/M), which clearly
equals tp(ao+a,/M). So p2 extends p to McN(a,').

To see that p2 forks over M, note that tp(b) yields W((ao+o,'+b)-(ao+a,')) and,
were p2 equal to p, (the unique non-forking extension) this would give lp(a-(ao+a,'))
which, on projecting, would yield w(a,) - contrary to choice of p.

Therefore, since p is regular, a=ao+a, and ao+a1'+b must be independent over
McN(a,'). So, by 6.12, a, and b are independent over McN(a,'); but bEN(a,), so we
have a contradiction to 6.11, as required.



Chapter 6: Stability-theoretic properties of types 144

Let a realise the non-forking extension, p', of p to some model M', which may be
assumed to be pure-injective. Set M'(a) = M' (D N(al) with a= (ao, a,) as in 6.4: by that
result, we have pp(a1) = p,

Let b realise any extension of p to M' and suppose that a and b are not independent
over M': so, to establish regularity of p, it must be shown that tp(b/M') = p'. By 6.4, it
will be enough to show that if M'(a,b) = M'sU(aj) ® N' and if b= (bo,b1,b2) accordingly,
then tp(b1+b2/0) = p,.

Since M is an elementary substructure of M' and since the type of b over M is p, it
follows (exercise) that the pp-type of b,+b2 is at least p,+. Hence p,+(bl) holds. Also,
since a and b are dependent over M', it cannot be that b, is zero: so, by criticality of p,,
it follows that pp(bl) = p,+. Then, if ip is pp and ip(b,+b2) holds - so ip(bl) holds - it
follows that ip(a1) holds. This shows that pp(b,+b2) = p,+, as required. o

Corollary 6.24 [Zg84; 11.5]
(a) If pES(R) is regular then p, is irreducible.
(b) If p (an unlimited 1-type over 0) is regular then p is irreducible.

Proof This follows by 6.23 since (4.48) critical types are irreducible. o

A regular type need not itself be irreducible. For an example, consider the type over 0 of
an element of order 6 in 7130 9712. Of course, irreducible unlimited types need not be
regular (rather they are of weight one - see after 6.27 below): consider 7140 or, better,
71(p)°.

Corollary 6.25 [Pr85; 1.19] Let p be a 1-type (over a model M). Then the
following are equivalent.
(i) p is regular.
(ii) p.(M) is regular.
(iii) p, is critical.
(iv) If gES1(0) and q+=, p,+ then N(q) and N(p) have no non-zero direct

summand in common.
Proof This is immediate by 6.23, 6.24 and since (p...M),= p.... o

Example 1 Consider the theory of the abelian group 712'k. ®7l4 o. The type over 0 of an
element of order 4 is easily seen to be not critical, hence not regular; whereas both types of
elements of order 2 are critical, so are regular.
Example 2 Take the theory of the abelian group 26'>k-. With the notation of Ex6.2/4, the
types p2 and p3 are regular, whereas p6 is not (but for rather different reasons than the
type of an element of order 4 in the previous example; that type is at least RK-minimal).

If one is using realisations of regular types to classify models (of a particular sort), then
one needs to know that there are "enough" realisations of regular types. The next result gives
this in the superstable case.

Proposition 6.26 (Srour) Suppose that T is superstable and let M<#, M*iV be
models of T. Then there is c E N\M such that tp(c/M) is regular.

Proof Consider N/M purely embedded in M. By 3.8, N/M is totally transcendental so, by
4.49, it realises a critical type. Let c E N\M be such that its image, a, in N/M is critical.
By definition, tp(c/M), = tp(a). Therefore, by 6.23, tp(c/M) is indeed regular. o

The original proof was somewhat different. Srour also later found essentially the above
short proof. It is presented in [PP87; 6.3], but with a slip, which I take the opportunity to
correct. (Notation as in [PP87]) In the second paragraph one should begin by choosing a copy,
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M, of the hull of M independent from c over 0 and then consider the hull of M"c, rather
than the hull of M^c. The only other change is that, at the beginning of the fourth paragraph,
one replaces the hull of M -c by the hull of M^c.

Exercise 1 Show that, if M<N, MAN are superstable modules, then there is an element in
the difference whose type over M is regular and non-forking over 0.

For the following definition and result, which arose in discussion with Bouscaren, let T be
totally transcendental. A non-realised type pES1(M) is strongly regular if there is a
formula, tp, over M such that the pair (p,ip) satisiies the condition that every element
a E M(p)\M which satisfies 'p actually satisfies p. In general, strong regularity is a more
stringent condition than regularity: for U. modules they coincide.

Theorem 6.27 [Pr85; 1.21], [Kuc87; 3.5] Suppose that T is totally transcendental
and let p be a type over the model M. Then the following conditions are equivalent.
(i) p is regular.
(ii) p is strongly regular.
(iii) p. is critical.

Proof The equivalence of (i) and (iii) is 6.23. Let a realise p and set M(a)=M eM and
a=(a0,a1) accordingly. Since T is U. there is app formula ip which is equivalent modulo T
to p. +. So (6.4) p+ is equivalent to tp(v-ao). Therefore, if p. is critical then clearly
p(M(a))=tp(M(p)-ao)\M; so (p,tp(v-ao) is a regular pair. Thus (iii) implies (ii). That
(ii) implies (i) is true in general (see [Poi85; 20.10]) and is fairly obvious here - exercise. a

Strong regularity is theory-independent only within the context of U. theories. The type of
a non-zero element of fl is strongly regular in the theory of 0 but not in the theory of

Z(p)-
I have already mentioned the term "weight" of a type: I define this now. Let p be a type

over the set A. Let M be any pure-injective model containing A. The weight of p, wt(p),
is defined if N(p.) is discrete, in which case it is the number of indecomposable direct
summands in any decomposition of N(p.). Thus, wt(p)=1 iff p. is irreducible, and if p is
regular then wt(p)=1. If T is superstable then any type in finitely many free variables has
its weight defined: indeed its weight is finite (exercise: prove this directly for modules). It is
clear that if (the hull of) p. is discrete, then the number of RK-minimal classes in the
fundamental order below that of p is no more than wt(p), but (exercise) it may be less. The
usual definition of wt(p) for pES(M) (T superstable) is max{n : there exists a realising
p and there exist a1,.-.,an with ai,[faj:j*i)/M and aida/M for all 1) (exercise: show
that this definition gives the same result as that above). Although regular types are the ones
usually employed for classifying superstable structures, the module case (see Chapter 10) seems
to indicate that weight-one types are almost as useful (and there are many theories with
"enough" weight-one types but not enough regular types). But also note §10.T that nice theories
of modules (those with m-dimension) have enough regular types, provided we work in Teq.

The weight of a type p depends only on the unlimited type p.,, but in some contexts it is
the algebraic weight, algwt(p), of a type which it is appropriate to consider - I define this
as the number of indecomposable direct summands in a decomposition of the hull N(p) if this
is discrete (otherwise the algebraic weight is oo).

If T=T'o is not totally transcendental then there is some type, over infinitely many
parameters, of infinite weight. In particular, if T is not superstable, then there is such a
type. For, let M be a model of T and let tpi(iEw) be pp formulas with tpo(M)>tp1(M)>...
(3.1). Choose elements ai E tpi(M)\tpi+1(M). By the argument of 2.11, there is some
aEpi(M(xo)) such that, if bn is the element (a.,aj,...,an-1,0,0,...) of M(''o), then
tpn(a-bn+1) holds. Since itpn(b77+1) also holds, one has that for each n, a depends on
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bn+1 over 0 and hence anda/(ao,01,...,a77-1} (here, at lies in the i-th copy of M). But
the at form an independent set (exercise). Therefore the hull of a has infinite weight. In
general, one cannot get away with only finitely many parameters: consider 7l(p)Xa.

Next, we see various conditions which guarantee existence of regular or weight-one (i.e.)
irreducible) types with some specified properties.

Recall 4.33, which is a general construction of types which are irreducible and unlimited.
With appropriate choice of IF (as there) the types maximal with respect to missing W will
actually be regular; if Y' consists of all pp formulas satisfying some finiteness condition then
regularity is essentially a consequence of the fact that forking is witnessed by pp formulas - so
such a type tends to be very different from its forking extensions (see 9.9 for a way of making
this precise).

First I give two direct applications of 4.33.

Proposition 6.28 [PP87; 6.7] Suppose that the Morley rank of the theory T is
infinite or undefined. Then there is a 1-type over 0 which is non-isolated,
irreducible and unlimited. If T is totally transcendental then p may, further, be
taken to be regular.

Proof Let ' be the set of all pp formulas, gyp, such that the interval [ip, 0] (in the lattice of
pp-definable subgroups) has finite length. By modularity, ' is an ideal. By assumption, 5.12
and 5.18, "v=v" is not in IF; so there will be a type p over 0, maximal with respect to the
condition p+ n'Y=.0. By 4.33, any such p is irreducible.

Furthermore, p is non-isolated. For if tp AA -iy,i isolated p (where by 9.20 it may be
supposed that ip is equivalent to p+) then, as in the argument of 4.33, one concludes that, for
each i, LPAipi is in 'Y_ Then V LPAIpi = Y, tpAWt E'; so the interval [Y,"tpAipi, 0] has
finite length. But then, since [ip,0] has infinite length, there must be e pp with
lp>e> 1; LPAy,i. This shows that the formula lp AA nipi is not complete, so cannot isolate p -
a contradiction as required.

For similar reasons, p is unlimited (by 4.42).
If T is U. then consider N(p)=N(p.) - a U. module. Take (by dcc on pp-definable

subgroups) a critical type q with hull isomorphic to that of p. By 6.23, q is regular.
Furthermore, p non-isolated implies that p is not realised in the prime model, Mo, of T.
Since Mo is an essentially unique direct sum of indecomposable submodules, this means that

is not a direct summand of Mo. In particular q is not realised in Mo - so q is
non-isolated. Thus q is non-isolated, regular and unlimited, as required. o

In 6.28 one needs an assumption such as MR(T)>- X.: non-?k,-categoricity is not enough
to ensure a non-isolated irreducible type - consider U7L.

Proposition 6.29 [PP87; 6.8] Let T be non-totally-transcendental. Then there is
a 1-type over 0 which is unlimited, not finitely generated, contains no minimal pair
(in particular, is non-isolated) and regular.

Proof Let IF be the set of all pp formulas ip such that the interval [gyp, 0] has the dcc. Then

T defines an ideal in the lattice of pp-definable subgroups and, since T is not t.t., "v= v" is
not in T. So, by 4.33, if p is maximal with respect to the condition p+ n'P=m then p is
irreducible and clearly unlimited.

Also p is not finitely generated. For if there were some pp formula ip equivalent to p+,
then any y, strictly below tp would, by maximality of p+, have to be in `Y; so [y,, 0] would
have the dcc. But then [Lp, 0] would have the dcc - contradiction.

If Lp/4J E p were a minimal pair, then there would be Lp'E p with &p' Alp E I - so it may be
assumed that tpE 'P (by 9.1). But then the interval [ip,o] would have the dcc - contradiction.
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Now suppose that gES1(A) is a forking extension of p. So there is W E (,'(q)\(jo(p). By
maximality of p+, there is ipE p + with PAW E ' - so it may be supposed that W already is
in T. Let p1 E S1(A) be a non-forking extension of p. Take realisations c, b of p1, q
respectively. In order to show that p is regular it must be proved that c and b are
independent over A.

If they were not independent then there would be some pp formula ip linking them. But
then, since y, has the dcc, 9.10 implies that p1, so p, contains a minimal pair -
contradicting the last paragraph. (The proof of this in [PP87] is related, but more direct). o

The proof above actually has shown the following, since every forking extension of p (as
above) clearly has Morley rank.

Corollary 6.30 [Pr81c] Let T be non-totally-transcendental. Then there is a
(regular unlimited) 1-type over 0 which has U-rank but does not have Morley rank. o

Corollary 6.31 Every complete theory of modules with an infinite model has
discrete pure-injective models of arbitrarily large cardinality.

Proof Certainly this is true if the theory has continuous part zero. On the other hand, if
Tcm0 then, by 3.14, T is not t.t. and so, by 6.29, there is an unlimited irreducible 1-type; so
clearly (using 4.36) the result follows. o

As another application of the idea behind 4.33, I give the result of Pillay which is that, if
T is a countable complete theory of modules with only finitely many countable models, then it
has just one model (up to isomorphism ) . I n fact the presentation here rather reverses the order
of discovery, since 4.33 was generalised from the argument of [Pi84a] and from analogous
arguments which were suggested by the corresponding technique in ring theory. The notation
n(K,T) is used for the number of models of T of cardinality K (up to isomorphism).

Theorem 6.32 [P1184a] Let T be a countable theory of modules. If T is not 'tZ,-
categorical then 'A.. In fact there exist, in this case, 'k non-
isomorphic models of the form Me/V7 (nEw) for suitable M(FT) and 1q.

Proof First, I give a proof, taken from [Pr81c], on the basis of results already established.
Then I give the original proof of [Pi84a] which is more direct, but appeals to some general
stability theory. The result also follows from Ziegler's classification of the models of a theory
with m-dimension, as presented in §10.4.

1. If T is totally transcendental then the result follows directly from the classification
theorem (4.63) for the models of such theories.

If IDT(0)= U( SnT(0) : nEw)I=2 o then, of course, T must have 2'A° countable
models to hold all the 2' o n-types (for suitable n). The more precise statement may be
deduced using the fact that there is, by 6.29, an irreducible type p with no minimal pair. It
follows (see after 10.24) that there is some pure-injective model not realising p. Let Mo be a
countable submodel, and then proceed as in the next paragraph.

If D(T) is countable then T has a prime model Mo (1.6). Let p be as in 6.29 and note
that, since p is unlimited, if A is any countable pure submodule of N(p) then Mo ® An is a
model of T for each 77E w. Moreover, since the types realised in MO are all isolated, and since
p does not contain a minimal pair, it follows by 9.22 that the indecomposable N(p) is not a
direct summand of Mo. Hence the Mo ®N(p)77 are non-isomorphic, and so (by uniqueness of
pure-injective hull) the same is true of the Mo ® An.

2. The more direct proof proceeds as follows. Let IF be the set of all pp formulas y, such
that the interval [y1, 0] is a finite set. Now, 'P need not be closed under addition (see the
example below), so 4.33 itself cannot be applied. In any case, let p be chosen maximal not
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containing any formula from T. Observe that if W is pp and not in p+ then there must be
ipEp+ with LDAW=V;Wj for suitable xp1,...,y,n in `Y.

If p were isolated, say by lp AA e v <<p for each j then, for each j
choose in Y' such that 8j<V( ji:It is claimed that the interval
[ip, 0] is finite. For, if e <<p then, since LP A A' 16 j is supposed to isolate p, it must be that
e,VI aj. Hence 8 V{tpji: j=1,...,m i=1,...,nj} and so 8=VjV.eAxpji. But, since each
W ji is in 1k, there are only finitely many possibilities for the e A1p ji; hence there are only
finitely many possibilities for their union e. Thus ipE`Y - contradiction. So p is indeed non-
isolated.

Moreover p has U-rank. For if q is a forking extension of p, then q represents some
pp formula e(v, y) not represented in p. But then there is tpE p such that Lp(u)Ae(v, 0) E T.
Clearly, any formula in 'Y has finite Morley rank - so in particular has U-rank. Therefore
UR(p) exists and is even less than or equal to w.

Now it is a result of Lascar that if T has a non-isolated type with U-rank then T has at
least countably many models, and one may simply quote that result. In [Pi84a] Pillay gives a
direct proof (which gives more information on what the models look like), using the fact that we
have a non-isolated type of U-rank 5 w. I refer the reader there for the proof and references.
One should not expect elementary dimension theory to be immediately applicable here since, as
is shown by Ex3 below, the type p produced above need not be irreducible, let alone regular. o

Exercise 2 Show that every non-trivial complete theory of modules has a 1-type of U-rank 1

(necessarily regular) which is non-isolated if T has infinitely many algebraic elements (by
"non-trivial" I mean that there is more than one model).
[Hint: consider those formulas p such that the index [y,:0] is finite.]
Example 3 [Pr8lc] Let K be an infinite field and set R to be the ring K[x1,x2 : xix j=o,
i,j E (1,2)]. Let T be the theory of RR. The definable subgroups have already been described
Ex2.1/6(vi). In particular, T is U. with prime model R and has Morley rank 3 - so 6.28
does not apply.

There is, in fact, just one non-isolated 1-type: the type p(v) "at J" which says that
vx,=O=vx2 but which does not place "v" in any of the ideals (x1+x2k) (kEP(K)). This is
the type constructed in the second proof of 6.32 above. Note that it is reducible. Explicitly, it
is the type of any element of R 19R which lies in J 19J, has both co-ordinates non-zero, and
does not lie in the diagonal submodule.

One has p=pknpl, where Pk=pp(x1+x2k)) for any kxl in P(K).
Example 4 [Pr8lc] The type constructed in 6.28 may have any U-rank between 1 and w.
(i) Take the theory of the abelian group 72200 k for some finite k. Here the types constructed

in 6.28 and 6.32(2) coincide, being the type of a torsionfree element (hull Q}), and
certainly this type has MR=UR=1 (since k is finite).

(ii) A non-t.t. example is the theory of the abelian group 7l(p). Again, one obtains a type p
whose hull is Qd (the type of a non-zero divisible element) and clearly UR(p)=1, but
MR(p) is undefined.

(iii) Fix nEw, n->1 and let R=K[xi,yj (i,jEw):xixj=0=yiyj, xn+iyj=0 (i,jE(4)]
where K is a finite field. Let T be the theory of RR. It is easily checked that T is w-
stable. In this case there are finitely many choices for the types constructed in 6.28 and
6.32(2).
Exercise: determine the models for this theory.

(iv) Take the theory of the abelian group 712000. In this case 6.28 and 6.32(2) give the same
type, just as in (i), but this type has rank w.

(v) Here is an example where both constructions yield a type but they give different types.
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Let K be a countable field and let R be the commutative ring
K[xi (iEw) : xix j=0 (i, j E w)]. Take T to be the theory of RR (cf. Ex2.1/6(vi)). If K
is finite then the types constructed will coincide and they will have Morley and U-ranks 1.
But if K is infinite then there are )k. choices for the type p given by 6.32(2), and in
all cases MR(p)=UR(p)=2. But there is just one choice for the type q as constructed by
6.28, and MR(q)=UR(q)=w.

6.1 fin example: injectiue modules over noetherian rings

Eklof and Sabbagh [E571] showed that if R is a right coherent ring, then the model-
completion of the theory of R-modules is the largest theory of injective modules and the models
are the "fat" absolutely pure modules. This theory has complete elimination of quantifiers (see
§16.1) and so various model-theoretic concepts take on a particularly transparent, algebraic,
form. A large number of the results of §5.1-5.2 and §6.1-6.4 were first proved in this setting
and the proofs of their generalisations are usually the result of seeing just what is special about
the "purely algebraic" case (in particular, one has to learn how pp-types replace right ideals).

If the ring is right noetherian then every model of the aforesaid theory is injective. Indeed,
every injective module over a right noetherian ring is totally transcendental. (Exercise 1: give
a proof of this. Exercise 2: give another.) In this section I will interpret some of what we have
discovered in terms of the largest theory of injective modules over such a ring.

Although I will simply use this case for illustration, one should be aware that a good deal of
the algebra which I will simply quote may be derived by a model-theoretic approach: see
[Kuc84], [Kuc87]. In particular, Kucera is able to recover, from a stability-theoretic
development, many aspects of: primary decomposition for commutative noetherian rings; the
Lesieur-Croisot generalisation of this to right noetherian rings (see, e.g., [St75; §VI I.1]);
results of Lambek and Michler on the connections between right ideals of a right noetherian ring
and indecomposable injective modules.

I will begin with a commutative noetherian ring R, then say something concerning the
non-commutative case.

Matlis [Mat58] clarified the structure of the injective modules over a commutative
noetherian ring. There is a bijection between the prime ideals of R and the indecomposable
injectives. It is given by taking the prime P to the injective hull of an element with
annihilator precisely P: P '--i E(RIP) - denote this injective by Ep.

Matlis shows that if a is a non-zero element of EP then the annihilator, Q, of a is a P-
primary ideal (i.e., Q<P, Pn<Q for some n and rsEQ, r(Q implies sEP). Moreover,
if Q1 n ... n Qk = I is an irredundant primary decomposition of the ideal I of R, then (e.g.,
[SV72; 4.9]) the injective hull of R/I is isomorphic to the direct sum
E(R/P1) e ... o E(R/Pk), where Qi is Pi-primary.

One may show the following. The pp-definable subgroups of the indecomposable injective
Ep are precisely the annihilators of the n-irreducible P-primary ideals. There is a unique
minimal pp-definable subgroup - the annihilator of P - so the type of an element with
annihilator P is the unique regular type (6.23) for that indecomposable. This minimal pp-
definable subgroup has the structure of a 1-dimensional vectorspace over End(Ep) /J End(Ep)
(4.53): Matlis shows that this division ring is just the quotient field of the integral domain
RIP. If a is an element of an injective module and its annihilator I is decomposed as above,
then the algebraic weight of the type (§6.4) of a is k. Elements a and b have orthogonal
types (6.20) iff their annihilators have no associated primes in common iff, up to isomorphism,
their hulls have no non-zero direct summand in common.

Over non-commutative noetherian rings, there is no longer a bijection between prime
ideals of the ring and indecomposable injectives. There is an "intermediate" case - that of fully
bounded noetherian (FBN) rings - where one still has this bijection. Over such a ring, the
injective hull of RIP, though not necessarily indecomposable, is a finite direct sum of
indecomposable injectives, all isomorphic to each other and every indecomposable injective
arises in this way. But, in the general right noetherian case, if one wants isomorphism classes
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of indecomposable injectives to correspond to "primes", then one must be content with "prime"
torsion theories (see [Go175]). In terms of right ideals, the primes are replaced by
relatedness-classes of n-irreducible right ideals: irreducible right ideals I and I' are
related if there exist ring elements r and s such that (I:r)= (1':s) mR (see [LM73]).
There is a bijection between relatedness classes of right ideals and indecomposable injective
modules, given by [I] H E(R/I).

To explain this further, let a and b be non-zero elements of an indecomposable injective
E and let their annihilators be respectively I and 1'. Since an indecomposable injective is
uniform, there are r,s E R with ar=bss0. Then the annihilator of or is just (I:r) and
the annihilator of bs is (I':s). The proof of the correspondence is now left as an exercise.
The reader will appreciate where some of our terminology has come from.

The reader who wishes to pursue these matters, especially this non-commutative case,
further, should consult [LM73] and also the relevant papers of Kucera and the author,
especially [Pr82] and [Kuc87]. Herzog (personal communication) has some work in progress
on "primary decomposition" for types of finite weight.

6.5 Saturation and pure-injectiue modules

In modules, one typically obtains results for the class of pure-injective modules, where the
general case would have a class of saturated models. This section elucidates the relation between
saturation and pure-injectivity. The results are taken from [PP87].

Saturation in modules can be resolved into "vertical" and "horizontal" components. The
vertical component is pure-injectivity - positive saturation: the horizontal component is a kind
of "fatness" (weak saturation). This statement will be made precise.

Recall that if M is ITV+-saturated then M is pure-injective (2.9). The first result is
[PP87; 4.1]: a slightly weaker statement is [Poi84; Thm2].

Proposition 6.33 Let Let M be K-saturated and suppose that N is a
pure-injective elementary extension of M. Then N also is K-saturated.

Proof Let A be a subset of N, of cardinality strictly less than K, and let p be a 1-type
over A. Without loss of generality (1.3), it may be assumed that A is an elementary submodel
of N.

Since M is K-saturated, there is A'sM realising the same type over 0 as A. By

hypothesis, the type, p', over A' which corresponds to p over A is realised, by c say, in
M. Working inside M, set N(A'-c) = N(A') e N' for some N'= N(c'), say. Since A,
hence N(A'), is a model, N' is unlimited.

Since M is K-saturated, it contains more than IAA copies of N': so the same is true of N.
Therefore there is a copy N" of N' in N such that N(A) a N" is a summand of N. Hence p
is realised in At, as required. o

Lemma 6.34 [PP87; 4.2] If M is superstable and pure-injective then so is every
elementary extension of M.

Proof This is immediate by 3.8. o

Proposition 6.35 [PP87; 4.3] ([GarBo; Thm 5] for the t.t case) Let T be

superstable. Then any pure-injective model, M, of T is homogeneous: given any
finite tuples a and b with the same type over 0, there is an automorphism of M
taking 5 to S.

Proof Let a,b be as above. Set M=N(0)eN'=N(b)eA" for suitable hl', N". Then
there is (by 4.15) an isomorphism N(b) taking a to F.

Superstable pure-injectives are discrete (by 3.14 and 4.37 for example). So M and its
summands have essentially unique decompositions as pure-injective hulls of direct sums of
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indecomposables. When the hulls of a and b are decomposed there may well be infinitely
many summands (consider a=1 in 7), but each summand occurs only finitely many times in
the decomposition. For otherwise, let us suppose that No(r) is a direct summand of N(a):
then McM®N. (clearly!), so Y. is unlimited. Choose non-zero elements of (iEca), one
from each of these copies of M. By 5.24, the family {oi : iEw) is an independent one (i.e.,
ai j,Ri/o for each i, where Ri={ a j : j* W. But, being unlimited and in the hull of a, each
ai is dependent on a over 0 (6.9). This contradicts the fact that, in a superstable theory,
every finite tuple has finite weight (see, e.g., [Poi85; 19.10]).

Since each summand of N(o)cN(b) therefore occurs only finitely many times, it follows
that 11'11" (for the decomposition of M is essentially unique). Say N'-' N" is an
isomorphism.

Then f e g is an automorphism of M which takes a to b, as required. o

Superstability is not necessary for the proof of 6.35 (in contradiction with the comment
after [PP87; 4.3]!). The conclusion is true provided it is assumed that T has m-dimension in
the sense of Chapter 10. This follows by the first part of the proof of 6.35 together with 7.16.

Proposition 6.36 If T has m-dimension then every pure-injective model of T is
homogeneous. o

The model M is FaK-saturated if M realises all strong 1-types (see §6) over subsets of
cardinality strictly less than K. Recall that the model M is weakly saturated if it realises all
n-types over 0 for each n E w.

Exercise l Show that if M is pure-injective and weakly saturated and if pES(0) is
unlimited then pi(N(p)(Ao)) is a direct summand of M.

Proposition 6.37 [PP87; 4.5] Suppose that M is superstable. Then M is
Fax.-saturated iff M is pure-injective and weakly saturated.

Proof Clearly, if M is FaA,-saturated then M is weakly saturated. To show that M is
pure-injective, let T(v) be a set of pp formulas over M which is finitely satisfied in M; it
must be shown that ds is satisfied in M. Since T is superstable there is (3.1) some .p(u,a)
in d? such that, for every in d?, the index [Lp(v,0):Lp(v,o)nly(v,0)] is finite.

Choose c in M satisfying T. Since M is Fax -saturated there is d in M with the
same strong type over a as c. So by 6.43 below one has, for each tp(u, b) E d?, that
ip(c-d,0) holds. Therefore from w(c,b) follows w(d,b); and this for all 4,(),b) in d?. So

the element d of M does satisfy 1.
Suppose, conversely, that M is pure-injective and weakly saturated. Since, by 6.35,

M is also homogeneous, M is (exercise) )k0-saturated.
Let a be a finite subset of M and let cE M. It must be shown that there is dEM with the

same strong type as c over a. Let q=tp(c/M). Since M is pure-injective there is d'EM
satisfying q'. Let p=tp(c/a).

Consider p(v) u { Lp(u-d') : ipE qo(q)). This set is consistent, being realised by c, and is
over a^d' - a finite set. So, M being fit,-saturated, there is dEM realising it.

From p(d) one has tp(d/a)=tp(c/a). Since c and d both satisfy
{ tp(v-d') : ipEgo(q)) it follows from 6.43 below that c and d actually have the same strong
type over a. o

Corollary 6.38 Suppose that M is a pure-injective superstable module. Then M
is weakly saturated iff M is )k,-saturated. o

Corollary 6.39 Suppose that M is a pure-injective module with m-dimension.
Then M is weakly saturated iff it is ?k,-saturated. a
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These corollaries follow by (the proof of) 6.37 and 6.36, since Fak0-saturated implies
'rko-saturated.

One may as whether superstability is necessary in 6.37. The following example shows that
one needs some hypothesis for the direction "= ". Take T to be a non-t.t. theory satisfying

and with only countably many n-types for each nEw. For examples see §7.2. Since
T=Tko, strong types do not really differ from types, so the countable saturated model (which
exists since T is small) is actually Fak0 -saturated. But, since T is not totally
transcendental, it is not pure-injective. In fact, we have the following (which was pointed out to
me by Rothmaler).

Proposition 6.40 Suppose that every Fake-saturated model of T is pure-
injective. Then T is superstable.

Proof If T is not superstable, then its unlimited part is not totally transcendental. So there
is an unlimited pure-injective summand, N, of a model of T which is not I-pure-injective:
that is, N('Ao) is not pure-injective. Let M be a sufficiently large Fak -saturated model of
T that N(ko) purely embeds in M (actually, Fak -saturated is enoughj. Consider the model
McN(ko).

Any finite subset of this model lies in M e N(k) for some finite k. Since that is
isomorphic to M, all strong types over finite sets are realised. Hence M (D //(' o) is Fa'ri0-
saturated. But it is not pure-injective. a

One may note that the last part of the proof of 6.37 shows that every pure-injective '20-
saturated module is Fako-saturated.

Corollary 6.41 [PP87; 4.6] Suppose that M is superstable and
Fako-saturated.

Then every elementary extension of M also is Fak0 -saturated.
Proof By 6.37 M is weakly saturated and pure-injective. If Al is an elementary extension
of M then certainly N is weakly saturated (from the definition) and, by 6.34, also is pure-
injective. So by 6.37, N is Fak0 -saturated. o

6.6 Multiplicity and strong types

Let p be a type. Recall that the multiplicity of p, mult(p), is the number of non-
forking extensions of p to any model. Recall also that p is said to be stationary if mult(p)=1.
It has already been noted (5.4) that if G0(p)=G(p) then p is stationary and that the
converse is false (Ex5.1/2). The precise determination of those types which are stationary is
not straightforward, even in the abelian group case.

Rothmaler [Rot83c; Thm4] characterises the stationary abelian groups. He distinguishes
between the condition that every type be stationary and the strictly weaker one that every non-
algebraic type be stationary and determines the abelian groups with each property. For the list
of possibilities, the reader is referred to [Rot83c], but Rothmaler points out that the example
722 e ll is indicative of the general stationary theory of abelian groups which is not closed under
products (he also shows [Rot83c; Thm 1] that it is enough to look at 2-types).

In this section, strong types are characterised and then this is used to estimate mult(p). It
is also shown that the dimensions in a model of different strong extensions of a regular type are
closely related.

The strong type of c over A, stp(c/A), is the set (cE- : E is an equivalence relation,
definable over A, with only finitely many classes) together with tp(c/A). One has (see
[Pi83; 4.35]): if A=_MkT and c, d realise non-forking extensions of p to M,
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then tp(T/M)=tp(d/M) iff stp(T/A)=stp(d/A). So, to estimate the multiplicity of p, one
may estimate the number of strong types extending p. The following definitions and results
should come as no surprise.

Given T and A, let stp+(T/A)=(T+ip(v) : ip(v) E Pgo(tp(T/A))) - the set of cosets of
groups in co(tp(T/A)) to which c belongs. Clearly stp+(T/A)=_stp(T/A); it will be seen
that stp+(T/A) determines stp(T/A).

Lemma 6.42 Given parameters c, A and a pure-injective model M of T
containing A, there is m in M with stp+(m/A)2stp+(T/A).
If m is any such tuple and if p=tp(T/M) is a non-forking extension of tp(T/A),
then p=m+p,M

Proof Since M is pure-injective the first statement is clear. So let m be in M with
stp+(m/A)2stp+(T/A). Let q= p-m=tp(T-m/M); it will be shown that q= p,M. It will
suffice to show that the restriction of q to 0 is p. (i.e., that p. is the type of c-m over
0). For then the fact that &(q)=G(pM)=Go(p) (since q=p-m), which in turn in turn
equals G(p.,) (by 6.4), implies that both q and p.,,M are non-forking extensions to M of
the same stationary type - so are equal.

Now, ip(U) E p, implies ip(U) E G(p) (6.4), so there is V(u, y) represented in p - say
'p(T,m') holds - with tp(U,o) equivalent to Lp(U). From tp(T,m') and
stp+(m/A)=_stp+(T/A) it follows (by definition of stp+) that tp(m,m') holds. Thus
tp(T-m,0) - that is, ip(T-m) - holds.

Conversely, tp(T-m) implies tp(U) E 1j0(p) and so ip(v) E p,, as required. o

Proposition 6.43 [PP87; 3.6] Tuples c and d with the same type, p, over a
set A have the same strong type iff stp+(T/A)=stp+(d/A): that is, iff ip(T-d)
holds for every w E po(p).

Proof The direction "==) " is immediate from the definitions of stp and Go(-). So suppose that
stp+(T/A)=stp+(d/A). Choose a pure-injective model, M, containing A and independent
from T-d over A. As mentioned already, it will be enough to show that
p=tp(T/M)=tp(d/M)=q.

Let m in M with stp+(m/A)2stp+(T/A)=stp+(d/A) be as in 6.42. Then, by that
result, p=m+p.M and Also, T and d have the same type over A and they are
independent from M over A, so p,M=q,M (since, for example p, "is" the connected
component, G0(tp(T/A)), of G(tp(T/A))). Thus the result is proved. o

Referring back to the proofs of 5.2 and 5.11, we see now what the completions of the
(generally incomplete) type p+(u) u {-iy,(v,m) : tpU 0(p), mEM) are - they are simply the
strong types extending p and we may see that, in the proof of 5.11, the choice of element T
simply was a choice of strong type extension of p.

What is the multiplicity of a type p?, that is, how many strong type extensions does it
have? Clearly, by 6.43, it is the number of cosets of G0(p) in G(p) which are "consistent
with p".

If the order of G0(p) in G(p) is finite then, since G0(p) certainly is one excluded coset
(for then 60(p) is just G(p) Aip for some up), one has mult(p) < [G(p):Go(p)]. It is easy
to construct examples where mult(p) is much less that the index of 030(p) in G(p).

Corollary 6.44 [PP87; 3.6] Let p be a type over A.
(i) If [G(p):G0(p)] is finite then its value strictly bounds the multiplicity of p.
(ii) If [G(p):Go(p)] is infinite then mult(p)?2°, with equality if R is

countable.
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Proof (i) This has just been discussed.
(ii) Let e(v,a) E p+. Consider the tree of cosets, contained in 6(M,07), of pp formulas in

l;o(p). Since the index [G(p):Go(p)] is greater than one, there is a coset C of (say)
ip(v) E 1 0(p) which is not definable over R. It follows that if ti(u) E go(p) with .p-*ip then
every coset of W which is contained in C is undefinable over R. For if with b in R
defined such a coset, then the formula 3w (tp'(w,T) Aip(v-w)) would define C. Also, since
[G(p):G0(p)] is infinite, the tree of cosets of formulas -WE GO(p) with p -ip is of infinite
depth. Hence there are 2"*a branches through it, and hence mult(p) 3 2'a, as required. o

Necessarily one has mult(p) S 21RI, and it is a general result (see [Pi83; 5.21]) that if
mult(p) _ fk0 then mult(p) >_ 2 0.

Proposition 6.45 [PP87; 6.9] Let p be a regular type over 0.
(a) Let ao,a11 ...1a77 be an independent set of realisations of p, all with the same

strong type. Then (a1-ao,---,an-a0) is an independent set of realisations of
p*.

(b) Let b realise p and let {a1,..., an) be an independent set of realisations of
p., this set being independent from b over 0. Then (b, a1+b,..., an+b) is an
independent set of realisations of p and, moreover, stp(ai+b)=stp(b) for
each i.

Proof (i) By 6.43 one has tp(ai-ao) for each i and each ipE p*+. On the other hand, if w
is pp and ipf p*+ then, since aij oo, one has -np(ai-ao) and also pfgo(tp(ai)).
Therefore the ai-ao do realise p*.

That they are independent follows from general considerations. Suppose inductively that
(a1-ao.---.ak-ao) is an independent set. Choose a model, M, containing ao,...,ak and
independent from ak+1 over 0. Then, since aoEM, clearly (ak+1-ao)'LM/0 so the
conclusion follows.

(ii) That all the ai+b realise p and have the same strong type as b follows from 6.42
and 6.43. Independence follows as in (i). o

Corollary 6.46 [PP87; 6.10] Let p be a regular type over 0. Let M be a model
of T and suppose that aEM realises p. Set n=dim(p...,M) (the maximum
number of independent realisations of p* in M). Then dim(stp(a),M) is n or
.n+1.

Proof Since p is regular so is p* (6.25). Therefore (see, e.g., [Poi85; Chpt20])
dim(p..,M) is well-defined. By 6.45(a), one has dim(stp(a),M)Sn+1.

To show that dim(stp(a),M)>_n, take an independent set, (b1....,bn} of realisations of
p* in M. Let 8 denote a maximal subset of {bl,...,bn} such that a is independent from 8
over 0. Then it follows, since p has weight one, that 8 (b1,...,bn}\{bi) for some i. So, by
6.45(b), {a)u{a+b : bEB} is an independent set of realisations of stp(a) in M. Hence
dim(stp(a),M)>_n, as required. o

Examples where dim(p*,M)=n and dim(stp(a),M)=n+1 are not difficult to find: take
p to be the type of IE?2(p) in the theory of that group and let /4 =71(p) ®Il (note that p*
is the type of i(Q). The other case is obtained if p= p*.
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CHAPTER 7 SUPERSTABLE MODULES

In Chapter 4 we obtained a fairly complete classification for the models of a totally
transcendental theory of modules. We cannot expect to have as complete results for superstable
modules, but we can at least hope to say a lot about them. For instance, we can classify the pure-
injective models although, of course, that is something we are able to do in circumstances way
beyond the superstable case. Indeed, it is quite noticable that the gap between the superstable
and arbitrary cases appears to be much narrower in modules than in general stable structures.

The difficulties in superstable modules lie, not in the (t.t.) unlimited part, but inside the
prime-pure-injective model. For example, Vaught's Conjecture is open for superstable modules
(whereas it followed immediately for t.t. modules from the classification in §4.6). Even for
modules of U-rank 1, Vaught's Conjecture was confirmed only recently (1986) by Buechler, and
his proof is far from trivial.

The first section is concerned with the uncountable spectrum: given an uncountable
cardinal a, how many models are there (up to isomorphism) of cardinality ), ? Shelah showed
that for stable theories there is a severely limited number of possible spectrum functions
),r-- n(-A, T). Ziegler showed which possibilities can be realised in modules (one need look no
further than abelian groups). A proof, which does not depend on his classification result
(§10.4), is given here.

A module has U-rank 1 iff every infinite pp-definable subgroup is of finite index in the
whole module. It turns out (§2) that every model of a U-rank 1 theory of modules is the direct
sum of a unidimensional totally transcendental part and an elementary submodule of the prime-
pure-injective model. This is not yet strong enough to give us Vaught's Conjecture. An example
is presented of a superstable, non-totally-transcendental, theory of modules with only countably
many countable models, showing that a superstable module need not have 2' o types (thus ruling
out a simple solution to Vaught's Conjecture). The "module-theoretic" part of Buechler's proof
(of Vaught's Conjecture for modules of U-rank 1) is presented: to deal with the "geometry of
types" part would take us too far afield. Some partial results and examples relating to the
conjecture are included.

In the third section, it is shown that a theory of modules of U-rank n has no more than n
dimensions: that is, the number of isomorphism types of unlimited indecomposable pure-
injective modules is bounded above by n. This gives one proof of the fact that if every module
has finite Morley rank then the ring is of finite representation type (cf. §11.4). Also, the
technique used to prove this is used again in §8.4.

7.1 Superstable modules: the uncountable spectrum

In [Zg84; §10] all the possible uncountable spectrum functions (see the introduction to this
chapter for terminology) for complete theories of modules were described, and all were shown to
be realised over the ring of integers. This description follows from Ziegler's results as
presented in §10.4 (where it is left as an exercise). Here I give a direct proof (due to Pillay, and
taken from [PP87]).

Let M be pure in Al. Say that M is relatively pure-injective in N if every pp-
type over M which is realised in N is realised also in M. Let M be an elementary
substructure of N. Say that M is relatively Fa-A.-saturated in N if, for every finite
tuple a in M and element b of N, the strong type of b over a is realised in M (see §6.6
for strong types). The proof of the first result, which is a relative version of (part of) 6.37, is
essentially as there and is left as an exercise.

Proposition 7.1 [PP87; 5.2] Suppose that T is superstable and let M<N be
models of T. If M is relatively Faso-saturated in Al then M is relatively pure-
injective in Al. o
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Proposition 7.2 [PP87; 5.3] Let M be relatively pure-injective in N. Then N
decomposes as MeK for some K.

Proof Again, the proof is essentially that of the non-relative result (2.8), and so it is left as
an exercise to show that the inclusion M<- N is split. o

Proposition 7.3 [PP87; 5.4] Suppose that the countable theory T is superstable.
Let N be a model of T. Then there is an elementary substructure M of N such
that:
(i) IMI52o; and
(ii) N =MeK where K is totally transcendental.

Proof First one obtains an elementary substructure M of cardinality no more than 2'k and
such that M is relatively Fa-a-saturated in N. This is possible (exercise) since, for each
nEw, there are no more than 2'Ao n-types over 0 and, for any finite a in M, there are at
most 2A° elements of N with different strong types over a. (So realise all strong types over
0 in some M'<N with IM'k52 o; then realise all strong types in N over M' in some
M"<N, ....)

Having obtained such a model M, one has, by 7.1, that M is relatively pure-injective in
N so is, by 7.2, a direct summand of N: say N=MeK. By 3.8 K is t.t., as required. o

The result above may be refined in the U-rank 1 case (see 7.14).
Let T be superstable and countable. By 3.14 and 4.A.14 the t.t. module K above has an

essentially unique expression as a direct sum of indecomposable submodules, each of which is
itself U. and T-unlimited.

Recall that Z X) denotes the set of (isomorphism classes of) unlimited indecomposables in
Z(T). If Ni E Z..(T) (iE 1) then clearly each module of the form e 1 Ni(Kj is U. and in
b'(T). Also, whenever M is a model of T and K is such that M e K also is a model of T, the
module K may be decomposed as a direct sum of the form just given.

Set K=IZ.(T)I, say Z..(T)=(Ni : i<K). Since each member of Z(T) is the hull of a 1-
type and since (Tu is w-stable so) there are only countably many 1-types over 0 modulo Tu,
one has 1_< KS' . (of course K_> 1). Here Tu=Th(®(NiNiEZ.(T)) is the unlimited
part of T (cf. §4.5).

Theorem 7.4 [Zg84; 10.1] Suppose that T is countable, superstable and not w-
stable. Let be a cardinal, sayThen:
(i) if 2,<a,2'k- then n(a,TT=2a; k 1z,
(ii) if -A>2' o then n(,,T)=22' or =22 ,

+ka) or =22 +IaI 0, according as
K=1, or K='t1,.

Proof [PP87; 5.5] (i) This is by Shelah [She78; VI 11, 1.7, 1.81.
(ii) By 7.3 and the remarks above, any model Al of T is of the form MeK, where M is

a model of T of cardinality no more than 2' o and where K decomposes as ® (Nj(Kt) : i<K }
with the Ki determined uniquely by K. 'Ro

As a module of cardinal ity bounded by 2'ka, there are at most 22 possibilities for M
(exercise). On the other hand by [She78; VI11,1.7,1.6] and since T is not superstable, for
^A one has n(^A,T)322'. Then if K=1, respectively 1<K<?Z resp. K= (\0, there are
correspondingly 1 (note a>2 o), laj (if a is infinite: if a is finite it is absorbed), kcI''o
possibilities for K (count the number of possibilities for the frequency of occurrence (a
cardinal, note) of each Ni in K).

Thus the result follows. o
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The three cases in (ii) are Ziegler's 3, 4 and 5 of [Zg84; 10.1]. His first two cases occur if
T is totally transcendental, and are easily computed from the description of the models of such a
theory (4.63). His case 6 corresponds to T being non-superstable: here one has (by Shelah)
the maximal possible number of models (2^A of cardinality -A). Because modules are non-
multidimensional (6.21) one spectrum function is not seen in modules (cf. [Lac781). Also see
[PaSt87].

Exercise 1 Let R=72. Show that the following modules have, among them, theories of each of
the three kinds in 7.4(ii):
®(72(p) : p is prime);
712° e e{T(p) p is prime, p>2);
72(2) e ®(7lpoo o : p is prime).

The proof of the following, which partly generalises the existence of hulls, is left as an
exercise.

Proposition 7.5 [PP87; 5.6] Suppose that N is superstable and that M is an
elementary substructure which is relatively Fa'tk,-saturated (respectively, relatively
pure-injective) in N. Let A be a subset of N. Then there is N', an elementary
substructure of N, which contains M u A and which is prime over M u A among all
those N" > M with A N", with N"<N and with N" relatively saturated (resp.,
relatively pure-injective) in N. Moreover N' is unique up to isomorphism over
MuA. D

7.2 Modules of U-rank 1

We have a fairly complete analysis of the pure-injective models of any superstable theory
of modules, but our results tell us only a limited amount about the structure of non-pure-
injective superstable modules. In fact the detailed analysis of superstable modules seems to be
very hard, even in the U-rank 1 case.

In this section we consider the structure of (non-t.t.) modules of U-rank 1. I begin by
describing the shape of the lattice of pp-definable subgroups then we move on to obtain a broad
description of the models. After that, I present that a U-rank 1 theory of
modules with fewer than 2 e models has no more than k, models (Vaught's Conjecture for
modules of U-rank 1). This latter part is not self-contained, since it depends on some rather
involved model theory. The section finishes with some further discussion of non-totally-
transcendental small theories of modules of U-rank 1.

U-rank was discussed in §5.2. From the definition there, it is immediate that the theory T
has U-rank 1 iff T is not the theory of a finite structure and if the U-rank of every 1-type over
0 is 1. Such a theory, having U-rank, is of course superstable.

Proposition 7.6 [PP87; 7.1] Let M be any module. Then UR(M)=1 iff, for
every pp formula Lp in one free variable, exactly one of [M:ip(M)] and [ip(M):0]
is finite.

Proof If both were infinite then, with notation established earlier (§2.2),
60(v=v)>G0(tp)>0 and so PPo would have length at least two - so by 5.13 we would have
UR(T)>, 2 - contradiction. (Of course, if both were finite then M would be finite and so have
U-rank zero.)

The argument reverses. So the result follows. o

°;Example 1 Abelian groups of U-rank 1 include: 72; 2(p)T' (nEw); 72pe; :24+22
®(72p : p prime). (Exercise: verify all this and determine which are t.t..)
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Example 2 There is a "canonical example" (see [Zg84; 10.3(3)]) of a module of U-rank 1
which is not totally transcendental but whose theory has only countably many countable models.

Take a finite field K and let R be the polynomial ring over K in countably many
indeterminates, factored by the square of the ideal generated by the indeterminates:
R=K[xi(iEw):xixj=0(i,)Ew)]. Let M be the module ®(yiR:iEw) where the action
of R is defined by yixj=0 iff i>j.

Then one may see that the pp-definable subgroups are of two kinds. There are those which
are of finite index - they l i e i n the sequence M > annM xo > annM x, > ... > annM xi > ... and their
intersection (in any given model) will be denoted by S. Then there are the algebraic ones -
those of the form Mxo, MXJ,... together with their finite sums - the sum of them all is denoted
by A and it consists of all the algebraic elements. It is easy to see (and just a bit more difficult
to prove - see below) that M is the prime model of its theory.

It follows that M has U-rank 1, and so (7.7 below) there is a unique unlimited
(irreducible) type p. The space of indecomposable components has 'k. isolated points - namely
the yiR (each of these is a U. module) - and just one limit point - the hull of p (also t.t.). It
follows that the pure-injective models have the form M ®N(p)(K), where K>-0 is arbitrary.

One may verify directly that there are only k. types in any finite number of variables,
but it is no more difficult to see that there are only countably many models, up to isomorphism.
This may be shown as follows (a few details are left to the reader).

By 7.14 below, the countable models have the form M' ® N(p)(K) where K takes any
value between 0 and 'Tk0 and M' is an elementary submodel of the hull, M, of the prime
model M. By 7.13 below, M' does not realise p.

Therefore, to count the countable models of the theory of M, it is enough to count the
isomorphism types of countable submodels of M. We see that there is, in fact, only one. Let
M' <M be countable. I show that M' is isomorphic to M by verifying the back-and-forth
property (e.g., see [P0185]). It is enough to show that if a is a finite sequence of elements of
M', if b is in M' and if c in M has the same type over 0 as a, then there is d in M such
that tpM(d/c) = tpM'(b/a).

Since every finite subset of M lies in a finitely generated direct summand of M, we may
(inductively) assume that c, so a, has been expanded to a sequence which generates a U. pure
submodule (so a direct summand) of M, resp. M' (for every n-type realised in M is isolated,
so the type of the generators of the hull of c is isolated over c: hence the same is true of a).
Thus aHC defines an isomorphism between direct summands of M' and M. Now, b splits as
the sum of two elements - one, b', algebraic over a and the other, b", with type over a
determined by its type over zero. It follows that if d' denotes the corresponding algebraic
element over c and d" is an element in a complement of cR in M with the same type over
zero as b" then, setting d = d'+d", one has tpM(d/c) = tpM'(b/o), as required. (Such an
element d" exists because, by the description of the pp-definable subgroups and 7.13, every 1-
type realised in M is isolated and, since the hull of c can be taken to be an "initial segment" of
M, the location of b", so d", is specified by the xi's which it annihilates.)

Since the theory above is not totally transcendental (there is an infinite descending chain of
pp-definable subgroups), this gives us our first example of a small theory of modules which is
not totally transcendental. One says that a countable complete theory is small if, for each
nEw, there are only finitely many n-types over 0.
Problem I don't know whether there would be any significant corollaries, but: if T is a
complete theory of modules with only countably many 2-types is T small?

One may note what happens if we modify this example by replacing K with an infinite field.
Of course, the example no longer is of U-rank 1 - indeed, it is not even superstable.
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Nevertheless, the structure of pp-definable subgroups is the same and, although there are now
2ka countable models, still, there are only countably many n-types for each n.

Similarly, if one considers the theory of 1" , one finds a (non-superstable) theory with
only countably many countable models (the same argument shows that there is, up to
isomorphism, only one countable elementary submodel of pi(nt(o)), and the non-isolated
indecomposable is just as before).

In this chapter we discover a good deal about modules of U-rank 1. It will be seen that all of
them, whether pure-injective or not, split into a limited part and an unlimited U. part. The
structure of the limited part will be partly elucidated; indeed both the base ring and the module
(which we may assume to be faithful) are tied down quite considerably.

Recall that the dimension of T, u(T), is the number of non-isomorphic unlimited
indecomposables in Z(T) - that is IZ,(T)I. In the superstable case one has "enough" regular
types (by 6.23 or 6.26), so ju(T) also equals the number of non-orthogonality classes of
regular types.

In the remainder of this section. unless otherwise stated. T is a complete theory of
modules of U-rank 1. which is not totally transcendental.

Also I fix some notation as we go along. If M is any model of T then denote by S the
connected component of M, and denote by A the algebraic closure of 0. Although S depends on
M, A may be regarded as fixed. Observe that every algebraic subset of M is contained in an
algebraic subgroup (immediate from 2.12). In the light of 7.6, we have that every pp-definable
subgroup of M either contains S or is contained in A. (Exercise: give an example where S
does not contain A.)

Lemma 7.7 [PP87; 7.2] Let T have U-rank 1. Then there is a unique unlimited,
necessarily irreducible, 1-type, p, over 0. o
This type is, of course, that which says of "u" that "vE S and v ff A". Since S and 0 are

the only connected , -pp-definable subgroups (by 7.6) it is immediate that p is the only
unlimited (non-zero) type over 0; so it must be irreducible. Observe that this is another
illustration of the construction of 4.33.

Example 3 Let us identify this type and its hull for the example described at the beginning of
the section. The type p(u) says that "u" annihilates every xi but is not divisible by any
element of the radical. So, if a realises p, then #(a)= aR= R/J K. Clearly, this type is
irreducible and contains no minimal pair.

Say that T is unidimensional if T has continuous part zero and u(T)=1. The next
corollary is immediate.

Corollary 7.8 [PP87; 7.3] If T has U-rank 1 then T is unidimensional. o

This corollary is generalised (by a different proof) in the next section (7.23). There is a
partial converse - if a theory of modules is unidimensional then it is superstable; it then
follows (exercise: use 6.29) that it is of finite U-rank, and examples such as 712'° show that
any finite U-rank (even Morley rank) may be attained. In fact, it has been shown by
Hrushovsky [Hru86; Chpt3] that any unidimensional theory (of modules or not) is superstable
(in the general case also, it is necessarily of finite U-rank).

Proposition 7.9 [PP87; 7.4] Suppose that the theory T of modules is
unidimensional (i.e., there is an indecomposable At E Z'(T) such that every unlimited
AP Eb'(T) has the form pi(N(K)) for some K). Then T is superstable.
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Proof Let T'=Tu be the theory of No. First, it is shown that if T were not super stable
then neither would be T'. For this, it will be sufficient to show that if LP, IV are pp formulas
with Inv(T,ip,ip) infinite then Inv(T',ip, .p) also is infinite.

Let K be greater than the cardinality of any limited direct summand of a model of T (cf.
end of §4.5). Since Inv(T,ip,ip) is infinite there is a model M of T with Inv(T,ip,lp)> K, so

it must be that Inv(T',Lp, ,) is infinite.
So it will be enough to show that T' is superstable; equivalently, since T' = T"o, that

T' is totally transcendental.
If T' were not t.t., then 6.29 provides some irreducible type p with no minimal pair.

But by 10.16 and since Tc=0 (by hypothesis), IZ(T')I=1 implies that there is an irreducible
type, q, with a minimal pair. But then 9.12 gives 4/(p)t1(q) - contradiction. a

Returning to the main topic of this section, let us consider the hull of the type p which was
produced in 7.7. By 7.6, we see that N(p) has no non-trivial, improper pp-definable
subgroup. (So p is an example of a generic regular type in the sense of Poizat [Poi83a].) In
particular, EndN(p) is the division ring D(p)= EndN(p)/JEndm(p). When we come to
examine the detailed structure of the models of T, we will prove Buechler's result: if T is a
non-t.t. of modules of U-rank 1 and with only countably many types, then D(p) is a finite field
(observe, consider IQ, that one does require T to be non-t.t.). The fact that T is assumed to be
non-t.t. is used in the form that there exists an infinite strictly descending chain of pp-definable
subgroups (3.1). This is now used to derive some more information about the unique unlimited
type, p, and its hull.

Proposition 7.10 [PP87; 7.6] Let T and p be as before (so, in particular, T is
not totally transcendental). Then p is not finitely generated and hence is not
isolated. Moreover, p contains no minimal pair.

Proof Suppose that ipEp+, yiEp- and tp> p. Since each interval [v=v,ip(v)] and
[v(v), v=0] has the dcc (by 7.6) and since T is not t.t., there must be ip' with ip> ip' > w:
indeed, there must be such app formula of finite index in the model and hence in p+. Both
statements now follow. a

Lemma 7.11 [PP87; 7.7] Suppose that the module M®N(p)(K) is a model of T.

Then M is a model of T.
Proof One checks the invariants Inv(T,ip,tp) (2.18). Consider first the case that
Inv(T,'.p,W) is finite. Since N(p) is unlimited, it must be that Inv(N(p),ip, y,) = 1. So by

2.23, Inv(M,ip,ip) = Inv(T,ip,y,), as desired.
Now suppose that Inv(T,ip,ip) is infinite. By 7.6 it follows that ip is of finite index and

tp is finite. So, continuing the argument of 7.10, there is an infinite strictly descending chain
between ip and iv: ip > el > ... > en > ... > i. Each index [8i: ei+1] is finite so, by the first
paragraph, Inv(M,ei,ei+i)= Inv(T,ei,ei+1)>1 for each i. Therefore Inv(M,ip,V) is
infinite. a

This result has the corollary that there is a prime pure-injective model. In fact such a
model exists under considerably wider circumstances - see 10.24 - but a direct proof here is
easy. A model omits a type if it does not realise that type.

Corollary 7.12 [PP87; 7.8] T has a prime pure-injective model Mo, which
omits p.

Proof Let M be any pure-injective model of T. Then by 5.23 and 7.7, one may write M as
Mo ® /1(p)(K), where N(p) is not a component of Mo (since N(p) is t.t., N(p)(K) already
is pure-injective (3.2)). By 7.11, Mo is a model of T. By unidimensionality, MO has no
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unlimited direct summand so, by 9.5 (or directly), each component of Mo occurs a fixed,
finite, number of times in every pure-injective model of T. Hence Mo is a direct summand of
every pure-injective model, as required. o

It follows that every pure-injective model has the form Mo ® N(p)(K) for some cardinal
K. But we can do better than this: every model has the form M' ®N(p)(K) for some K and
some elementary substructure, M', of Mo.

Lemma 7.13 [PP87; 7.9] Let M be any model of T. Then M elementarily embeds
in the prime pure-injective model Mo iff M omits p.

Proof By what has just been shown, it will be enough to establish that if a model, M, omits p
then so does M. So suppose that M contains a realisation, a, of p. Since a lies in the hull of
M and p is unlimited, it follows (6.9) that adM/0. So UR(tp(a/M)) <UR(tp(a/0)=1.
Hence a is algebraic over M and so lies in (the model) M. Thus the claim is established. o

All this gives us the following structure theorem.

Theorem 7.14 [PP87; 7.10] Let T be a complete theory of modules which has U-
rank 1 but which is not totally transcendental. Let M be any model of T. Then M
has the form M'®N(p)(K), where M' is an elementary substructure of the prime
pure-injective model, Mo, of T, and where p is the unique unlimited type over 0.

Proof Let (ai: i<K) be a maximal independent set of realisations of p in M. If a realises
p, and if b lies in any copy of the hull of a, then (6.9) b depends on a over 0 and so, as in
the previous proof, b is algebraic over a.

Therefore M contains a (in fact, every) copy of the hull of at for each i <K. Since
aiJ,Ai/o, where Ri=(aj:j#i), it follows by 6.9, that V(ai)JNi/0, where
Ni=U(N(ai):jmi). So by 5.31, the sum ®{N(ai):i<K} is a pure submodule of M. But
this submodule, being t.t., is pure-injective. So M = M'®® (N(ai): i<K) for some M'.

Any realisation of p in M' would be independent over 0 from (ai: i<K) (5.24) -
contradicting maximality of this set. So M' omits p and hence, by 7.13, is an elementary
substructure of Mo, as required. o

Example 4 Consider the example at the beginning of the section. We saw that every countable
elementary substructure of M is isomorphic to M. So the above result says that the countable
models are just the modules of the form M ® (R/J)(K) (K-> 0). The fact that, if a realises p
then the hull of a is algebraic over a, is obvious, since a even generates its hull.

By use of this structure theorem most questions about a theory such as T may be reduced
to questions about elementary submodels of the prime pure-injective model. In particular this
is true of Vaught's Conjecture: if T is countable and then 2 a. A
major motivation in proving the results above was the hope that a detailed analysis of the models
would lead to a proof of Vaught's Conjecture for modules of U-rank 1.

Recall that a countable complete theory T is said to be small if, for each nE w, it has only
countably many n-types. Clearly Vaught's Conjecture is valid for countable theories which are
not small (for one needs 20 models in order to realise all 2'*° types (1.6) in finitely many
free variables). So, for Vaught's Conjecture, we may restrict to small theories.

I now give a characterisation of small theories of modules, which is due to Herzog.

Theorem 7.15 [Her87] Let T be a countable complete theory of modules. Then T
is small iff the following conditions are satisfied.
(i) z(T) is countable;
(ii) every A (E z(T) realises, for each n > 1, only countably many n-types over 0;
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(iii) every element, a, of a model has finite algebraic weight - that is, N(a) is a
direct sum of finitely many indecomposables.

Proof First, we see that (i), (ii) and (iii) together imply few types. So let a be any finite
tuple in the monster model. By (iii) it follows that the hull N(a) is a direct sum of finitely
many indecomposables: N(a) = 11(71) e ... ® N(ak), where a is split as (51,.-070 and the
N(ai) are indecomposable. The pp-type of a is the intersection of the pp-types of the ai. By
(i) and (ii), there are only countably many possibilites for each pp(ai). Hence there are only
countably many possibilities for pp(a), as required.

For the converse, assume that T is small. Then (i) and (ii) are immediate. So let us take
a in the monster model, and suppose that lv(a) = pi( ED (Ni : iEw)) has infinite algebraic
weight. "

Now, the direct sum (D (Ni: iEw) is purely embedded in the pure-injective direct product
TT (Ni : iEw), so we may think of N(a) as purely embedded in this product. In particular, if
may be represented as an element (ai)i of the direct product. For each iEw there is, by
4.10(d), a pp formula ipi(u,w) linking a and ai: Lpi(ai,a)^-iipi(O,a). By projecting, we
obtain ipi(ai,ai) and hence tpi(O,a-ai). So tpi(O,ej) holds for each jai and so, from
-ipi(O,a), we obtain

Let J be any subset of w and consider the type of the element a J = (bi)i, where bi=oi
if iEJ and bi=d otherwise. Let iEw\J: then, by the above paragraph, ipi(O,bj) holds for
each jEJ, so ipi(O,aj) holds. On the other hand, if iEJ, then bi=ai and so -iipi(O,aj)
holds. Thus the type of aJ determines J. Hence there are types over 0, and T is not
small - contradiction, as required. o

This allows us to deduce that T is small iff T ka is small. Herzog gives a direct proof of
that, but I allow myself to use some later results and also extract the following point (the proof
that I give is not really very different from Herzog's).

Corollary 7.16 Let a be a mite tuple and suppose that N=N(a) has a direct
summand of the form pi(N(a)). Then m-dim N = oo (see §10.2). In particular, the
theory of N is not small.

Proof The proof of the above result shows this. First, it may be assumed (see Exercise 4.1/10)
that N is actually pi(N( a)). We use the notation of the proof above. Let (J(r): rE0) be a
densely ordered (by inclusion) set of subsets of w (existence of such is left as an exercise!).
Then, by the above proof, the pp-types of the corresponding elements 7J(r) are densely
ordered also (inversely to the ordering of the J(r)). By 10.6, the first conclusion follows. The
second follows also, since a densely ordered set has 2'ka cuts - so there are 2a types. o

Corollary 7.17 [Her87a] The complete theory T is small iff To is.
Proof The direction is clear (by 2.33), so assume that T is small: we verify the
conditions of 7.15. The first and second are by 4.39. Suppose that a is in the monster model of
To with N(a)=pi(® (Mi : iEw)) with the Ni indecomposable. If there are infinitely
many isomorphism types among the Ni then (take one of each), we contradict smallness of T
(using 7.15(iii) and 4.39). Otherwise, there are only finitely many isomorphism types
represented among the Ni, and then 7.16 contradicts smallness of T. o

In [Saf8l] Saffe undertook a deep analysis of the models of arbitrary complete theories of
U-rank 1 and it seemed at first that he had established the validity of Vaught's Conjecture for
them. It turned out, however, that there was an error in the proof, which has not to date been
compensated for. Nevertheless, Saffe's ideas have been taken up and developed, especially by
Buechler, who showed that if the "geometry" induced by algebraic closure is of a certain nice
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form then Vaught's Conjecture follows for the theory [BueB?], [Bue86]. I say a little about
this. First, the discussion has to take place inside Te4 (see §10.T).

A (possibly infinitely) definable subset of the monster model is said to be weakly
minimal if it has Shelah degree 1: in modules, one may as well say that it has U-rank 1 (by
5.18). The theory is weakly minimal if the monster model has Shelah degree 1: a type is weakly
minimal if the set of its realisations in the monster model is weakly minimal (i.e., if the type
has Shelah degree 1).

Now let T be a weakly minimal theory with fewer than 2'Ao countable models: there is a
dichotomy, depending on whether or not T satisfies the Saffe condition:
(5) if A is a finite set of parameters and if p is a non-isolated weakly minimal type over A,

then p has finite multiplicity.
In [Bue8?], Buechler proves a structure theorem for the models of a weakly minimal

theory which satisfies (5) and has fewer than 2'ko models: this structure theorem is strong
enough to derive that such a theory has only countably many countable models.

In [Bue86], Buechler deals with the case where (5) is not satisfied. He works with a
theory T which is small, unidimensional, weakly minimal and not w-stable. He shows that, if
algebraic closure induces a locally modular geometry on the models and if Saffe's condition (5) is
not satisfied, then it has 2'o countable models. Local modularity is a condition on the
"geometry" of the model.

Buechler was able to show [Bue86a] that a U-rank 1 small theory of modules is even
modular (a certain geometry is just projective geometry over a finite field) and so, in the case
where condition (S) is not satisfied, his theorem from [Bue86] applies, to give 2'Ao models.
What I do here is prove this fact ("modularity") about modules (I define the geometry below),
but I make no attempt to indicate the proof of Buechler's results from [Bue8?] and [Bue86].
The interested reader will probably find [Bue87] a good place to start.

It will be shown that, for a small U-rank 1 theory of modules (with the notation already
establised) D(p) is a finite field and, for elements of models of T, forking independence is the
same as linear independence (modulo algebraic elements) over D(p) (the latter does not use
smallness). Buechler's original proof of the first fact depended on the deep results which he had
developed in [Bue8?], [Bue86]. The proof given here is simpler and is due independently to
myself (after Buechler wrote to me to inform me of his result) and to Rothmaler. The proof of
the second part has also undergone considerable simplification. The proof that I give here is due
to Pillay; I also indicate another method of proof, found by the author (after hearing Buechler
talk on his proof, and with input from Herzog and Pillay), which is similar to Buechler's
original proof of that part. Also Rothmaler found a similar simplified proof. Buechler's paper
[Bue86a] contains more on the history of the result.

Our discussion will be aided by the notion of the finitiser of a theory of modules. This ideal
was first introduced by Rothmaler for another purpose (see [Rot87]), but it is central to the
proof here.

Let T be any complete theory of modules; fix a model M of T. Define the finitiser of T
to be the set of all ring elements, r, such that Mr is finite: fin(T) = (rER: Mr is finite).
Since the condition "jMrl=n" is an elementary one, fin(T) does not depend on the model, M,
chosen. Also define the annihilator of T, ann(T), to be set of elements of R which
annihilate one (and hence, every) model of T. Clearly ann(T) is an ideal, and is such that T
is "faithful" over R/ann(T) (in particular, one may always assume that one is working over
R/ann(T)).
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Proposition 7.18 [Rot87] Let T be any complete theory of R-modules, and let Tu

be its unlimited part. Then the finitiser fin(T) of T is an ideal of R. Moreover
fin(T)=ann(Tu).

Proof Since M(r+s) is contained in Mr+Ms, which is finite if Mr and Ms are, it
follows that fin(T) is closed under addition. Closure under left multiplication follows since
Mtr Mr. Furthermore, if Mr is finite then so is its image, Mrt, under multiplication by
t; so fin(T) is closed under right multiplication also and hence is an ideal of R.

Now recall that Tu may be defined as the theory of W, where W =M'/M, M' and M
being models of T with M' M-saturated. Let r be in fin(T). Since Mr is an algebraic set,
M'r is contained in M and hence Wr=o. Suppose, for the converse, that
r E ann(Tu) = ann(W). If Mr were infinite, then the partial type saying that "v" is divisible
by r but is not in Mr, would be consistent, and hence realised in M': this would contradict
M'r 5 M. So Mr is finite, as required. o

Let us return to the case of T non-t.t. and of U-rank 1. By 7.6, if r is any element not in
the finitiser, I, of T then Mr is infinite and hence, by 7.6, the annihilator of r in M is
finite. We note that if M <M' is a pair of models then M'/M is naturally an R/1-module; in
particular, the action of R on any direct sum of copies of N(p) is precisely the action of R/I.

Theorem 7.19 [Bue86a; ThmA(i)] Suppose that T, as above, has only countably
many n-types for each nEw. Then R/1 is a finite field.

Proof Let M be any model of T. From the comments above, MIA is an R/1-module (for A,
see the conventions before 7.7). First we see that MIA is torsionfree over R/I, in the sense
that if mEM and r E R\I are such that mrEA, then already mEA. One has that if mrEA
then there is ip algebraic such that Lp(mr) holds. Therefore m belongs to the subset of M
defined by ip(vr). I claim that this set is finite and hence m itself is algebraic. The claim
follows from the fact that annM r is finite since r f I, and hence, under the endomorphism of
MZ which takes m to mr, the finite set ip(M) has finite pre-image (defined by '.p(vr)).

It follows that R/I is a domain. For, let r, s be any elements of R\I, and take m to be

any element of M\A. By the above paragraph, mr ff A and, again, mrs ff A. So rs m 0.
The next step is to show that R/I is finite: we argue by contradiction. Suppose that

0,t,r1,r2,...,rn,... are representatives of distinct cosets of I in R. Let us also take M to be

the prime-pure-injective model.
Let mEM\A. Set mo to be m. Since M is the prime pure-injective model, mff S (by

7.13, since vE S A v f A defines the unlimited type p). Hence there is ipo pp, of finite index
in M, such that mff wo(M). Consider the elements m, mrj, mr2,...: since this list is infinite,
there exist i*j with mri-mrj in tpo(M). Set s,= ri-rj - an element of R\I. Set rn1 to

be ms,.
Since s1ff I, ms,& A: so now repeat the argument with m, in place of in. One obtains

that there is a pp formula tp, of finite index, such that ms1 is not in Lp,(M) and, replacing LP,
with ipo Aip, if necessary, it may be supposed that ipl(M) < <po(M). Then one obtains s2 E R\I
with ms1s2 E ip1(M)\A, ....

Thus one obtains an infinite descending chain M > ipo(M) > ... > .p77(M) > ... of pp-definable
subgroups (of finite index) and elements ms msis2,... with ms1...sn lying in
ip77_1(M) \ ipn(M). These elements all are definable over in. So by the usual argument (cf. 3.1)
there are 2 o 1-types over m and hence 2 o 2-types over 0. (In particular, there must be
2'&o countable models to contain all these 2-types.)
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Finally we recall that a finite domain is a field (to see that every non-zero element has an
inverse, consider the list of positive powers; then apply Wedderburn's Theorem, which says
that a finite division ring is a field). a

As a consequence, the structure of the unlimited part of any model of T is that of a
vectorspace over R/1. In particular, D(p) = R/1, and the hull, N(p), is finite.

The next stage is to characterise forking independence of non-algebraic elements. The short
proof given is due to Pillay. I also give a proof of the author's which is similar to Buechler's
original proof: it is longer (modulo what has been proved already) but it is very different, and
the method may have some other application.

Theorem 7.20 [Bue86a; ThmA(ii)] Let T be a U-rank 1 theory of modules. Let
a, b be in the monster model of T, with a non-algebraic. Then a depends on b
over 0 iff there exist r,s1,...,sn in R, with r not in I, such that
ar- Ii bisi is an algebraic element (in other words iff, modulo algebraic elements,
a is a non-trivial linear combination of the bi).

Proof One direction is easy: namely, if the right-hand condition is satisfied then let w define
a finite set containing or- Ei bisi. The formula w(vr- 1i bisi), which is satisfied by a,
defines a finite set (since annMr is finite); so a is indeed algebraic over F.

For the converse, suppose that a J /0. By 5.6 and 7.6 there is a pp-formula ip(v, w)
such that ip(a,b) holds and such that Lp(M,0) is finite. Consider the type of a' over 0. Let
a"b' realise a non-forking extension of this type to any pure-injective model M which
contains a^b; one has, in particular, T(a',b'). Let M' be a model containing M^a' ' ', and
set M'=M ®U, where U is, of course, a direct sum of copies of the R/1-vectorspace N(p).
By 6.4, one may suppose that a' and b' have the form a+c, b+d for some c, d in U. We
have ip(a'-a, b'-b) - that is ip(c, d) - therefore c is algebraic over W. Since the R-
module structure of U is simply its R/I-vectorspace structure, this implies that c is
linearly dependent on d; therefore there exist si in R such that c= Ei disi. This is
(a'-a) = 1i (bi'-bi)si, which re-arranges to a'- E bi'si = a- Ebisi. The term on the
right is in M, but a'- bisi is independent from M over 0, so it must be that a'- E bi'si
is algebraic over 0. Thus, a- Ibisi is an algebraic element, as required. a

I now sketch an alternative proof, by a rather different method. In outline, it is as follows.
(i) We begin by supposing that a LT/0.
(ii) This means that there is some pp relation ip(a,b) with ip(M,b) finite.

T

(iii) The formula ip(u,U) has, in matrix notation, the form 3w (u v w).H=0, where H= S
r

and r is a row vector. If G is a matrix with entries from R, then denote by the

matrix over R/1 which is obtained when the entries of G are replaced by their
equivalence classes modulo I.

(iv) If the rank of H is strictly less than the number of its columns, we can remove the
dependent columns: the resulting pp formula still witnesses that a is algebraic over

(v) So one may assume that the rank, k, of H equals the number of columns of N.
(vi) By considering the U-ranks of image groups of matrices, one shows that the rank of T

being k would contradict ip(v,b) being finite.
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(vii) Since, therefore, the rank of 7 is strictly less than the rank of R, there is a linear

mbination of columns of H which, modulo I, looks like where r is non-zero, as
(;o

co

is the column s: thus one has a relation between a and b of the required form.

I now expand some of these steps where, for the sake of clarity, I suppose that b is just a
r

single element b: so H is a (2+l)xk matrix s where r, s are rows.
T

(iv) Partition H into columns: H = (K, ... Kk) where K j is the column

Suppose that Ki is linearly dependent, modulo 1, on the other columns; say
x,

K1 = Kjyj + x, where yjER and Z= with every xi in I (since R11
x1+2

is a field, it is quite justified to take the coefficient of K, to be 1).
Consider the pp formula ip'(u,u) which is obtained by deleting the first column from H:
3w J, ..., wl n,% ur,j + us,j + Et=, witiJ = 0. Certainly ip'(a, b) holds. So it will be
enough to show that ip'(u, 0) is finite.

Suppose then that Lp'(a',0) holds: say W= (dJ,...,d1) E Ml is such that
A,-'2 a'r- + Et=, ditiU = 0. Then a'r1 + 2,=, ditil= (a' 0 d)K1 =
1:j2(a' 0 d)Kjyj +(a' 0 d)x= Ej`2(a'r, +X:.=,ditij).yj+a'x1+It dixi+2=
O+m, where m is an element of the finite set 1,'+ Mxi. Thus a'r, + I,', ditil is an
element of some finite set, 8, which depends only on ip'. Therefore, there are finitely
many elements a,', a2',... such that, for every a' in Lp'(M,o), one has ip(a'-0i', 0)
for some i. Since Lp(M,0) also is finite, finiteness of ip'(M,0) follows.

(vi) Suppose, for a contradiction, that the rank of T is equal to k. Then the set

MT = (mEMk : 3m'EMI with m'T = m) has U-rank k. For, by invertibility of T
(Ik)mod ulo 1, there exists a matrix G over R with (GT) having the form , wh ere

rI

Ik is the kxk identity matrix. Hence GT has the form
rk

for some

X l
ri',..., rk' in R\I and some matrix X with entries in 1. Then

MT >_ MZGT = Mr 11 ®... ® Mrk' - which has U-rank k.

Now, &p(u,b)=(a'EM:a'T+bsEMT)=(MT+bs)nMT SMk. Since Lp(u,b) is
finite and UR(MT)=UR(Mk), it must be that MT+ bs is finite. Hence, each ri is in I
(otherwise Mri, hence MT+bs, would be infinite). Therefore n,=,,annMri is infinite
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and then, for every m in this intersection one has, from ip(a,b), that tp(a+m, b) holds
- contradicting finiteness of Lp(v, b). a

Going back to the case of a small countable non-t.t. U-rank 1 theory of modules, let M be
any model of it. There is defined on M a geometry: the "objects" of the geometry are the
algebraically closed subsets of M. Theorem 7.20 shows that this geometry is just (infinite-
dimensional) projective geometry over a finite field (by 7.19). The "zero" of the geometry is
just A - the algebraic closure of the empty set. One sees that the geometry is projective
(modular) from the fact that every two algebraically closed sets have non-trivial intersection:
specifically, 7.20 shows that the closed subsets generated by single elements are just the
submodules of the form bR+A for bEM, and any two such always intersect in at least A. It
follows that Buechler's [Bue86; Thm B] applies and therefore Vaught's Conjecture is correct
for modules of U-rank 1 [Bue86a; Thin B].

It is unfortunate that, as yet, there is no way known of finishing off this proof without an
appeal to the above rather deep and difficult results. There is also the question of whether these
results may be extended to higher U-rank. It is not clear whether or not the case of modules of
finite U-rank is any easier than the general case, for it has been shown that Vaught's Conjecture
for finite U-rank may be reduced to the case of certain abelian structures and these may be
turned into modules (though perhaps not of the same U-rank).

A number of people have given some thought to modules of higher U-rank, and some
progress has been made, especially by Herzog and Rothmaler. But, because to describe this
would take some space and also because no definitive results have appeared as yet, this is not,
perhaps, the time or place to give details.

Let me at least mention, however, that Herzog and Rothmaler recently pointed out that
Rothmaler's proof of 7.20 shows that there is no small non-t.t. module over a right noetherian
ring. For Rothmaler's proof shows that if ip(M) is of finite index in M (M small and non-t.t.)
then ip(M) contains annM I (he does this by simpifying the form of a general pp formula;
alternatively, one may do linear algebra with the corresponding matrices modulo I, as above).
But if I is finitely generated as a right ideal, then annM1 is pp-definable (as opposed to , -
pp-definable) and so, by 7.6, it is of finite index in M. Therefore, by 7.6, M has the dcc on
pp-definable subgroups, so is totally transcendental.

One hopes, for example, to obtain results which give more information on the structure of
the prime pure-injective model. An apparently reasonable conjecture was that the prime pure-
injective model has infinitely many components, each of which is totally transcendental. The
example which follows quoshes this conjecture. Another conjecture (see [PP87; §7]) was that
the prime pure-injective model would be atomic (all types realised are isolated) - for then
Vaught's Conjecture would follow from 7.14 and the fact that there is, up to isomorphism, just
one countable atomic model. But an example of F. Piron, which follows the first example, shows
that this need not be so (although Piron does prove that it is so under the special hypotheses that
the lattice of pp-definable subgroups is a chain and that every pp-definable coset contains an
element algebraic over the parameters used to define it [Pir87; Chpt4]).
Example 5 We begin with the ring R and module M as defined in Ex7.2/2. Recall that
Z(Th(M)) has X. isolated U. points. To get our example, we stitch these together. Let B be
the submodule=subspace of M generated by the yoxo -yixi (iEw) and set M' to be M/8.
Thus, retaining the same notation for cosets of 8 as for elements, we have the extra relations
yixi = y jx j for all i, j E w. We wil l see that M' is not totally transcendental, is of U-rank 1
and has only countably many types. Furthermore M' is indecomposable.

Since 8 is infinitely generated, M' cannot be interpreted back in M, so it must be shown
directly that U-rank M' =1. It may be checked that (essentially) the only "new" formulas are
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those of the form xk I uxl - this formula defines ® (ya.tR + A : i _>0 ), which was already pp-
definable (remember that we are not distinguishing sets and elements from their images mod 8).
Hence there are no new pp-definable subgroups. Therefore U-rank M' = 1 and clearly M' is not
totally transcendental. Furthermore, the theory of M' has only countably many countable
models - since one may show that every type realised in the prime pure-injective model is
isolated. The details of checking these points are left to the reader.

To show that M' is indecomposable, it will be enough (see below) to show that every two
algebraic elements are linked. So let a, b be elements of A - the set of algebraic elements of
M'

Consider b: since it is algebraic, it is a sum of terms of the form y jxkp jk (j<k) where
p jkEK. Fix one such expression, and (+) look for the least "j" which occurs. If, for this value
of j, there is some term y jxkp jk with k *j, then go to (*) below; otherwise, only y jx jp j j
occurs with that value of j, so replace this term by yj+lxj+lpjj (to which it is equal), and
then go back to (+ ).

Either we go to (*) eventually, or else b is just yoxopo0. Similarly try to write a in
the form (*) below.

(*) b=yjpj(x)+yj+lpj+1(z)+... where the pt(x) are polynomials in the xi(iEw)
with constant term 0, and where xk, for some k> j, occurs in p j(x). We assume that the
pt(x) have no redundant terms, in the sense that xs does not appear in pt if s <t.
Replacing y jx j by y j+lx j+1 if the former appears, it may be supposed that x j does not
occur in p j.

Suppose that each of a,b may be brought to the form (*). Let ylxm« be the "leading
term" in the expansion of a (i.e., l is the least index of a "y" and m> l). Write
a = q,(y)x1 + g2(y)x2 +... with the qi(y) K-linear terms in the Y's (again, assume no
redundant terms, so at least the first t terms will be zero). Let ip(u,u) be

3w j, w j+1,..., z z2,...
((v=wjpj(x)+...)n(nt.,wj+ixj=0) n (u=zIx1+z2x2+...)n (zmxl«-1=wjxj)) -
so ip(a,b) holds. If ip(0,b) held, then we would have z1x1+ z2x2 +... = 0. Therefore
"zmxm" would be in the K-space generated by yoxo. It must be that zm, when written out,
has no term in any Yk for k < m - for ykxm((Yo,xo) for such k. In particular, no Yk
for k<l appears; hence zmxl = 0. Therefore, w jx j= zmxl«-1=0. Now, since
wjEannxj, one has wj=yj+18j+l+Yj+28j+2+...+d where dEA. So wjpj(x) has no
term in y j (of course, since it might have y j+ixj+1, it may be that it can be written with
y jx j appearing, but there is no way in which y jxk can appear). More generally, since also
w j+ixj=0 (i>_1), it follows that the term y jxk cannot appear in (any expression of)
W jp j(x) + w j+1 p j+1(x) + .... This is a contradiction.

If we fail to bring each of a,b to the form (*) then either a,b both are K-multiples of
yoxo - so certainly are related - or a (say) may be written as yoxoa and b may be
written in the form (*) above. In that case, let ip(u,v) be
3wj,wj+1,...((u=wjpj(x)+...) A(Ai3:,wj+ixj=0) A (ua-l =wjxj)). Then ip(a,b)
holds. The formula tp(o,b) would give w jx j = 0, and we finish as before.

To complete the proof, it has to be shown that this is enough to establish that M' is
indecomposable. Observe first that if a is algebraic and a=(a',a") E X ®Y <; M, then a' and
a" are algebraic also (exercise: use 2.12). It follows that there exists a indecomposable
summand, No, of M' which contains an algebraic element. Since, as we have just seen, every
two algebraic elements are linked, it also follows that No contains all the algebraic elements.
Set M'=No M. We have NnA=0. Therefore N1=0 and so the structure of N as an R-
module is simply its R/1-vectorspace structure. Therefore it is a sum of copies of /1(p). By
7.13 this implies that N=0, as required.
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Thus Z(Th(M')) = (M', R/1).
Example 6 (Piron [Pir87]) The original example was an abelian structure: I describe it
and then describe the module version of it. Actually, Piron's thesis [Pir87; Chpt3] gives a
method of converting abelian structures into modules which exhibit similar properties.

The abelian structure is a K-vectorspace M (K a finite field), together with predicates
Ui, Ui (i E w) for subspaces. The theory of the structure says that these subspaces are
arranged as follows, with dimK(Ui/Ui+1)=1 and dimK(Ui/Ui)=n (for some fixed nEw).

Piron proves that there are no pp-definable subgroups
other than those shown, and there are just countably

Uo many countable models. Then he shows that there is a
non-isolated type (viz. that which says "I am in each Ui
but not in Uo (hence in no Vi)") realised in the prime

U o pure-injective amodel.To

o convert an abelian structure (M, (Ui)i), say, into
U2 U1 a module, Piron introduces a variable for each Ui:

R=K[xi (iEw): xixj=0]. Then define the R-module
Al' to have underlying vectorspace

,or U2 MeX=Me(®(M/Ui:iEw)), with the action of xi
on M being the natural projection to M/Ui and with
xi having the zero action on X. Of course, one wants
the resulting module to reflect the properties of the
original abelian structure. Piron shows [Pir87; 3.5]
that if (M, (Ui)i) has U-rank I then so does the
corresponding module, providing the following conditions
are met:

(i) the abelian structure has no pp-definable subgroups other than M, 0 and the Ui; (ii)
Ui n U j x 0 for each 1, j; (iii) for each i, there exists j such that Ui > U j.

Also, he shows that, if N and M are abelian structures satisfying these conditions then, if
their "module versions" are elementarily equivalent, so are they [Pir87; 3.7]. Furthermore,
the number of countable models of the theory of M bounds the number of countable models of the
theory of its "module version" [Pir87; 3.8].

Let me give a module version of Piron's example: it is got by modifying the "canonical
example" (Ex 7.2/2) and is just slightly shifted from what one obtains if the process described
above is applied (I leave that as an exercise to the reader). Let R be the ring
K[X1 : i E w]/( Xi : iE w)2 where K is a finite field. Define M to be the module
®(yjR:jEw) with the relations yjxi=0 iff j>i.

Now define R' to be K[Xi,Zi : iEw]/(Xi,Zi: 1Ew)2 and let M' be the module
Me®(Nj:jEw) where Nj=M/ED ( (yi+yi+1)R:i>j). The action of xi on M' is just as
the R-action on the first component and is annihilating on the N j's. The action of z j is, on the
first component, the canonical projection M -* W j and is the zero action on each W j.

One may verify that the non-algebraic pp-definable subgroups of M'R' are as shown
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all gaps
M' Note that the algebraic pp-definable

subgroups all are contained in M'J, so are
1-dimensional annxo contained in the intersection of all the non-
over K / %, algebraic ones shown.

annx1 annzo\ /
q,,\

annx2 annz1/ \ /
annz2

P
E..r , -definable

Now, the unique unlimited (irreducible) type
is that which says: " I am in M'J but I am not
algebraic" (the first is said by all the
vxi=0=vzj).

But there is another non-isolated irreducible
type. It says "vxi=0 (iEw) and vzj#0
(jEw)" (actually, it is neg-isolated by
"vzo m0"). This type, q, is limited: the index
of G0(q) in G(q) is IKJ. Hence the
multiplicity of q is IKi-1 (cf. Saffe's
condition (S)): a non-forking extension of q to
a model is determined by specifying a non-zero
coset of r?,0(q)= fl jannzj in
q'(q) = fl i ann xi. Of course, q is realised in
the prime pure-injective model M' (for there
is only one unlimited irreducible type; or by
10.1).

Piron [Pir87; 3.18] makes the following conjecture: let T be a countable complete
theory of R-modules, not totally transcendental, of U-rank 1 and with fewer than 2ko
countable models. Then every model of T has the form: Ma® U1 ®... ® Uk ® N(p)(K), where
p is the unlimited irreducible type, the lli are indecomposable and not isomorphic to 11(p)
and Na is atomic and infinite. He derives the validity of Vaught's Conjecture, assuming such a
structure theorem.
Example 7 With a final example, I indicate an obstruction to extending the results in the U-
rank 1 case to the general superstable case. An important ingredient in the proof of 7.14 is that
if a is a realisation of the unlimited type, then the hull of a is algebraic over a and therefore
is in every model which contains a. Thus the unlimited part splits off. This is no longer true in
higher U-rank. Suppose that T has U-rank 2: by 7.23 below, T has either one or two
unlimited indecomposables. If just one, then the unlimited indecomposable has U-rank 2, and it
need not be the case that, if a has unlimited hull, then the hull of a is present in every model
which contains a. For, although the hull of a is isolated over a in its own theory, it need not
be isolated over a in T. The example illustrates this - actually it has U-rank 3 but it
illustrates the point and, as Herzog points out, it may be modified so that the result has U-rank
2.

We start with the "canonical example": R=K[xi(1Ew):xixj=0], M=ED (yjR
(jEw):yjxi=0iffj>i}, where K is a finite field. Introduce a new variable:
R'=R[z: z2=0, zxi=0 (iEw)], then define M' to be where bxi=0 (iEw),
bz=a (say) and Mz=0.

One may check that URM'=3 and (use 7.15) that M' is small. Fix b and set a=bz: I

claim that the pp-type of b over a is not finitely generated. Now, pp(b/a)'- bxi=0 for each
iEw. On the other hand, if ciEannMxi-1\annMxi, then (ci+b)z=a but ci+bEannN'xi.
It follows (consider the lattice of pp-definable subgroups) that pp(b/a) is not equivalent to a
single formula.
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One may note that the prime model in this example is the submodule of M' generated by the
yi+b (iEw).

Herzog pointed out that if, rather than introducing the new variable z, one replaces the
field K by (e.g.) 714, then the result has U-rank 2 and displays the same essential features.

If one puts in just one copy of bR, then one obtains another example with U-rank I but
with non-atomic prime-pure-injective model.

7.3 Modules of finite U-rank

The first result here is that a theory with finite U-rank i5 finite-dimensional: more
precisely the U-rank bounds the number of dimensions. This result for modules contrasts
markedly with the general case (take T to be the theory of n disjoint predicates), although
Lascar has shown that it is true for w-stable groups [Las85]. An algebraic application of this
result is 11.29.

Lemma 7.21 Suppose that p is an irreducible type with p?p1n...npn in the
lattice of pp-types (definition in §8.1). Then there is q related to p and
i E (1,..., n } with q 3 pi. If p and all the pi are finitely generated then q may be
taken to be finitely generated.

Proof Let Ni be the hull of a realisation ai of pi and let N be the hull of a realisation a
of p. Since p1n...n p77-<p there is (2.8) a morphism N14D ...®Nn N taking
(a1,...,an) to or. If fi denotes the canonical injection A(i N, ®...®Nn followed by f,
then certainly there is some i such that fiai x 0 (we may assume that p is not the zero type).
Set q to be the type in N(a) of one such fiai. Since p is irreducible, q is related to p
and certainly q _>pi=tp(ai).

The second assertion of the proposition will not be used yet, so I call on the fact (8.4) that if
p and all the pi are finitely generated then one may replace the hulls by finitely presented
modules, and then use 8.5. Since the codomain of f is finitely presented, one concludes (8.4)
that q is finitely generated. o

Lemma 7.22 Suppose that T is superstable and that p1,...,pn are unlimited
irreducible types over 0 which are mutually orthogonal (i.e., N(pi)*M(pj) for
i* j). Then there are {q...... qn} such that for each i E (1,...,n) there exists (a
unique) ji with qi related to p jt and such that the chain
g1>glnq2> ...>gln...ngn is strictly decreasing.

Proof Since the unlimited part Tu of T is U. the poset of unlimited (pp-)types has acc. For
each i set Yi={pES(0) : N(p)=N(pt)). Set X, to be the disjoint union Y,u...uY7 and
choose q1 maximal in X, - say for notational convenience. Set
X2=Y2u...uY77 and choose q2 maximal in X2; .... It must be shown that

q1>g1ng2>...>gln...nq77.
If this were not so, then for some jE{1,...,n} one would have

g1n...ngj=g1n...ngjnqj+l; that is, qj+l>-gjn...ngj. Then, by 7.21, there would be q
related to qj+1 and iE(1,...,j) with q->qi and hence, since gilgj+l, with q>qi. Since

q-qj+1EYj+1 we have gEXi (for i<j+i). But q1 was chosen maximal in Xi -scone has
a contradiction, as required. o

Theorem 7.23 [Zg84; 8.12] Suppose that UR(T)=n. Then T has no more than n
dimensions.

Proof Suppose that p1,...,pk are mutually orthogonal unlimited irreducible 1-types (so
we're supposing that p(T)>_k). Then, by 7.22, one may find a chain of unlimited 1-types of
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length k-1 (note that q,n...ng1 is realised in the unlimited module N(q,)(D ...eN(qj)).
Taking account of the zero type, one sees that PP0 has a chain of length k: so 5.13 implies that
UR(T),>k, as required. a

For a sharper result, see 11.39 below.
It is an immediate corollary of this that a ring, all of whose modules have finite Morley

rank (hence finite, so even bounded (consider a model of T*), U-rank), is of finite
representation type (11.29).

The theorem 7.23 will also be derived in §10.4 (as 10.20) as an direct corollary of a result
of Ziegler. The argument used to establish 7.23 will be used in §8.4 for another purpose.

Actually, Lascar [Las85] has shown that any w-stable group of finite Morley rank, n
(say), has no more than n dimensions. This follows quite easily by working in Teq: for then
one may factor by a minimal connected normal definable subgroup and so split the original group
as the "sum" of a group of U-rank 1 and another of U-rank n-1. Since any type is non-
orthogonal to at least one of these components, one reduces, by induction, to the case of U-rank 1,
which may be shown to be 1-dimensional (see [Las85] or [Poi87; 2.13]).

Exercise 1 Show that if UR(T)=2 then there are only finitely many unlimited 1-types. Show
that the conclusion may fail if UR(T)=3.
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CHAPTER 8 THE LATTICE OF PP-TYPES AND FREE REALISATIONS
OF PP-TYPES

One idea that I have been emphasising in these notes is that pp-types generalise right ideals,
at least in their role as annihilators. This viewpoint will be even more explicit in later
chapters. In this chapter, we systematically study the lattice of pp-types, bearing in mind its
"quantifier-free version" - the lattice of right ideals.

We begin (§i) by noting that the poset P of pp-types is a modular lattice, and the meet and
join operations are explicitly described. Then we see that a pp-type is irreducible (i.e., has
indecomposable hull) iff it is meet-irreducible in P (justifying the terminology). A pp-type
p may be irreducible because there is another pp-type q with the property that every pp-
type strictly above p is above q: in that case, we say that p is neg-isolated, since it must
then be equivalent to its pp-part together with the negation of a single pp formula. The
distinction between those pp-types which are neg-isolated and those which are not turns out to
be significant.

A pp-type is finitely generated iff it is realised in a finitely presented module. Half of this
is shown in §2, but the proof is not completed until section 3. We see that the finitely generated
pp-types form a sublattice of the lattice of all pp-types. Furthermore, a finitely generated pp-
type is irreducible, respectively neg-isolated, in the one lattice iff it is so in the other. All this
will be of use to us when, in Chapter 11, we restrict our attention to finitely generated modules
over right artinian rings.

Given a right ideal 1, it is easy enough to find a "free realisation" of an element with
annihilator exactly 1: the element 1 + I in the module R/I. So, if pp-types generalise right
ideals, there should be a corresponding notion of free realisation of a pp-type. The third section
is devoted to showing that there is such a notion. In particular, it is proved that if w is a pp
formula then there is a finitely presented module M and an element (or tuple) app such that
the pp-type of aLp is generated by Lp. Such free realisations fall short of being "minimal", but
they are at least economical and this seem to suffice for most purposes. In all of this section, it
seems to be easier to work with the matrices corresponding to pp formulas: in particular, pp-
types correspond to something like right ideals in the ringoid of rectangular matrices over R.

A source of many problems in non-commutative ring theory is the fact that the lattice of
right ideals of a ring may be very different from the lattice of left ideals. Rather remarkably,
the same is not true for left and right pp-types. I show in the fourth section that there is a
duality between the lattice of (right) pp-types and that of pp-types for left modules. I give an
algebraic application of this (there should be more): a right pure-semisimple ring has, for each
positive integer n, only finitely many modules of length n, up to isomorphism.

0.1 The lattice of pp-types

As usual, T* denotes the largest complete theory of modules (§2.6). Let P (= P,=P1(R))
denote the poset of all pp-i-types over 0 modulo T*. In other words, P is the poset of all
possible pp-i-types in R-modules, ordered by inclusion. More generally, for c 1, let Pa be
the poset of all pp-types in a free variables. Much of the first result has already been noted
and used: it says that P is a complete modular lattice.

Proposition 8.1

(a) P« is a modular lattice with operations A and v given by:
pAq=pnq=p+q;
pvq=(puq) (where "()" denotes deductive closure).

(b) If M is a module and if p and q are a-types then (pvq)(M)=p(M)nq(M).
If M is pure-injective, or if p and q are finitely generated, then
(pnq)(M)=p(M)+q(M).
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(c) If p and q are u-types, realised by 5 and b respectively, and if 57,-S are
direct-sum independent over 0, then a+b realises pnq.
In particular, if a is in M, b is in M' and if M®M'
pp(a+b)=pp(a)npp(b), where pp-types are taken in N.

is pure in N, then

(d) If pi (iEI) are pp-U-types, then their intersection (which is therefore their
meet) also is in P. In particular, Pu is complete.

Proof Let p and q be u-types. If M is any module then clearly (puq)(M)= p(M)nq(M).
Most of (b) has been seen already in 2.3(iii). Just note that if both p, q are finitely

generated, say by ip, tp respectively, then (p+q)(M)=(ip+ip)(M)=ip(M)+y,(M) (by 2.2)
=p(M)+q(M).

Now suppose that M is pure-injective. Then pH p(M) defines an order-reversing map
from Pu onto the set of subgroups of M(O) pp-definable in M. The latter is, by 2.2, a
sublattice of the lattice of all subgroups of MOO. If M is a (IT*I+Iul)+-saturated model of
T* then M realises every u-type and so, using M=M' ° and 2.12, this map will actually be
an isomorphism. Hence Pu is a modular lattice with pvq=(puq) and pnq=p+q.

Parts (c) and (d) follow directly from 2.10. a

In consequence, one may define the closure of a set, 1, of pp formulas (in u free
variables) by: (4))=fl(pEPu : I=p). Of course (1) is just the closure modulo T*
(equivalently modulo the theory of R-modules) of ' under conjunction and pp-implication. An
algebraic description of (4)) in terms of 1, corresponding to generation by "+" and "-xr" in
right ideals, is given in §3.

If T is a complete theory then one may make the relativised definition: PUT is the sub-
poset of Pu consisting of all pp-U-types modulo T. From the proof above, one sees that there
is a natural order-preserving surjection P. ) PuT, given by sending p to its pp-deductive
closure modulo T; in other words, p is sent to the unique gESuT(0) for which
q(M)=p(M), where M is a (ITt+lod)+-saturated model of T. This may be regarded as the
result of the "localisation" from T* to T.

There is a problem of notation here. I have previously used "pAq" to mean the conjunction
- effectively, union - of p and q: on the other hand we have just seen that in Pu "pAq" is
the intersection of the sets p and q! Therefore I make the convention that the operation of
meet in Poe will be denoted by "n" (and "fl" for the infinite operation) (I retain the use of "v"
for join in PU.)

The next result justifies the terminology "irreducible" when applied to pp-types. Recall
that an element p of a lattice is said to be n-irreducible if whenever p = q n r then either
p = q or p = r. It is stated explicitly in [Kuc84; 111.3.10] and [Pr83; 2.2], also see [Fis75;
7.12].

Proposition 8.2 The pp-U-type p is irreducible iff it is n-irreducible in the
lattice P.

Proof If p=qnr (p,q,rE Pu) and if 5 realises p then one may (as in the proof of
2.3(iii)) find -5,c in N(a) with q(b), r(c) and a=b+c. Since p<q,r there are (2.8)
endomorphisms f, g of hl(5) taking a to b and c respectively. Thus f + g fixes 5 so, by
4.16, must be an automorphism of N(a). Since N(a) is supposed to be indecomposable and so
has local endomorphism ring (4.27), it follows that at least one of f, g is an automorphism.
That is, p=q or p=r.

If a is a realisation of p and N(a) decomposes as N(b)eN(c) with a=b+c,
then one has p=pp(b)npp(c). Irreducibility of p implies pp(b)=p (say). But, by 4.28,
this can happen only if c=0 - as required. a
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This generalises the fact that a right ideal I is n-irreducible in the lattice of right ideals
of the ring R iff the injective hull of R/I is indecomposable.

Two rather different concepts share the name "irreducibility": the difference has both
model-theoretic and algebraic significance (see Chapters 11 and 12). Let me draw the distinction
between them. We will say that a type p is neg-isolated (by Wi,...,Wp) if there are finitely
many pp formulas such that p is equivalent to p+ u{-iWn}. This is a notion
"dual" to that of being finitely generated: in conjunction they are equivalent to isolation (9.20).

Proposition 8.3 [Pr83; 2.10] Let pEP be irreducible. Then precisely one of the
following circumstances obtains.

(a) There is a pp-type q such that if p'>p in P then p'?q.
In this case there is a pp formula W such that q=(pu(W}). Hence

gHpul p (or rather f) is neg-isolated by W (or, we may say, "by q")
since p is then equivalent to q A-IV.
(b)...p is the (properly infinite) meet of all the pp-types strictlyp above it in P: p=(1{p'EP : p'>p} - and then p is not neg-
isolated.

Proof Define q to be the meet of all the pp-types strictly above p. If q=p, then we are in
the second case. Otherwise q > p and so q certainly has the property ascribed to it in (a);
moreover if y is any pp formula in q but not in p then the pp-type generated by p together
with kV lies below q and strictly above p, so is equal to q. Hence p is equivalent to
p+

A,W.Now suppose that the irreducible pp-type p is neg-isolated. Say p is equivalent to
p+ A n; iWi for certain pp formulas For i=1,...,n choose qi in P, maximal
with respect to containing p but not containing Wi. Then the meet gin...ngn contains p
and, by construction, contains no Wi; hence g1n...ngn=p. Irreducibility of p then implies
(8.2) that p=q1 (say). By maximality of ql=p, if p'>p then W1Ep': hence p is
equivalent to p Ali so we are in case (a) with q= (p u (W1)). o

If the pp-type p is as in (a) above, then I will say that it is isolated (in P«); and in
case (b) I will say that it is non-isolated (in P«). Isolation and neg-isolation have been
defined with respect to T*: clearly, one may define a relative version for any complete T
closed under products (PT replaces P). So we have that an irreducible type is neg-isolated iff
its pp-part is isolated in the lattice of pp-types (modulo a given complete theory).

So now the term "isolation" may refer to the types in the space ST(0), indecomposables in
the space Z(T) or pp-types in the lattice PT. In general, though not in the U. case, these do
not correspond to each other, but there are implications between them and these are detailed in
§9.3.

Example 1 The types realised in finitely generated members of ZZ (i.e., the hulls of finitely
generated pp-types) are neg-isolated - they are even isolated. The non-zero types realised in
2(p) are not neg-isolated: infinitely many negations are required to say that an element is
torsion-free. On the other hand, those in 7lpoo are neg-isolated (but not isolated). Similarly
for Q. The latter points can be seen directly or by using the algebraic criterion of 9.29.

In the theory of the non-zero elements of 2(p) now have neg-isolated types.

There is a precise sense in which the lattice P of pp-types generalises the lattice Latt(R)
of right ideals. Define n:P) Latt(R) by pH p n R (regarding p as a set of matrices, as
in §2.1, viz. tip = {rER: "vr=0"E p}). Also define i.:Latt(R)--3P to take the right ideal I
to the pp-type of the image of 1R in R/1, and define i':P) Latt(R) by
1 H ppE(R11)(1+I). Observe that the A-atomic part of a type is a collection of formulas of
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the sort "vr=0" so, under the identification of pp formulas with the corresponding matrices
(§2.1), such a A -atomic part "is" a set of ring elements r and it is easily checked that this set
is a right ideal. In particular the interval [i*I,i*1] consists of all those pp-types whose A -
atomic part is 1.

It is easy to see that n is onto; that i*, i* are 1-1; that n, i.*, i* are order-preserving;
and that i*, respectively i* is right, resp. left, adjoint to ri. This last is so since i*I is the
smallest pp-type whose A-atomic part is I, and i*1 is the largest such pp-type.

Exercise 1 Describe P1(7l).

8.2 Finitely generated pp-types

If T is totally transcendental then every pp-1-type is finitely generated: that is, PT has
the acc. Indeed this property characterises such theories (3.1). This is reflected in the
structure theorem (3.14) for U. pure-injective modules. That theorem exactly generalises the
structure theorem which one has for injective modules when Latt(R) has the acc (1.11). This
suggests that it might be useful to focus on finitely generated pp-types.

A more specific reason for looking at finitely generated pp-types is that they are precisely
those we need to consider when dealing with finitely generated modules over artinian rings: for,
as will be seen shortly, any pp-type realised in a finitely presented module is finitely generated.
In §11.3 an analogue of the theory of hulls (§4.1) is developed within the category of finitely
presented modules over artinian rings. By the unqualified term finitely generated pp-
type, I mean one which is finitely generated modulo T*.

Proposition 8.4 [Pr83; 2.4] Let p be a pp-n-type. Then p is finitely generated
(modulo T*) iff p is realised in a finitely presented module.

Proof = Suppose that Lp is a pp formula equivalent to p (in T* and hence in every theory
of R-modules). Let a in M have pp-type p. Now ip(U) has the form 3zu e(U,zu) for some
A-atomic e. So there is b in M with Mke(a,b).

Let A be the submodule of M generated by (the entries of) o and the chosen witnesses,
of the existential quantifiers in lp. Since a has no quantifiers, and since e(a,b) is true in

M, it is also true in A (it is simply a conjunction of linear relations in a^). Thus AI p(5).
Since Lp proves p in T* and hence in every module, we deduce that the pp-type of a in A is p.

Now A is finitely generated, so it remains to show that it may be taken to be finitely
presented. Of course if R is right noetherian, and in particular if R is right artinian, tnen A
necessarily is finitely presented. The general case needs more work, and is deferred until 8.15.

' Let a be in the finitely presented module M and set p=ppM(a). Let T be a tuple of
generators for M. Since M is finitely presented, there is a conjunction, 8(i T), of equations
such that e(T) holds and such that all relations between the entries of T are consequences
(modulo the theory of R-modules) of e(T). (In algebraic terms, if d lies in M' and if e(d)
holds then the map THd well-defines a morphism M--M'.)

Write a as an R-linear combination TK (for some matrix K) of T. Let p(U) be the
formula 3w( v=wK ne(w))) (so if He is the matrix 02.1) corresponding to e then HLp is

I 0 l
-K He 4 The claim is that tp generates p.

So let/ b in M' (M' any module - e.g. a model of T*) be such that M' = p(b). Then there
is d in M' satisfying e(d) and such that b= K. Since T is free satisfying e(w), there is
a well-defined morphism MOM' given by THd. Applying f to the equation(s) a=TK
one obtains f(a)=dK=b. Hence (2.7) ppM'(b)_> ppM(a)=p.
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That is, every pp-type containing Lp contains all of p. Since tpE p it follows that Lp is
equivalent to p, as required. c

The proof of the result above has the following useful corollary (cf. 2.8(v)).

Prooosition 8.5 [Pr83; 1.9] Suppose that a is in the finitely presented module M.
Let W in M' be such that ppM(a)5 ppM'(b). Then there is a morphism M-) M'
taking a to b. o

As an exercise, one may write down a proof cast in "purely algebraic" terms, using
matrices. I n the situation of 8.5, one could (and, if one were a topos-theorist, one probably
would) say that a morphism M-*M' is an "element" of M' (also of. §to.T).

When dealing exclusively with finitely generated modules over an artinian ring (§11.3), we
will have to confine attention to the finitely generated pp-types (and so, for example, will lose
direct use of the compactness theorem). So we should look at the sub-poset, Pnf, of Pn which
consists of the finitely generated pp-types ordered by inclusion (of course this makes sense only
for finite n). Fortunately, Pf is a well-behaved sublattice of P.

Proposition 8.6 [Pr83; 2.1] Pnf is a (o,1)-sublattice of Pn.
Proof Clearly the bottom element 0, which is the pp-type of the constant tuple 1 in R77, and
the top element 1, which is the pp-type of the zero tuple, are common to Pn and Pnf

Suppose that p and q, equivalent to Lp and W respectively, are finitely generated pp-
types. Then, by 8.1, one has that pvq is generated by (tp, i) (so is equivalent to ipAiv), and
that pnq is equivalent to p+u,. So Pnf is closed under the lattice operations of P, as
required. a

Exercise 1 Show that Pf need not be a complete lattice.

The intersection of two finitely generated right ideals need not be finitely generated (unless
the ring is right coherent): 8.6 says that the situation for pp-types is much better. One should
observe that, in the proof, the formula defining pnq involves an existential quantifier (cf.
15.41). Next, some of the results of the previous section are relativised to Pf.

Prooosition 8.7 [Pr83; 2.3] If p is a finitely generated pp-n-type then the
following conditions are equivalent:
(i) p is irreducible;

(ii) p is n-irreducible in Pn;
(iii) p is n-irreducible in Pnf

Proof (i)<#(ii) This is 8.2.
(ii)4(iii) This is trivial.

Suppose that p=qnr where q,rEPn and q,r strictly contain p. Take Lp
in q\p and ip in r\p. Set q, to be generated by pu{ip} and similarly r,=(p u(ip)): then
q1 and r, are finitely generated. Also q, and r, strictly contain p and their intersection is
p (for p<glnr,<gnr). So p fails to be n-irreducible in Pnf, as required. n

Proposition 8.8 [Pr83; 2.11] Suppose that p is an irreducible n-type over 0

whose pp-part is finitely generated. Then the following conditions are equivalent:
(i) p+ is isolated in Pn (in the sense of 8.3);
(ii) p+ is isolated in Pnf (in the some sense);
(iii) p is isolated, in the usual sense, in Sn(0).
These conditions imply that the hull of p is an isolated point of Z"(T*).

Proof Suppose that p+ is equivalent to ip.
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(i)#(ii) Suppose that p is isolated in P. by the pp-type q; then, with the notation of
8.3(a), q is equivalent to LpnV, hence is finitely generated. Certainly q isolates p in the
smaller lattice.

(ii)=(iii) Let q-ipA p isolate p in P. Then p is equivalent to p+ Ai4J, so is
equivalent to ipA 14J. Hence p is isolated in the space of n-types modulo T* over 0.

(iii)#(i) Suppose that (modulo T*) p is equivalent to 1pnrip where, by 9.20, it may
be supposed that p+ is equivalent to ip, and where the presence of just one negated formula is
justified by the second paragraph of the proof of 8.3. Set q=(TAkP). If ;o' is an 77-type
strictly containing p, then ip is in p' and, since p m p' and lpn-ih, isolates p, it must also
be that ip is in p'. Thus p',>q; so q isolates p in Pn, as required.

Finally if (modulo T*) p is equivalent to tpn,y, then any point rV EZ(T*), with
ip(N)>ip(N), contains a realisation of p (namely, any element of p(N)\W(N)) and so is the
hull of p. Thus (ip/gyp) is an isolating neighbourhood for N(p) in ZR=Z(T*), as required. o

In 9.20 it is shown that, for modules, isolation in the usual sense (i.e., in the space of
types) is equivalent to positive isolation (being finitely generated) plus negative isolation (being
neg-isolated).

8.3 pp-types and matrices

The analogy between right ideals and pp-types may be pursued further.
Given a set of elements of the ring R the right ideal generated by this set is formed by

closing under the operations of addition and right multiplication. One may ask whether there is
an analogous description of the pp-type generated by a set of pp formulas. I n fact there is and, as
might be expected, the matrix description of pp-formulas is the most appropriate framework
for such a characterisation.

In the course of describing how a pp formula generates a pp-type, the analogue of the
quotient R/I (I a right ideal) is encountered. It is a notion of "free (though not necessarily
minimal) realisation" of app formula (or pp-type).

First I note some general points about the sets of matrices which correspond to pp-types.
Then pp-types, regarded as sets of matrices, are characterised in terms of closure under certain
operations. The results of this section come from [Pr83]: they find application to pure-
semisimple rings in §8.4.

Recall that if ip(v) is a pp formula then it may be expressed using matrix notation as
3w (v w)HLp = 0 where HLp is a rectangular matrix over (i.e., with entries in) R. This

J

corresponding to the variables v, w: thusmatrix has a natural decomposition as
(I' Ll

K(U) (= 1(v)) = p(Rip) and K(w) = p(Sip), where K(H) is the number of columns of the
matrix H and p(H) is the number of its rows. I will use such decompositions of matrices
without further comment: moreover, I make use of certain obvious conventions concerning
matching of matrices when operations are to be performed. Furthermore, "0" will denote any
zero matrix and "I" will denote any identity matrix. Finally, "mHn" indicates that p(H) = m
and K(H) = n.

Example 1 R=71. Consider the following pp formulas.
(I) tp(v) is 3w (v= wn) (i.e. "nlv"). Write this in more standard form as 3U/(V-W77 = 0)

and note that Hip = (-1n}

(ii) V(v) is vn=0. Then Hip = (n).
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(iii) lp'(ul, v2) is u1= u2n. Write this as U1-u2n =0 to see that NW'
= Cn )

Observe that H1p=Nip: this emphasises the fact that, in order to recover pp formulas from
matrices, one must specify the number of variables which are to remain free.
(iv) V(v) is 3w(v=wn) A 3w (v-wm). This may be re-written as

(tP, m

3w1,w2 (v-w,n=0 A v-w2m=0). Thus
H=

-n 0 Re-writing introduces a
0 -m

possibility of inessential variation, which I ignore.
(v) ip"(v) is 3w/(u-wn=l0 A v-wm=0). Note that this is a stronger assertion than ip'(u).

Then H1p', = I 1n m 4 Observe that Hip" = (0 0 0 This illustrates 8.10 below.

Now, let p be any pp-n-type. Define the corresponding set of matrices
1(p)=( HERW:p(H)-> n and H=H for some ipEp). Here Rw is the ringoid ( "ring with
many objects") of all finite rectangular matrices with entries from R, equipped with the
partial operations of matrix addition and multiplication. So we should expect I(p) to be
something like a right ideal of Rw (but it is not quite this under the usual definition of ideal of a
ringoid (see [Mit72])). I have deliberately excluded from I(p) those matrices with
insufficiently many rows. No information is lost in doing this since a smaller matrix may be
fleshed out with zero entries, and some awkwardness will thereby be avoided. If p is generated
by the single formula ip, write I(ip) for I(p).

As usual, these notions are extended to types via their pp-parts.
In this way, any pp-type may be replaced by a certain set of matrices together with some

record of the number of free variables in the type. I will give an algebraic characterisation of
such sets of matrices. I have already suggested that these sets of matrices should be thought of as
generalised annihilators. Nevertheless, it should come as no surprise that there are
complications which are masked in the "purely algebraic" (1x1) case. These complications are
due to the presence of quantifiers and are not, in any way, on account of the fact that more than
one free variable is allowed (compare §10.T).

I comment briefly upon what are, and what are not, permissible operations on sets of the
form 1(p). It is easily seen that I(p) is closed under right multiplication by elements of
Rw, but that it is closed under neither addition nor "concatenation".

Example 2 R=7l. Let p be the pp-type of the element 12 of :2. Since 4 and 6 divide 12, both

(-14) and (_16) a/rein 1(p). It is, however, easy to check that

neither
(
I 14) +

\
I 6) nor

/
I _4 -16) lie in 1(p).

It is clear that if HEI\(p) then any matrix obtained from H by deleting and/or permuting
columns (i.e. equations) still lies in 1(p).

R R'
Furthermore, if (S)) and (s,) are in 1(p) (so p(R) = n = p(R')) then S 0 is in

0 S'

1(p) (note that here "R" is a matrix !).
Also, I(p) is closed under a variant of Cohn's "determinantal sum" [Co71]:

R'
suppose that

R

S
and

S
in 1(p) have the same size - then from vR + wS = 0 and

/RR
uR'+w'S=0 one obtains v(R+R')+(w+w')S=0 -thus l
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I will make use of obvious notations such as nRw = (HERw : p(H)=n);
>_ 17Rw=( HERw:p(H)3n).

The next definition is the key one. Let n 1, and suppose that I S nRw. Then I is an n-
closed set of matrices if it satisfies the following closure conditions.
(i) If HEI and GER(4 then HGE1.

n1n
(ii) If 6 .HEI where GERw, then HEI.

0

(iii) If (
S) and (5,)

R R'

are in I with p(R) = n = p(R') then S 0 is in I.
0 S'

nR G'
Note that if in condition (ii) one sets H =(S) and G = G then the condition becomes:

('1 S1
l / (

(iiIf ) is in I (for some G',G") then
S

is in 1.

It will be seen that (i) and (ii) are the important conditions. Condition (iii) simply
corresponds to the replacement of two pp formulas by their conjunction.

Lemma 8.9 [Pr83; 1.1] Let I = Rw be an n-closed set. Then the following hold.

(a) HEI and KERw implies
HK()EI.

(b) H E_>nRw and (')EIO implies HEI.

Proof In each case, condition (ii) is used:
R ).

(b) (0
0)

(0 1 0,
S =1 s , then use (b). o
K 0

Let n-> 1 and suppose I s >_ 1Rw. The n-closure, (1)77, of I is the smallest n-closed
set containing I. When convenient, and especially when n=1, explicit reference to n is
omitted. The next result provides a useful description of the matrices in the closed set generated
by a given matrix.

Lemma 8.10 Let K,H be matrices. Then KE(H) iff there exist matrices 6 and X
I

such that (0 G ) K = HX.
0

Proof One direction is immediate from the definitions. For the other, it will be sufficient to

show that, given H, the set, I, of all matrices , K, such that there exist G, X with

I
( 6 ).K = HX...(') is closed. The conditions are checked in turn.

0
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(i) If K satisfies (>) and Y is a matrix (matching K), then KYE I since

(
I

I. KY = H.XY.G

Jo

I l 1
(ii) Suppose that

G,
(0 G ).K is in I. So there exists

63
(0 G ) such that

2 4

1 63 1 G1

(0 G4 )'(0 62 ).K E HRW.

1 61+6362
Thus ( 0 G G ).K E H and so KEI.42

I G, R' 1 G3 R"(iii) Suppose that (0
G2

).(S,)= HX' and (0 64 ).(S" )= HX". Then one has

R' k
ll(a 2 64).(S'

0'

J= H X ' HX" J=HC
0 S..

CS. R"`

S' 0 E I, as required. o
0 S'

X, X" ) and so
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It is a triviality that the closure of a directed union is the directed union of the
corresponding closures; so the lemma may be applied to not-necessarily-finitely-generated pp-
types. Of course, a finitely generated closed set is just the same as a singly generated closed set
(by closure condition (iii)).

One may note how 8.10 generalises the description of a cyclic right ideal in terms of a
generator.

Theorem 8.11 [Pr83; 1.4] Let p be any pp-n-type. Then 1(p) is an n-closed set.
Proof The closure conditions are checked in turn.
(i) Suppose that HEI(p) and GERW. Since HEI(p) the formula 3w (U w).N=a is in
so certainly the formula 3w (u W).HG = 0 is in p. Thus HGE 1(p).

P,

(ii) Suppose that
1 6.

(0 62 ).&)c 1(p). Then the formula 3w (v w).
R+61S

( 62S 0 is in p.

That is, 31 (UR + (US1 + 962)S = o) is in p. So
(SR

)E 1(p).

R(iii) Suppose that
S

and
RS,'

are in 1(p). Then both formulas

R R'
3w (v w). S)= 0 and 3w (v 4,)= 0 are in p. This gives

3E,w1(uR+i S+w10=0 A UR'+w0+w1S'=0) in p. Hence
R R'1

CS

0 IE I(p), as
0 S' J

required. a

In order to prove the converse to this theorem, I will show how closed sets may be used to
present pp-types, just as right ideals of R may be used to present isomorphism types. For the
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sake of clarity, I will describe this for the case of 1-types. Because pp-types are closed under
conjunction, there is no real difference between the finitely generated and 1-generated cases.

Let mHk be a matrix over R. Then H defines, by left multiplication, a morphism of free
right R-modules (elements of which are regarded as column vectors):

/r, 1 /r1
H*:Rk-_Rm by '--* H. Let r(H: Rm-* MH be the cokernel of H*. Let

\rk) `rk
is R- Rm be the canonical embedding to the first coordinate. Define fH = nyi: R---> MH,

let OH = fH(1) and let bH = nH(es,..., em) where e j is the element of Rm which has "1" at
the j-th coordinate and "0"'s elsewhere.

Let Hi denote the j-th column of H: so H = (Hi) j = (He

Example 3 Consider the pp-type of the element "2" in 71e. It is generated by the formula

v2= 0 n 41v: so H= (2 a ) The morphism from R2 to R2 defined by H is given by taking

2 _1

(s) to (2 4 )'(r)= Let el and e2 be the canonical generators of the

second copy of R2: suppose that the canonical projection nH takes these respectively to a and
b in MH. The relations between a and b are generated by the images under H* of the
canonical generators of the first copy of R2: by a2=0 and a=-b4. Therefore MH is
generated by b - an element of order 8 - and a is indeed the element "2" in this copy of T..

Proposition 8.12 [Pr83; 1.6,1.7]
(i) 1PH is in the pp-type of OH in MH.
(ii) If c is an element of the module M and if MkipH(c), then there is a

morphism from MH to M which takes OH to c.
That is, OH in MH is a "free realisation" of LPH (the pp formula lp with
Hip=H).

Proof (i) It will be sufficient to prove that (aH bH).H = U. Now
(aH bH) = 1-( (e1,e21...,em) = nIm where Im is the mxm identity matrix. Therefore
(OH bH).H = nlm.H = nH = n(HJ) j = (uHJ) j = 0 (note that it does make sense to have n
acting on a matrix, by acting on its columns as elements of Rm).
(ii) Since c satisfies ipH, there is d in M with (c d).H = 0. Define the morphism
f': R ® Rm-1--- M by taking (el, (e2,..., em)) to (c, d). Then HJ = em)).HJ is
mapped to (c d).Hf, which is zero. Thus kerf' contains l , HJR = ker n. Hence f'
factorises through Ti, by a morphism from MH to M which takes (OH bH) to (c d), as
required. o

The next theorem says that every (finitely generated) closed set of matrices "is" a pp-type.

Theorem 8.13 [Pr83; 1.5,1.6] Let mHk be a matrix over R. Let p be the pp-type
of OH in MH. Then 1(p) = W.

Proof The inclusion I(p) 2 (H) has just been seen in 8.12(i).
For the converse, let m'Kk' be in 1(p): it will be shown, using the criterion of 8.10,

that KE(N).
By the universal property described in 8.12 there exists a morphism g, taking OK to °H,
making the first diagram commute. By projectivity of Rm', there is a lifting of g to g'
making the square commute (second diagram):
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canonical R M H M
R m

n H
M

eddings ]I - H Hemb

R

that is, gr(k = r1Hg'.

M 11H

R" 'T & T g

R m nj> MK
K

We want the morphism g' also to make the triangle commute.

JI R - MH
R G 19* & 19

Rm MK
K

The original choice may be modified to ensure this - define g*
to have the same action as g' on e'2,..., e'm' (e'i is the i-th
canonical generator of RAT'') and to take e'1 to el. This is
well-defined, since R' ' is free, and still one has gt(K = nHg*
(observe that each side takes e'1 to °H). Thus we have the
following diagram

Suppose that the matrix of g* is 1R' ' m ' that is
m-i ' i m-lUm'-1

g*.(ri,...,rm/)T = )T (where "T" denotes transpose). Apply this to e'1 - one

must obtain el: therefore (0)= (C
D

). ()= (C) Thus A = I and C=O.

Now, 0 = TcKKJ so 0 = grck.K) = nyg*.KJ and hence g*Kd E keruH. That is, g*KJ is

in ker nH = im H - say G*KJ = HXJ for some column J. Putting these together yields

6*K = (6*KJ)) = (HXJ)) = H(X))) = HX (say). Thus one has the matrix equation

6 . K = HX. Hence KE(H), as required. o
0

It follows that one may think of OH in MH as being a "free realisation" of the pp-type
generated by KPH (and bH is a "free" witness to the existential quantifiers in LpH). Of

course, there are many pp formulas which are equivalent to ip, and the matrices which
correspond to these formulas may be very different. In particular, OH need not be a "minimal
realisation" of ipH. Over right artinian rings one does have minimal realisations: I don't know
whether these exist in general.

Given a pp formula gyp, write a'p and Map for OH and MH, where H=H'p.

Corollary 8.14 [Pr83; 1.14] Let 'P and W be pp formulas. Then M1kyp(a'P) iff
T*Fip >tip. o

Corollary 8.15 A pp-type is finitely generated iff it is realised in a finitely
presented module.

Proof The direction is 8.4. The converse is immediate from 8.13. o

Corollary 8.16 [Pr83; §1] The closed subsets of RW form a lattice under
intersection and closure-of-union. The correspondence p H 1(p) defines a lattice
isomorphism from the lattice P(R) of pp-types to the lattice of closed subsets of
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Rw. Under this isomorphism, finitely generated pp-types correspond exactly to the
finitely generated closed sets.

Proof Since any pp-type or closed set of matrices is the directed union of its finitely generated
sub-pp-types, resp. closed subsets, the result follows from the finitely generated case, which
has just been established. n

One particular consequence of 8.16 is that the intersection of two finitely generated closed
sets is finitely generated (exercise: show this directly; in particular, write down H(ip+y,)).

Of course, the above results hold equally for n-types and n-closed sets.

Corollary 8.17 [Pr83; 1.15] Let ip(U) and lp(U) be pp formulas. Then the
following are equivalent:
(i) T* . ip-* W;
(ii) Th(IIZR) 1- T -> gyp;

(iii) Th(mod-R) F ip- W.
Furthermore, the following are equivalent:
(i)

T h(T/ZR) F W - W;
(iii) Th(mod-R) F ip - V.

Proof The equivalence of (i) and (ii) is, for each case, in 2.30. Therefore, to establish the
corollary, it will be enough to show that if Th(mod-R) proves tp--)W then so does Th(1ImR).
But, since MLp is finitely presented, this is just 8.14. e

It should be observed that the correspondence, 8.16, between pp-types and closed sets of
matrices, together with the "computational" description 8.10, of the closed set generated by a
matrix, provides an explicit description of the consequences of any given pp formula.

I leave to the reader the exercise of generalising all this to types in infinitely many
variables.

8.4 Duality and pure-semisimple rings

One major difficulty encountered when dealing with modules over non-commutative rings is
that there need be little connection between the lattices of right and left ideals of the ring. For
example, a ring may be artinian on the right yet fail to have even Krull dimension on the left.
The situation for pp-types turns out to be much better. In this section I will show that there is a
duality between the lattices of pp-types for right modules and that for left modules. This duality
will be applied to show that if every right module over a ring is a direct sum of indecomposable
modules (i.e., the ring R is right pure-semisimple - see §11.1) then, for each integer n there
are, up to isomorphism, only finitely many indecomposable R-modules of length n.

At the base of this duality between pp-types is one defined for matrices; I describe this
now.

Let H be a matrix over R. The matrices H and H ' are defined as follows.

1 (1 0)
H4t- - H and H -I\ H /I

0

Here "1" denotes the 1x1 identity matrix and "0" denotes a zero matrix of appropriate size.

Example 1 Let n be an integer. Then the 1x1 matrix (n) corresponds to the property of
being annihilated by n. The matrix (n)om corresponds to divisibility by n in left modules
(our convention is that tuples from left modules are written as column vectors). The matrix
(n)om is, of course, different from (n) but it is easily seen (exercise) that they correspond
to equivalent pp formulas.
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Lemma 8.18 [Pr87; 2.1] Let H be a matrix. Then (and generate
the some pp-type as does H.

(1 °1 l
Proof H has the form 1 H' JII where H = (y J. To see (by 8.10) that H is in

0 H'
(H ) consider:

"

)( H
CO I I

(H')(
0

H0

r \ 1 0

For the converse, one has: ( 0 01 01 I 1 H' =

\ / o H'

0 -H')= H.(0 -I).0 -H'

This "duality" for matrices induces a duality for pp-types as follows. Given
pEP(R) = P(RR), consider the pp-type q E P(RR) which satisfies
1(q) = HEI(p))). I show that this is indeed a duality by showing that if (K) (H) in
P(R) then (K=) 2 (Ht- ) in P(RR): that is, if K E (H) then H<-- E (K4). The following
lemma is used.

Lemma 8.19 [Pr87; 2.2] Let X and Y be matrices. Then:

(1) (XY) = X .

1 0

oY

(i)o (XY)= _ (1 X
).Y

Proof One has, if X = the following (which proves (i) and its dual (i)o):
GX

),

(o X")(o Y)=(0 c=L
Proposition 8.20 [Pr87; 2.3] Let K and H be matrices. Then K E (H) implies
H'E(K#).

Proof By 8.10 it is enough to check the following two cases.
(a) K=HX for some matrix X.

Then one has K-- =H(
0

set of (left!) matrices, H E (K ).
1

(b) H has the form X K

0

For this, consider: H I I 0 X
0

1 K'+X'K" 1 X' 1 K' J 1J
(0 X"K" ) (0 X")'(o K")=\0 X J.K.

0
X (by M of 8.19). So, by definition of closed

Thus H E (K ), as required. o
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The above proposition, together with 8.18, shows that the operators and do induce
a duality between Pf(R) and Pf(RR) (the same notation will be used).

Theorem 8.21 The operators and "=: " induce a duality between Pf(R) and
Pf(RR). In the case that R is an artin algebra, this extends to a duality between
P(R) and P(RR). In particular Pf(RR) Pf(R)°P and, if R is an artin algebra,
P(RR)P(R)°P. o
For the stronger conclusion (for artin algebras) see the discussion at the end of §12.1. That

this duality does not operate at the level of modules is illustrated by the next example.

Example 2 I illustrate this process with an example and, at the same time, show that the
duality is definitely at the level of pp-types rather than modules (i.e., the fact that p and q
have the same hull does not imply that their duals have the same hull).

First consider the type of the element "2" in 218: the corresponding matrix H is

(see Ex 8.3/3). Then H is
1 2 1

0 0 4
We compute the left module that this presents. By

1 0

using its transpose 2 0 , we may work on the right. This matrix
1 -4

defines a morphism from R2 to R3: let a, b and c be the images in the cokernel of the
canonical generators of R3. The relations between these are generated by a + 2b + c = 0 and

c4=0. One may then see (exercise) that the resulting module decomposes as (b) ® (a-b2) - a
copy of 71® 214. In particular, the type of a is reducible.

Now take the element "1" of 218: its pp-type is generated by the (formula with) matrix (8).

The transpose of (8) is 8 and this presents a module with generators a and b related by
(1)

a=b8. That is, we obtain the pp-type of the element "8" in 21.

Before going on to the main application, I mention various other consequences.

Corollary 8.22 [Pr87; 2.5] Let R be a commutative ring. Then the lattice of
finitely generated pp-types is symmetric, in the sense of being isomorphic to its own
dual. a
The next result will be used in the main application: it is immediate from 8.21 and 11.6.

Corollary 8.23 [Pr87; 3.1] Suppose that R is right pure-semisimple. Then R°P
has the descending chain condition on finitely generated pp-types. o

Corollary 8.24 [DR72; 1.1] also see [Aus74a; 3.6] If R is of finite representation
type on the right then it is so on the left also. G

Corollary 8.25 If R is right and left pure semisimple then R is of finite
representation type. o
Both of these follow immediately from 8.23 and 11.38. The second result was found

independently by a number of authors (see [Fu]76; p433] for some references).
It is interesting to compare the proof of the above in [FR75; Thm] with the one given here.

Their proof establishes the equivalence of the acc for monomorphisms between finitely generated
right modules and the dcc for epimorphisms between finitely generated left modules (and then
they feed this into [Aus74a; 3.1]). Their proof uses the Auslander-Bridger transpose
([AB69]) which is defined on the level of modules, in contrast to the duality here which lives at
the level of pp-types.

Turning again towards our main goal, we recall lemma 7.21: the use of that lemma here is
similar to its use in proving that a theory of U-rank n has no more than n dimensions (7.23),



Chapter 8: The lattice of pp-types 187

but our hypothesis will concern modules of a given length and this, together with the Harada-Sai
lemma 11.20, will replace the assumption of finite U-rank.

Theorem 8.26 [Pr87; 3.6] If the ring R is right pure-semisimple then, for every
positive integer n, there are only finitely many indecomposable finitely presented

modules of length n.

Proof Within this proof "module" will mean left module. Let N', (_AE A) be the set of all
indecomposable left modules of length n (one of each isomorphism type). For each -AE A, set
Y-A to be the set of all pp-1-types realised in N,X. Observe that the Y.), are pair-wise disjoint.
Put Xo = U A Y',.

By the Harada-Sai lemma (and 8.5) there is no strictly increasing chain in Xo, so
certainly Xo has a maximal element: let po be such an element. Let us suppose that the
indecomposable No realises po. Put X1=Xo\Yo.

Take a maximal element p, in X1, .... Continue in this way.
This process will come to a halt at a finite stage exactly if A is finite - which is what is

want. So suppose for a contradiction that the process continues without end, and let
po, pi, ..., pk, ... be the "maximal" pp-types obtained.

Consider the descending chain po> ponp, >...> P.np1n...nPk>... of pp-types of left
R-modules. By 8.23 this chain stabilises at some finite stage and so there exists k such that
pk+1> p1n...n pk. By 7.21 there exists a pp-type q realised in Nk+1 and there exists
i E (0,..., k) such that q > pi: note that q> pi. But since pi is maximal in Xi and since q
is in Xi (since Pk+1 is), this is impossible. Thus we have our contradiction, and the result
follows. D

This is all very well, but since it is even open whether a right pure-semisimple ring is left
artinian it would be much more satisfactory to transfer this to the right modules. After seeing
the above result, D. Simson pointed out to me that a result of his allows one to accomplish this
transfer. His result is the following.

Theorem 8.A [Sim77e; "Note added in proof" and Corrigendum p.256] Suppose that R

is right pure-semisimple, and let I be the minimal injective cogenerator (direct sum
of the injective hulls of the simple modules). Set T=EndI. Then T is right pure-
semisimple and left artinian; moreover there is a duality T-mod (mod-R)°p
between the category of finitely presented left T-modules and the category of finitely
presented right R-modules (in the direction it is given by the functor (-, 1)). o
Putting this together with 8.26 one obtains the following.

Theorem 8.27 [Pr87; 3.8] Suppose that R is right pure-semisimple. Then for
each positive integer n there are, up to isomorphism, only finitely many
(indecomposable) modules of length n.

Proof Apply 8.26 to T as described in 8.A. Note that the dual of a simple module is simple.
Hence if the module N has length k, so does its dual (apply induction to the exact sequence
0-- S //-) N/S--* 0 where S is a simple submodule of N). Since this duality
preserves length, the result follows. o
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CHAPTER 9 TYPES AND THE STRUCTURE OF PURE-INJECTIVE
MODULES

This chapter is concerned with the relation between types or, more properly, pp-types, and
the structure of their hulls. Some of the results proved in this chapter will be used in the more
global considerations of Chapter 10 but, in the main, we concentrate here on local structure.

Replacement of minimal pp-definable subgroups by minimal pairs is a key step in going
from the totally transcendental to the general case. Irreducible types which share a minimal
pair need not be equal, but they do have isomorphic hulls (§1). In consequence, given a complete
theory, each unlimited indecomposable pure-injective has the same multiplicity in every pure-
injective model. Another result which was seen in the totally transcendental case in §4.6 and is
now proved in full generality, is that if an indecomposable pure-injective has a minimal pair,
then the corresponding quotient of subgroups has the structure of a 1-dimensional vectorspace
over the division ring associated to the indecomposable (9.6).

If two types have linked realisations then they have isomorphic parts: specifically, between
the positive and negative parts of each type there is an interval, defined in terms of the linking
formula, and these intervals are isomorphic (with positive and negative parts corresponding).
This means that irreducible types which have isomorphic hulls are syntactically similar. For
instance, if one of them has one of the (syntactically defined) dimensions of Chapter 10, then so
does the other (and the values are equal). Finally in §2, the relation between the hull of a type
and its direct summands is explicated (9.16) and there is a syntactic criterion on the type for
there to be an indecomposable direct summand of its hull.

By this stage, the reader will have encountered a number of notions of "isolation". The
relationship between these is clarified in the third section. It is shown that a type is isolated iff
it is finitely generated and neg-isolated. Then there is the following chain of implications for an
irreducible type p: p isolated p contains a minimal pair = the hull of p is isolated in
the space of indecomposables ' p is neg-isolated. At the beginning of the section it is shown
that the (algebraic) weight of a neg-isolated type is bounded by the number of pp formulas
required to isolate its negative part.

We say that a pure-injective module is an elementary cogenerator if every model of its
theory purely embeds in some direct power of it. We see (§4) that every complete theory has an
elementary cogenerator, and that every totally transcendental module is an elementary
cogenerator. This notion is tied in with neg-isolation of pp-types. In particular, if p is
irreducible and neg-isolated and if its hull is a direct summand of some product of
indecomposable pure-injectives, then one of the factors must already be isomorphic to //(p).

9.1 Minimal pairs

Recall: that p/yi E p means LpE p+ and W E p- (and ip>ip); that ip/.p is a minimal pair
if ip>tp and there is no pp formula strictly between ip and ip. Observe that the property of
having a minimal pair depends only on the lattice of pp-types. In particular, if pEST(0) and
if ip>tp, then W/ip is a minimal pair for p iff ip/tp is a minimal pair for jpEST' °(0).
Therefore, when it is convenient to do so, we may make the simplifying assumption T=T'&o. In
this chapter, when not otherwise specified, we are working modulo some complete theory T of
modules. The first lemma states, for easy reference, a consequence of modularity.

Lemma 9.1 Let T be arbitrary and suppose that p is a type or pp-type. If
ip/ip E p is a minimal pair and if ip'Ep+, then ipA1p'/1VAip' is a minimal pair in
p

Proof One has, by modularity, that either L4ALp'/WAtp' is a minimal pair or that
ppAip' = pAip'. Since tpA1p' E p * and since WAip' S tp E p-, the first case holds. a
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The first main result, due to Ziegler, is that minimal pairs determine indecomposable
pure-injectives uniquely. This was shown in §4.6 for totally transcendental theories, but in the
general case one does not have a "least" pp formula in a type, so the argument has to be more
complicated. The following "separation" lemma is needed.

Lemma 9.2 [Zg84; 7.101 Let p, q be irreducible types over 0, and let gyp, W be pp
formulas with ip/W in both p and q. If the hulls of p and q are not
isomorphic, then there is some pp formula 8 with Lp>e>W and either: tp/e E p and
e/WEq; or ip/8Eq and 8/.pEp.

Proof First it is shown that the set of formulas p(u) Aq(w) AW(u-w) is inconsistent. If it
were not, then there would be o realising p and b realising q, with W(o b). It may be
assumed that T =T"&. Therefore 6.20 applies to yield from N(p) *W (q) that p is
orthogonal to q. Hence a and b are independent over 0. Then from W(a-b) one deduces (by
5.26) that p(a) holds - contradicting W f p.

Therefore there are ipOE p+ and W=W1, W2,..., ipn in p- such that
ipo(u) Aq(w) AW(u-w) -> V ; yii(U). By 4.29 there is ip'E p+, which may be taken with
1p' S ip A ipo, such that ; LP' A W i E p-. Adding ip' as a conjunct to each side of the above
implication, one obtains ip'(U) A q(w) A W(u-w) - V; Lp'AWi(u) I, Lp'AWi E p- (*): let
W' be the formula E; ip'AWi. Observe that Lp>_ip'>W'_>pALp' (**) (this is why W was
required to be among the Vi). There are two cases to consider.

Suppose that W'+ W E q+. Then set e to be W'+W. Certainly one has W 5 e <, ip and
e/WEq. It must be shown that aEp-. Now, p'Ep+, but 6ALp'=(W'+W)Atp'=W'+WALp'
(by modularity) and this, by (** ), equals W', which is in p-. So ip/e E p.

On the other hand, if W'+W E q-, set e to be ip'+W. Clearly W<, e_< ip and 6/W E p (for
ip'Ep+). So it remains to show that Lp/e is in q, i.e., that aJq. If this were not so, then we
would have the following formula in q(w): 3u (t.p'(U) A p(u-w)). Together with (*), this
(quickly) gives that 3U( W'(u) A W(u-w)) is in q(w) - that is, W'+W E q - contradiction, as
required. o

Corollary 9.3 [Zg84; §7] Suppose that p and q are irreducible types which
contain the same minimal pair. Then N(q)'N(p). o
This corollary says that irreducible types which share a minimal pair have "the same" hull.

Such types need not, however, be equal. For an example, take R to be the ring K[X,Y]/(X,Y)2,
and consider R as a module over itself (cf. Ex2.1/6(vi)). Let ip(u) say "vJ=O" and let W(v)
say "vExR". Then tp/W is a minimal pair, but there are many irreducible types which contain
this minimal pair: for each o: E K, the type of a non-zero element of (o x+ y)R does so.

Corollary 9.4 [Zg84; 8.12] Suppose that the interval [ip:W] has finite length.
Then the open set (ip/W) of z(T) has only finitely many points (no more than the
length of [Lp:W]). o

The second corollary is generalised in 10.20.
Thus, given any complete theory of modules, T, if qp/W is a T-minimal pair then the open

set (tp/W) of z(T) contains just one, isolated, point of z(T) (by 4.35 this open set is non-
empty). Of course, if T-< T' then there is no reason in general to expect that (tp/W) defines a
single point in z(T').

The remaining results of the section generalise some seen in §4.6.

Theorem 9.5 Suppose that the type p is irreducible and limited. Then there is an
integer n(p) such that, if M is any pure-injective model then the multiplicity of
N(p) in M is exactly n(p).
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Proof By 4.44 there is a minimal pair Lp/W E p with Inv(T,tp,y,) a finite integer k>1. Let
M be any pure-injective model of T and set M = N(p)(n) ®M' ® Mc where M' is a discrete
pure-injective, Mc is continuous, and //(p) does not divide M (and, of course, n is finite).

Then Inv(T,T,y,)= Inv(N(p),tp,W)n.lnv(M',ip,W).inv(Mc,Lp,p). Next, we appeal to 10.1,
the proof of which may be read now. Since M. has no indecomposable direct summand, 10.1
yields Inv(Mc,ip,W)=1. Since M' has no factor isomorphic to //(p), 10.1 and 9.3 yield
Inv(M',ip,W)=1. Thus n=n(p)=Inv(T,ip,W)/Inv(N(p),ip,p), as required. a

In §4.6 an algebraic significance was attached to Inv(//(p),ip,W) when the overlying
theory is U. and lp/W E p is a minimal pair. This invariant is now shown to have the same
meaning in the general case.

Proposition 9.6 Suppose that the indecomposable pure-injective N has a minimal
pair, lp/W. Then the quotient ip(N)/v(N) has the structure of a 1-dimensional
vectorspace over the division ring Dry = End# /JEndN. Setting d// = IDryI, we have:
(a) if p is such that //(p)_// then there is a minimal pair ip'/W' E p with

[Lp'(//):W'(//)]=dN;
(b) if ip'(N)>p'(//) then there are lp", W" pp with ip'_> T ">WW' and with

[ip"(//);W"(N)] = dry.
Proof Suppose that p is any type with N. By 10.1 and 9.12 below, p contains a
minimal pair, say Let a realise p in N.

By 2.8, Sa=p+(//), where S=End//. By 4.30, 8=1: {Sb:b is in N and
pp(b)> p+ ) is a proper S-submodule of Sa. Define the map e:S-) S5/8 by 8f = fa+B.
This is a well-defined left S-linear map. Moreover, by 4.27 (and 2.8), a induces an
isomorphism (of left S-modules) between S/JS and Sa/B. In particular, IDryI = ISa/BI.

Next, I claim that 8 is just p+(N) n .'(N): this is immediate from the fact that W'
neg-isolates p. That is proved below (see 9.26), but I give a direct proof now. Let a be a pp
formula not in p+. Since p is irreducible, there is To, which may be taken to be below gyp',
with Lp0Ae+ipoAV' in p-. By modularity, the pair lpoAlp'/LpoAW' is minimal (it does not
collapse, since W' is in p-). So it must be that lp0A8 is below ip0AW' (so, in particular,
below W'). Thus p is indeed equivalent to p+ A IV'.

So B is just p+(N)n\p'(//). Again by modularity, Sa/8=p+ (//)/p+(//)np'(N)
ip'(N) / p'()V).

For (b), suppose that lp'(//) > W'(//). Choose an element a in T'(//)\W'(//) and let p
be its type. By (a), p has a minimal pair, ipo/Wo say, with Iipo(//)/Wo(N)I = dry where,
by 9.1, it may be supposed that ToSW'. Since W' and Wo are in p-, there is (4.29) some
ip1Ep+ with ip1A(W'+ip,AW0)=LP1AW'+tp1A\o not in p+, so W'+4p1AWo&p+. Now, by
9.1, (Lp1Aipo)/(Lp1AWo) is a minimal pair in p. Consider the pair
(Ip,Atpo + W')/(Lp1AW0 + W'). Clearly ip1Aipo + W' E p+, and it was noted that ip1AWo + W' is
not in p+. By modularity
I(w1AI.po + W')(//)/(LP1AWa + W')(N)I= I(p1A(po)(N)/(1p,AWo)(//)I = dry. Also,
ip'3WiATo+W'>LPIAWo+W'%W', and so(b) is proved. a

Therefore, if N is an indecomposable pure-injective, either with no minimal pair, or
with a minimal pair ip/W where [ip(//):W(//)] is infinite, then N cannot be limited in any
theory.

Example 1 Even if Dry is finite, it need not be the case that N contains a minimal pair. Let
R be a complete valuation domain with maximal ideal infinitely generated and finite residue
field. Then, by 9.12 below, R has no minimal pairs. On the other hand, R is pure-injective
and DR = R/J is finite.
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9.2 Rssociated types

Suppose that p and q are two types such that there is a realisation a of p, and a
realisation b of q, with a and b linked. This section is devoted to exploring the relationship
between types thus connected. Particular questions addressed are: if q is realised in N(p),
how is this fact reflected in the syntactic structure of the types p and q? if the type p has a
certain (syntactically expressed) finiteness property and if then does q share
this property? One may say that we are looking in more detail at the relationship of non-
orthogonality (by 6.20 this is almost literally true, since in this section one usually may
replace T by Tao).

We know, by 4.31, that linked types are structurally connected: here we examine this
relation in more detail. The first lemma is a general result about additive relations (i.e.,
subgroups of a product RxB of groups). For readability, I denote (3wip(v,w))(M) by
3w ip(M,w). The following results would be most succinctly expressed by using Teq.

Lemma 9.7 Let ip(v,w) be a pp formula and let M be any module. Then the
quotients of pp-definable subgroups, 3wip(M,w)/ip(M,0) and 3vLp(v,M)/ip(0,M)
are naturally isomorphic. Under this isomorphism, the coset c+ip(M,O) is mapped
to d+ip(O,M), where d is such that ip(c,d) holds: in particular, the isomorphism
is definable.

Proof First, the alleged map is well-defined. For if Lp(c,d) and ip(c,d') hold, then d-d'
lies in ip(O,M): also, if tp(c,d) and ip(c-c',o) hold, then so does Lp(c',d). Second, the
kernel of the map is precisely ip(M,0): so it is 1-1. Clearly it is onto. o

Corollary 9.8 (see [Gar80]) Let a and b be elements of a module M and
suppose that they are linked by the pp formula ip(v,w). Then the quotients of pp-
definable subgroups, 3wip(M,w)/i.p(M,O) and 3u p(v,M)/ip(O,M) are definably
isomorphic, by an isomorphism which takes a to b. o
This was already noted in the context of t.t. theories in §4.6. Garavaglia used this result

heavily in [Gar80] and [Gar80a; §5], though most of those uses are now redundant. But,
extracting more information from this isomorphism, we obtain the next result, which is quite
central.

What we have to note is that this isomorphism of groups "respects pp formulas" and so
induces an isomorphism between the relevant intervals in the lattice of pp-definable subgroups.

More precisely, let Lp(v,w) be pp and let ip(v) be a pp formula which lies between
3wi.p(v,w) and tp(v,O) in the lattice of pp-definable subgroups of M. Then lp(v) is
equivalent to p(v) + Lp(v,0). Therefore the isomorphism between 3wi.p(M,w)/ip(M,0) and
3vip(v,M)/ip(O,M) which is defined by ip induces a map of such pp-definable subgroups
v (M). The image of V(M) lies between 3vi.p(v,M) and tp(O,M) and is itself pp-definable by
the formula 3v(Lp(v, w) A tp(v)). Therefore one obtains the following result.

Proposition 9.9 [Zg84; 8.9] also see [Ger80a; §6] Suppose that tp is a pp
formula, and that a and b are such that holds. Then, in the
lattice of pp-definable subgroups, the intervals [3w i.p(U,w), ip(7,0)1 and
[ 3U Lp(U, w), ip(,)] are naturally isomorphic. The isomorphism f is such that,
for V(U)E[3wVU,w), ip(u,o)], one has w(a) iff (f.p)(b).

Proof The map f, and its purported inverse, g, are defined as follows, on
)p(U) 6 [3w ip(U,w), ip(U,0)I and on 8(w) 6 [3U T(U, w), ip(0,w)I respectively:
(fW)(w)=_ 3U(ip(U,w)A i(U)); (ge)(U)-3w(Lp(U,w)ne(w)).
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Clearly, by the discussion above, these are order-preserving, so the only point to be
checked is that gfp is equivalent to p (and by symmetry, fge is equivalent to e). Suppose
first that V(c) holds. Since p(u) implies 3w ip(u,w), there is d such that yP(c,d) holds.
Thus one has lp(c,d) A Vi(c) so, by definition, fp(d) holds. Thus one has ip(c,d) Afp(d)
and so, by definition, gfp(c) holds. Conversely, suppose that gfp(c) holds. So, by
definition of g, there is d with lp(c,d) Aflp(d). Since fp(d) holds, there is some e with
Lp(e,d) A Vi(e). One deduces ip(c-e,0). But ip(u,0) implies p(u): hence tip(c-e) holds.
Together with p(e), this yields V,(c), as required.

Therefore f and g are indeed isomorphisms. o

Example 1 Let R be the ring K[xi (iEw) : xixj =0 (i,j E w)], where K is a field.
Since R is local, it is indecomposable

3w (v=wxo) x0R R 3v (v=wxo) and, since it has dcc on pp-definable
I I subgroups ([Z-HZ78; Thm5]), it is t.t.,

so pure-injective. Therefore every two
v=oxo o j wxo-0 non-zero elements are related.

Take, for illustration, xo (EJ(R)) and 1ER to be the elements: a linking formula is
ip(v,w) _ (v=wxo) (clearly R k Lp(xo,1) A-iLp(xo,o)).

Corollary 9.10 Suppose that a and b are linked. If there is ipEpp(b) such that
the interval [ip,0] in the lattice of pp-definable subgroups has the dcc, then tp(a)
has a minimal pair.

Proof If e(7,b) is a pp formula linking a and b, then it may be assumed that 6(u,w)
implies p(w), so the result follows quickly from 9.9. o

We may say that types p and q (over 0) are said to be linked if there are a and b
realising p and q respectively, such that a and b are linked - that is, such that there is a
pp formula ip with ip(57,5)A-np(a,0). This is essentially, and if T=T' o, is literally, non-
orthogonality of p and q (by 6.20).

Proposition 9.11 (essentially [Zg84; 8.10]) Suppose that p and q are types over
0 such that p is irreducible and such that p and q are linked - hence, by 4.31,
N(p) is a factor of N(q). If p contains a minimal pair, then so does q.

Proof Suppose that ip'/p' is a minimal pair in p. Let a, b be realisations of p and q
respectively, and let a be pp such that e(a,b) A ie(5,0) holds. Neither 3w e(u,w) A V,'(v)
nor e(u,0) is in p+ so, by 4.29, there is ip<ip' in p+ such that x(u), being
ip(u) A 3w e(u, w) A V,'(u) + ip(U) n e(u, 0), is in p-.

Let e'(u, w) be ip(u) n e(u, w); so we have 6'(07, b) n 18'(a, 0).
Consider 9.9 applied to [ 3w e'(u, w), 6'(u, 0) ] and [ 3u e'(u, w), e'(O, w) ]; by that

result, it will be enough to produce a minimal pair in the first interval with a satisfying the
upper, but not the lower, member of the pair. Since 3w a'(u,w) <<p'(u) one has that
3w e'(u,w)/3we'(U,0) AV,'(u) is a minimal pair (by 9.1). The lower member need not be
in the required interval, but the sum 3we'(u,w)AVi'(u) + e'(U,0) is precisely 'k(u) above
and so is in p-, so 3we'(u,w)/ X(u) is a minimal pair, as required. o

This result is, in essense, generalised by 9.16 below. Most of the results of this section
which deal with minimal pairs are generalised (to higher dimensions) in Chapter 10.

Corollary 9.12 [Zg84; 8.10] Suppose that p and q are related irreducible types.
If one of them contains a minimal pair, then so does the other. o
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Corollary 9.13 Suppose that N is an indecomposable pure-injective. If there is
some 41-minimal pair, then every interval ip(N)> p(N) of N contains an N-
minimal pair.

Proof The hypothesis implies that there is some type p, over 0, which contains a minimal
pair and is realised in N (cf. proof of 10.1).

Let ip(N)> w(N). Choose a in lp(N)\ w(N) and let q be its type. Then, by 9.12, q

contains a minimal pair - ip'/w' say. By 9.1, tpnlp'/ipnw' is a minimal pair in q. Then, by
modularity, lpnlp'+w / ipnw'+w is a minimal pair which, clearly, is between Lp and w. o

Further corollaries of 9.9 will be seen in Chapter 10.
Next, consider the problem of describing the indecomposable direct summands of N(p).

Proposition 4.31 gives some information on this, but here we look for a "syntactic" criterion.
Let p be a type over 0. Say that the pp formula ip is large in p if WE p- and if, for

all w1,w2 E p- with w S w1'4 2, there is some Lp in p+ with w<<p and
(wimp) + (w2nip) E p-: that is (compare 4.29), "p looks irreducible above w".

Lemma 9.14 [Zg84; 7.5] Let p be a type over 0.
(a) If w -< w' E p- and if w is large in p, then so is w'.
(b) p is irreducible iff every formula in p- is large in p.
(c) If Lp/w is a minimal pair in p, then w is large in p.

Proof (a) Given V1, V2 E p- with wi-> w'(, p), there is, since w is large in p, some Lp
in p+ with ip>w and (wimp) + (w2 nlp) E p-. We need such a formula tp of p + with tp>w'.
So try ip'=ip+w.

It is an immediate application of modularity that wimp' + w2 nlp' _
wi nip + w2 nip + w' = w" + ip' (say). This formula is in p- (so we finish) since, otherwise,
LP A (w'+w") = lpnw' + w" (for ip->w") would be a formula in p+ which was contained in
lpnw1 + w" = w" - contradiction.

(b) and (c) follow from the definitions, 4.29 and (a). o

The type gEST(0) is associated to pEST(0) via w if w is in p- and if, for every
pp formula ip>-ip, one has ipEp+ iff ipEq+ ("above w, p looks like q").

Example 2 Take T to be theory of the abelian group 'Pk° and, for p, q, take the types of
an element of order 6, respectively of order 3. Then p is associated to q via the formula
v2 = 0.

Lemma 9.15 [Zg84; 7.5] Let p and q be types over 0.
(a) If q is irreducible and associated to p via w, then w is Large in p.

(b) If tp/w is a minimal pair common to p and q, then p and q are
associated via V.

Proof (a) This is immediate from the definition and 9.14(b).
(b) This also is immediate from the definition since, with notation as there, if e-> w then

eEp+ iff iff eEq+. o
Theorem 9.16 [Zg84; 7.6] Let p be any type over 0.

(a) If w is large in p, then there is an irreducible type q associated to p via

w.

The hull of q is a direct summand of the hull of p: moreover, the
isomorphism type of N(q) is determined by w.

(b) If N is any direct summand of N(p), then there is q with N_N(q), and
there is w such that q is associated to p via w; w will be large in p iff
N is indecomposable.
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Proof (a) Suppose that W is large in p. Let q+ p+ be a pp-type maximal with respect to
having the property that for every ipEq+ one has W+Lp E p.

Let o realise p, and note that for each LpEq+, (ip+ip)(7) holds. Hence
q+(w) A.p(a-w) is finitely satisfied in N(o): therefore it is satisfied, by b say, in N(a).
It is claimed that pp(b) = q+.

Let 1&q+ be pp. By maximality of q+, there is LpEq+ with LPAW,+ W E p-. On the
other hand, if one had .p1(b) then one would have (1pAip,)(b) and p(a-b); so 1pAW,+ W
would be in p + - contradiction. Thus the pp-type of b is q+. Set q to be (q+)": it is
claimed that q is irreducible.

So let p1,W2 be in q-. By maximality of q+ there is (clearly) some p in it with
IPAWi+WEp- for i=1,2. Then, since v is large in p, there is ip' in p+(=-q+) with

tp'>W and such that Lp' A (LpAW1 + W) + ip' A (ipAW2 + W) is in p-. That is (by modularity)
1p'AipA1,+ip'A1pAkp2+W is in p-. Hence, by definition of q, ip'AIpAW,+pp'AipAW2 is in
q-. So, noting that tp'Alp is in q+, irreducibility of q follows by 4.29.

If ipEq+ and ip>, 'p then, by definition of q, ipEp+. Since also q+ 2 p+, q is associated
to p via ip. Thus the first statement is proved.

Now we show that W determines the isomorphism type of N(q). Let q, be any
irreducible type associated to p via W. Let b, in N(a) realise q,+(w) AW(a-w) as above.
It will be shown that the type of bl is q1.

So let ', be in ql-. Since q, is irreducible, there is ipEq,+ with W1ALp in

q, . If W+W,ALp were in ql+, then so would be ipA('p+p,Aip)=IPAW+PAW, -
contradiction. So ip + W1ALp is in ql-. By definition of "associated via W", it follows that
W + p1Aip is in p-. Therefore W(a-b) and ip(b) yield -iW,(b). Thus the type of b, is q1,
and so q, is realised in N(p) = N(a).

Finally note that if q and q1 both are irreducible and associated to p via W then they
are associated to each other via iv (by the definition) and so, by what has just been shown,
applied to q, and q in place of q, and p, their hulls are isomorphic, as required.

(b) Let N be a direct summand of N(a), where a realises p. Set Y(a) = N ®N', and
write 5= (5o, a') accordingly; so N is the hull of ao (cf. Exercise 4.1/10). Let q be the
type of 7o.

By 4.28, the pp-type of a' strictly contains p+. So choose any pp formula W with
W(a') Aone has -iW(ao). It is claimed that q is associated to p via W.

Certainly, if lp is in p+ then ip also is in q+. Conversely, if tpEq+ and Lp;W then,
since W(5') holds and so tp(a') holds, from Lp(oo) one deduces ip(o) - that is, lp is in p
as required for the first statement.

If A/ is indecomposable, then by 9.14(b), W will be large in q, hence large in p by
9.15(a). Conversely, if W is large in p then, by part (a), q must be irreducible. o

9.3 Notions of isolation

A number of notions of isolation have appeared in these notes. In this section, I connect one
of them - neg-isolation - with the weight of a type, and then compare all of them.

Recall (§8.1) that the type p is neg-isolated (by W,,..., W77) if there are W,,..., Wp in p-
such that p is equivalent to p+ AA,' -1vi (my apologies for this ugly word, but I haven't come
up with a better one). This notion is, of course, relative to the theory being considered; in
particular, it does not depend only on p+. By 9.20 below, such a type is isolated iff its pp-part
is finitely generated. This notion is implicit (at least for irreducible types) in [Gar80a]
(definition 3 and following) and is more or less explicitly used in [Zg84] (it was explicitly
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known to Ziegler (personal communication)). It has already been met in §8.1. Notice that the
definition makes good sense only for types in finitely many free variables.

Suppose that p is a type over 0. In §6.4, we defined the weight, wt(p), of p to be the
weight of (i.e., number of indecomposable factors (counting multiplicity) of) the hull, Al(p.),
of the free part, p., of p, provided this is discrete. Also the algebraic weight, algwt(p), of
the pp-type p, was defined to be the weight of Al(p). Because I am mainly interested in the
algebraic meaning of neg-isolation I will usually assume, when dealing with this notion, that the
over-theory is closed under products, so that the algebraic and model-theoretic versions of
weight coincide. Recall that if Al is not discrete then we set wt(p) = oo.

Lemma 9.17 [Pr82a] Suppose that p is a type over 0, with p equivalent to
p+ AA,"T4,i. Then algwt(p)Sn.

Proof Observe first that if p+ A Aiii defines a complete T-type, then it also defines a
complete Tk-type, since T and T''o have the "same" lattice of pp-definable subgroups. So
it may be supposed that T=T'a

For each i = 1,..., n, let qi be a type maximal with respect to containing p+ and not
containing Wi. By 4.33, qi is irreducible.

Let 7i in Ali=Al(ai) realise qi. Then the element a = (7 ...., an) in All®...®Aln
satisfies p+ and also -Wi(a) holds for each i (since iWt(ai) holds). Hence a realises p.
Then, since Al(p) is therefore a factor of h11 ®... ®Aln and since the Ali are indecomposable,
it follows that wt(p)Sn, as required. a

Corollary 9.18 Every neg-isolated type has finite weight. In particular, every
isolated type has finite weight. a

Corollary 9.19 [Pr82a; 1.11 Suppose that p is a neg-isolated type over 0: say p
is equivalent to p+ A A -11pi, where the Wi have been chosen to minimise n. Then:
(a) p is irreducible iff n=1;
(b) if n=2, then algwt(p)=2.

Proof (a) ==> Suppose that n->2. Then, by 4.28, there is some T in p+ with
ipAW1+1pAW2 E p-. One has that p+ AA iii is equivalent to
p+ A 1(ipAW, + LPAW2) A A iii. For the first is p, so certainly proves the second: on the
other hand, since 1(1pAW,+lpAW2) implies -1(ipAW1)A-1(ipAW2), the other direction is clear.
This contradicts minimality of n, as required.

The other direction is immediate from 9.17.
(b) This is immediate by part (a) and 9.17. n

The following example shows that, in general, the inequality, wt(p)Sn, in 9.17 cannot be
improved beyond 9.19, even when n is minimised.

Example 1 Let R be the ring K[x,y:x2=y2=xy=yx=0], where K is a finite field with
pm elements. The pp-definable subgroups of R are just the ideals, and they have been
described already in Ex2.1/6(vi). In particular, below the radical J=xR+ yR there are
pm+l non-zero (1-dimensional) ideals Ik = (x+yk)R, where kEP(K) (and 1" = yR).

Let T be the theory of Rya: then T is totally transcendental. There is, moreover, a
consistent type at J" which is isolated by the formula
3v1,u2(v=v1x+v2y)AA{-i3w(v=w(x+yk)): kEP(K)). Clearly, the conjunction
defining p- cannot be shortened, since Ik is not contained in the union Utsk IZ. Thus the
minimum value for "n" as in 9.17 is pm+l.

It follows by 9.19(a) that p is not irreducible. In fact wt(p)=2.
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Consider R ®R and its element a = (x, y). One has a = (1, 0)x + (0,1)y, so p+ (a)
holds. On the other hand, it is clear that, for every kEP(K) and for every w E R ®R,
a * w(x+ yk). Therefore a realises p. But R is indecomposable (being a local ring) and
pure-injective (it is even finite). So N(p) = N(a) = R ®R and so, indeed, the weight of p is
2.

It is worthwhile noting that if K in the above example is taken to be infinite, then the only
point which changes if that p is no longer neg-isolated, since there are infinitely many pp
formulas "just below" p. In particular, one still has wt(p)=2.
Example 2 A finitely generated irreducible type which is not neg-isolated is the type of any
non-zero element of Q in the theory of the abelian group (71200)-. This type is not neg-
isolated since, although p+ is equivalent to the formula "v=v", p- is equivalent to the set of
formulas (v2nx0: nEw) but to no finite subset.

We have now come across four different senses in which a type p over the empty set may be
isolated. They are as follows:
(i) the type p is isolated (in the space of types);
(ii) the type p contains a minimal pair;
(iii) the hull of p is isolated in the space, z(T), of indecomposables;
(iv) the type p is neg-isolated.

The remainder of this section is devoted to examining the inter-relationships between these.
It is the irreducible types in which we are interested, but I bring in irreducibility only where
needed.

Proposition 9.20 [Pr81b; Lemmal], [PP87; 6.5] The type p over 0 is isolated
iff it is finitely generated and neg-isolated.

Proof It is immediate from the definitions that if p is finitely generated and neg-isolated then
it is isolated. For the converse, suppose that L A A; -Wi isolates p, where Lp and the ipi are
pp. If p were not finitely generated, there would be (by 3.1) an infinite descending chain
ip=ipo > gyp, > ... of pp formulas in p. Then ip A A -iy,i would imply each ipk: that is,
ip A A; ntipi S Ipk for each k. Hence, one would have ip = U, Vi u Pk for each k (and note that
Lpk cannot be omitted!). By the strong statement of Neumann's Lemma (2.12) it would follow
that the index of LPk in Lp were no more that n! - a contradiction for k sufficiently large.

Then, if ip' is a pp formula equivalent to p+, one has ip' A A iwi equivalent to p: so p
is also neg-isolated. n

Corollary 9.21 If the type p over 0 is isolated then it has a minimal pair. n
The converse is false. Moreover, being isolated is not relatedness-invariant, even for

irreducible types: that is, if p is isolated and it need not be that q is isolated,
although under many conditions, such as total transcendality, it will be. The two examples below
illustrate these points. One does at least have the following.

Corollary 9.22 Suppose that p and q have linked realisations and that q is
isolated. Then p contains a minimal pair.

Proof By the proof of 9.17, the hull of q is a direct sum of indecomposables, each being the
hull of a type with a minimal pair. By 4.31, N(p) and N(q) have a non-zero direct summand
in common so p is linked to an irreducible type with a minimal pair. Therefore, by 9.12, p
contains a minimal pair, as required. a

Example 2a Let p be the (irreducible) type of the element (0,1) in the theory of
71(2) ®71(3). Then p contains the minimal pair (21v)/(61v) - clearly minimal since
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Inv(716, 21v, 61v)=3. Yet (see Ex2.1/7(ii)) p+ is not finitely generated, since it is equivalent
to the infinite set of formulas {211kv:nEw).
Example 3 Let the ring and module be as described in Ex7.2/6. The prime-pure-injective
model is indecomposable and is the hull of both an element with isolated type and one with non-
isolated type. So isolation is not relatedness-invariant.

Proposition 9.23 [Zg84; 4.9, 7.10] If the irreducible type p over 0 has a
minimal pair then the hull, /1(p), of p is an isolated point in Z(T). o

This is immediate from 9.3 and the definition of the topology on Z(T) (the minimal pair
defines an isolating neighbourhood). The result does use irreducibility of p. For consider the
type of an element a in TT p 71(p) which has infinitely many components equal to the "1" of the
relevant factor and the other components all 0. This type contains a minimal pair but there is
no sense in which the points comprising the hull of this element are collectively isolated.

It is unknown whether or not the converse is invariably true. It is shown in §10.4 that if R
is countable, or if T has zero continuous part, then the converse does hold - that is, if Al is
isolated in Z(T) then some, and hence (9.12) every, non-zero type realised in /1(p) has a
minimal pair.

Proposition 9.24 (Ziegler; private communication) Suppose that the type p is neg-
isolated, and let q be such that /1(q) is isomorphic to /1(p). Then q is neg-

isolated.

Proof Suppose, for a contradiction, that q were not neg-isolated. For each VEq-, let b,,,
in the pure-injective Ny have pp-type generated by q+ u {4J) (it may be assumed that
T-T' -). Consider the element b={bw), in N= TT (M, : ipEq-). Certainly b satisfies q+:
I claim that it realises q. If it also realised e in q-, then each of its components would do so
hence, by choice of the b,, every V in q- would, in conjunction with q+, imply e - so 8
would neg-isolate q - contrary to our assumption.

Since N is pure-injective, there is a realisation a=(a.). of p in N. The pp-type of
a is the intersection of the pp-types of its components, a, , so, since p is neg-isolated, there
is a with pp(ae)=pp(a). Therefore the projection, it, to the e-component strictly
preserves the pp-type of a, hence must strictly preserve the pp-type of b - contradiction, as
required. a

Corollary 9.25 If the indecomposable pure-injective N is isolated in Z(T) then
every non-zero type realised in N is neg-isolated.

Proof By 9.24 it will be enough to show that hl realises some neg-isolated type. Suppose
that (ip/y,) is an isolating neighbourhood of N. Let p be a type which contains Lp/4, and is
maximal pp with respect to omitting y,. Then p is irreducible and neg-isolated by W (4.33).
Since (Lp/w) isolates N, the hull of p is N. Thus the result follows. o

As a counterexample to the converse of 9.25, one has the following.

Example 4 Let T be the theory of the abelian group 2(2). Then Z(T) has two points: 71(2)
and (Q: 71(2) is isolated; (Q is not. Nevertheless, the type of any non-zero element of iQ is
neg-isolated - by the formula "v=0".

On the other hand, the theory of the abelian group 712006 2(2) is an example where the
neg-isolated types do happen to coincide with the types realised in isolated points of Z(T).

The type of the element (0,1) in the theory of 71(2) ®7Z(3) gives an example of a neg-
isolated, but not isolated, type, the hull of which is isolated in Z(T).
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By 9.23 and 9.25, if an indecomposable pure-injective has a T-minimal pair then every
type realised in it is neg-isolated. Recall that, for any U. theory, the types realised in the
prime model are precisely the isolated types. So one may ask if there is a generalisation
involving the prime pure-injective model (the fact just deduced perhaps suggests this). It will
be shown in Chapter 10 (10.24) that, if the lattice of pp-definable subgroups has no densely
ordered subset, then there is a prime pure-injective model which does indeed satisfy the
condition that every type realised has a minimal pair (and it realises all the irreducible pp-
types with a minimal pair).

In summary, we have the following chain of implications; also, we see that, for a finitely
generated type, the various notions of isolation all coincide (most of that already is in §8.2).

Corollary 9.26 Suppose that p is an irreducible type over 0. Then
(i)ce 00i (iii) NO.
If p is finitely generated then the conditions (i)-(iv) are equivalent.

(i) p is isolated.

(ii) p contains a minimal pair.
(iii) The hull, N(p), of p is isolated in the space, Z"(T), of indecomposables.
(iv) p is neg-isolated.

Proof The first statement summarises 9.21, 9.23 and 9.25. The second statement then
follows by 9.20. o

Suppose that T is totally transcendental of finite Morley rank. Then (exercise) every
irreducible type is isolated. So, by the above, it follows that every point of Z(T) is isolated
and hence z(T) is finite (cf. §11.4).

Corollary 9.27 Suppose that the theory T is totally transcendental and let p be

any irreducible type over 0. Then the following conditions are equivalent:
(i) p is isolated;
(ii) p contains a minimal pair;
(iii) The hull, N(p), of p is isolated in the space, I(T), of indecomposables;
(iv) p is neg-isolated. o

9.4 Neg-isolated types and elementary cogenerators

In this section the algebraic significance of neg-isolation is examined. We will, in
particular, see another implication of the distinction, made in 8.3, between the two ways in
which a type may be irreducible. This distinction is rather important in the context of the
representation theory of finite-dimensional algebras, since it relates to finite presentation of
certain simple functors (§12.2) and hence to the existence of almost split sequences ([Aus74a;
2.7]).

The material of this section comes mostly from [Pr80e] and [Pr82a].
Let N be apure-injective module. Say that N is an elementary cogenerator if every

pure-injective summand of a model of the theory of N' o is a direct summand of some power of
N (of course any such member of ZP(N -) is a direct summand of some ultrapower of N).
That is, N is an elementary cogenerator iff it is a cogenerator in the category whose objects are
the pure submodules of models of Th(No) and whose morphisms are the pure embeddings.
This notion generalises that of an injective cogenerator for a torsionfree class (see Chpt. 15). I

take this point farther in §15.3.
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Example 1

(a) Let hl be the abelian group 71200. So z(Th(N' -)) = { 71200, Q} ). In order to show that IV

is an elementary cogenerator, it must be established that Q (purely) embeds in some
power of 712oo. But, since 71200 contains elements of arbitrary high order, (71200) 0

contains elements of infinite order: the hull of any such element is a copy of Q.
(b) Take N to be the abelian group 71(2); so z(Th(N' a)) = {71(2), Il). I claim that N is

not an elementary cogenerator. For suppose that the type of a non-zero element of Q were
realised by an element a=(ai)i in some power 71(2)' 0 of 71(2). Then for each iEI
and each one would have 2nl ai, since 2nI a. Therefore each ai would be zero and
so a would be zero - contradiction.

Proposition 9.28 The pure-injective module N is an elementary cogenerator iff
every indecomposable direct summand of a model of the theory of N embeds as a
direct summand of some power of N.

Proof This is immediate from 4.38 and 4.39. a

Proposition 9.29 Let T be any complete theory of modules. Let N, be in
Z(T), and suppose that N is the hull of an irreducible type which is neg-isolated
(with respect to T). Suppose that N is a direct summand of the product TT-, N'X.
Then N is a direct summand of one of the N-,.

Proof Let ip be pp such that p is equivalent to p+ A -1yi (using 9.19). Suppose that
57= (a-A)-A E TT realises p: then each satisfies p+. Moreover, it must be that, for
some j, iip(ay,) holds. Hence aN realises p, and the conclusion follows. o

Corollary 9.30 [Pr82a; 1.3] Let N be any module and let p be a type over 0

which is irreducible and neg-isolated in the theory of Al. Let I be any set. Then p
is realised in NI iff p is realised in N.

Proof The direction is as in the proof above. The other direction is clear since "p" is
irreducible and neg-isolated equally in the theory of N and in that of N° and so we may
regard p in either context. a

Proposition 9.31 [Pr82a; 1.7] Suppose that N is pure-injective and let T be the
theory of N. If every irreducible neg-isolated type in ST(0) is realised in (some
power of) N, then N is an elementary cogenerator.

Proof By 9.29 the parenthesised hypothesis is no weaker.
To see that N is an elementary cogenerator, let No E;P(N' o). Let X be the set of

morphisms from No to N. I claim that the morphism from No to NX given by
a'--- >(f a)f E X is a pure embedding.

Let a be in No and let p be its pp-type: then certainly pp((fa) f) _> p. So let y: E p-:

then p+ A - extends (by 4.33) to a neg-isolated irreducible type q which, by 4.39, may be
taken to be a type for T (rather than Our hypothesis implies that q is realised in N,
say by T. By 2.8 there is a morphism f E X taking a to T. Since 14i(T) holds it follows that
iW((fa) f) holds also. Thus the image of a in MX has pp-type exactly p+. This is so for
every tuple in Y. so, by definition, No is purely embedded in NX, as required. a

Theorem 9.32 [Pr82a; 1.6] Let N be pure-injective. Then N is an elementary
cogenerator iff N realises every neg-isolated irreducible type in D #(O).

Proof This is immediate from 9.30 and 9.31. a

Corollary 9.33 [Pr84; 3.4] Suppose that the module N is totally transcendental.
Then N is an elementary cogenerator.
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Proof Since N is totally transcendental, isolation and neg-isolation coincide; also, every
model of Th(N) realises every isolated type. Therefore N realises every neg-isolated type
and so the result follows by 9.32. o

Corollary 9.34 Let N be totally transcendental and let M be elementarily
equivalent to N. Then M is a direct summand of some power of N. a

Exercise 1 [Gar80a; Lemmal7] Let M be a module such that every power, MA, of M is a
direct sum, M(K), of copies of M. Show that M is U. and weakly saturated. [Hint: see the
proof of 2.11.] Deduce that if M is indecomposable then M has finite pp-rank iff every power
of M is isomorphic to a direct sum of copies of M [Gar8oa; Thm 13].
Exercise 2 Garavaglia [Gar8oa; Thm 10] actually proves the following. Suppose that M is a
direct sum of finitely many indecomposable modules. Then the following are equivalent: (i)
every power of M is a direct sum of copies of M; (ii) M is totally transcendental, MO-) is
weakly saturated and, for every M-minimal pair ip/ip, one has Jtp(M)/ip(M)J'& = IMI'ka.
Prove this (Garavaglia's original proof is rather long, but the structure theory of §4.6 helps to
cut down the work).

We saw above that a(p) is not an elementary cogenerator. We may extract the key point
from that example. Let N be pure-injective. Suppose that there are pp formulas ip0,ip1,...
and y,, such that fl (tpi(N) : i E w) = v(N) but also such that, for every 77E w, one has
fl (tpi(N) : i <n) > tp(N). Then N is not an elementary cogenerator. For any complete type
which is maximal with respect to containing {Lpi : i E w ) and not containing tip (this is
consistent by hypothesis) is, by 4.33, neg-isolated, but is, by hypothesis, not realised in N.
So, by 9.32, N is not an elementary cogenerator. The next result is immediate from 9.32.

Corollary 9.35 [Pr8ve] If N is weakly saturated and pure-injective, then N is
an elementary cogenerator. o

Corollary 9.36 Every complete theory T has a model which is an elementary
cogenerator. a
Corollary 9.37 [Pra2a; 1.12] Let X be any universal Horn class of modules.
Then there is some NEX such that X may be described in each of the following
ways.
(a) (M : M embeds in some power of N )
(b) { M : M purely embeds in some power of A0.

Proof Set T' = Th( ®( MT : T is a complete extension of Th(X) and MT is an arbitrarily
chosen model of T)). Take N to be any elementary cogenerator for T' (such exists by 9.36). o

Existence of elementary cogenerators is an important ingredient in Facchini's treatment
[Fac85] of decomposition of pure-injective modules (his Theorem 1 is just existence of an
elementary cogenerator for T").
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CHAPTER 10 DIMENSION AND DECOMPOSITION

"Finiteness" conditions on the lattice of right ideals of a ring correspond to structure
theorems for the injective modules (see §1.1). In this chapter, we look at finiteness conditions on
the lattice of pp-types which correspond to structure theorems for pure-injective modules. We
have already seen one example in Chapter 3: the descending chain condition on pp-definable
subgroups is equivalent to every pure-injective module being a direct sum of indecomposable
submodules. In §4.6 we were able to develop a structure theory for such modules.

One of the conditions that we consider turns out to be equivalent, at least over countable
rings, to there being no continuous pure-injectives (an example of a "good structure" theorem).
Also considered is a stronger condition, under which there is a good structure theory for the
pure-injective models, analogous to that in §4.6.

If one considers the proof of 3.14, then one sees that the point is that, under the assumed
finiteness condition, every pure-injective model has an indecomposable direct summand. In the
first section, we see that a very much weaker hypothesis suffices for that conclusion.

The finiteness conditions of §1, though sufficient to imply zero continuous part, are far from
necessary. In fact, each is just the basis for an inductively defined sequence of finiteness
conditions. For example, one may, in some sense, factor out that part of a theory which has the
dcc. It is possible that, in what remains, there is some non-trivial part which has the dcc - in
which case factor it out; and so on. For many theories this process will not terminate until the
trivial theory is reached, in which case one deduces that the theory has continuous part zero.

Such inductive extension of finiteness conditions is the topic of the second section. Although
our interest is in two particular examples of the process, the first part of the discussion is
carried out in a more general framework: this saves effort and emphases an underlying idea.
We end up with two dimensions, m-dimension and breadth, which generalise the conditions
considered in the first section. We say that a theory "has a given dimension" if the dimension of
the lattice of pp-definable subgroups of a model has dimension less than "oo". Having m-
dimension is a strictly stronger condition than having breadth. I also discuss Ziegler's
definition of "width" (breadth is just a smoothed out version of this). Any theory with m-
dimension also has breadth (equivalently, width).

Any theory with width, in particular any theory with m-dimension, has continuous part
zero. For countable theories, the converse also holds, This is shown in the third section. It is
not known whether an uncountable theory with continuous part zero necessarily has width.

Any theory with width has continuous part zero but, if one assumes the stronger condition
that the theory has m-dimension, one may develop a structure theory for the pure-injective
models. Theories with m-dimension, as well as countable theories, satisfy the condition that a
point of the space of indecomposable pure-injectives is isolated iff it contains a minimal pair.
Under this condition, the topological (Cantor-Bendixson rank) and lattice-theoretic (m-
dimension) analyses of a theory fit together, and one is able to lift the structure theory of §4.6
well beyond the totally transcendental case. All this is in the fourth section.

In the fifth section, we look at a dimension which is co-extensive with m-dimension but
which grows faster and has a "direction": the Krull dimension of the lattice of pp-definable
subgroups (this is what (3aravaglia originally considered).

Then there is a supplementary section on Teq: an environment in which, for example,
cosets of one pp-definable subgroup in another are elements of an appropriate sort. We see that
if a theory has m-dimension then, in Teq, every type is non-orthogonal to a regular type: this
need not be so if we restrict to T.

In the sixth section, we relate foundation rank to Krull dimension. Then we go on consider a
2-valued rank which, generalising U-rank, is applicable to theories of modules which have m-
dimension. Finally, we describe a rank which Pillay introduced for any w-stable non-
multidimensional theory and it is seen that, provided we work in Teq, this rank corresponds to
the analysis of §4.

There is a supplementary section on valuation domains. This contains background material,
and the classification of the pure-injective modules.
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10.1 EHistence of indecomposabie direct summands

The main point of the proof of 3.14 is that, under the assumed finiteness condition (dcc on
pp-definable subgroups), one may split off an indecomposable factor. In fact, nowhere near the
full strength of the dcc is required.

Proposition 10.1 [Gar8Oa; Lemmal4,Thm1] Let N be a pure-injective module and
let ip/tp be an N-minimal pair. Then N realises an irreducible pp-type p which
contains ip/ p, (p may be taken to be neg-isolated by w).
In particular, Al has an indecomposabie direct summand.

Proof Let p be maximal pp containing ip and omitting y,. By 4.33 p is irreducible and is
neg-isolated by V. It will be shown that p is realised in N.

Let a be any element in ip(N)\ip(N) and consider the set of pp formulas
Vv,w) = p+(v) A p(w) A (a= v+ w). This set is finitely satisfied in N. For, given any
Lp'E p+, one has ipAtp' +y, = ip because Lp/ p is a minimal pair. Therefore, since aEip(N), it
follows that there are b and c in N with LpnLp'(b), V(c) and with a = b +c.

Since N is pure-injective, 1) is realised in it (2.8), say by b, c.
So one has p+(b). If .p(b) also held then, from p(c) and a = b+c, one would deduce

ip(a) - which is not so. Therefore b satisfies p+(v) n-np(v). Since p is neg-isolated by y,
this means that b is a realisation of p in Al - as required. n

So the presence of a minimal pair in a pure-injective guarantees the existence of an
indecomposable factor. The next example shows that this condition is certainly not necessary.

Example 1 [Zg84; Example before 9.4] Let R be a complete valuation domain with infinitely
generated maximal ideal (see §10.V). Since (10.V1) the pp-definable subgroups of R are just
the principal ideals, certainly R=R has no minimal pair. Yet by 10.V3 every pure-injective
elementarily equivalent to R has an indecomposable factor. The next result covers this example.

Theorem 10.2 [Zg84; §7] Let N be pure-injective. Suppose that the interval
[ip(N),ip(N)] in the lattice of pp-definable subgroups of Al is a chain (every two
elements are comparable). Then N realises an irreducible type which contains LP/tp.
In particular, Al has an indecomposable direct summand.

Proof (Compare with the proof of 10.1). Let a be any element in ip(N)\p(N). The type of
a splits the chain [Lp, v] into an "upper cut" U = pp(a) n [ip, V] and "lower cut"
L= [ip,ip]\U. Of course, every formula in U is above every formula in L.

Let p be a maximal pp-type containing U and missing L. Then 4.33 applies, to give that
p is irreducible and is equivalent to p+ n (1W' : 1p' E 0.

Consider the set '(v,w) = p+(v) A( V(W)) A( a= V+W). It is claimed that this set is
finitely satisfied in N. Since (clearly) T is n-closed, it will be enough to take any ip'Ep+
and show that a E Lp'(N)+lp(N). One has LP _> tp'ntp+y, >_ y,; since ip'nip E p+, one has
1p'nip+tpEp+. By construction, p+n[Lp,lp]=pp(a)n[ip,ip]. Hence a satisfies lp'nip+ip;
so certainly a E ip'(N)+ip(N).

Since N is pure-injective it follows that there is (b,c) in Al satisfying I(v,w). One
has p+(b). If one had ip(b), then one could combine this with V(c) to conclude p(b+c) -
that is y,(a) - contradiction. Hence b is a realisation of p in Al, and the theorem is proved. n
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10.2 Dimensions defined on lattices

In the introduction to this chapter I mentioned the possibility of recursively stripping away
the "dcc part" of a complete theory so as to get a decomposition theory. Precisely that idea will
be followed up in §10.4 below. In this section we look rather at the corresponding process
carried out on the lattice of pp-definable subgroups. In §10.1 two conditions were given under
which one has indecomposable factors. Since I wish to consider the effect of inductively
extending each of them, I give a more abstract treatment which covers them both.

The context for this treatment is that of modular lattices. Of course the example we are
interested in is the lattice of pp-definable subgroups of a module. Readers familiar with the
Gabriel-Rentschler definition of Krull dimension will note that, unlike that dimension, the
dimensions defined here do not have a "direction". For the "directional" versions of these
dimensions the reader should consult §10.5.

This section is based on [Pr82a]. Similar ideas have been developed independently by
Simmons [Si8?], [Si86].

Let C be a class of modular lattices which is closed under sublattices and quotients. The
two examples to have in mind are: C consists of the (isomorphism class of the) two-point
lattice 2; C is the class 014 of all chains (= linear orders).

Let L be any modular lattice. Define C(L), or just Pi, to be the congruence generated by
the set of all the sub-intervals of L which belong to C. Thus JC(L) is the smallest relation,

on L such that the quotient L/ps is a (modular) lattice in which all pairs (ip,W) E LxL
with [ip, 4J] E C become identified under the canonical projection n: L- * L/ Let us write
LP <CIV if nips nW.

The first result gives a useful description of the way in which those sub-intervals of L

which lie in C generate this congruence.
Let us agree to the convention that, in this section, L is a modular lattice and C is a class

as above. I have in mind lattices with I (top) and 0 (bottom), but this affects only a few points.

Lemma 10.3 Let ip,W E L.

(a) LP-IpAW iff LP+ip-tp.
(b) IP - W lp+\p LpAW #> LP-tpAW and W-lpAip-
(c) 1pnsip iff there is a finite sequence tp+IV =iPo>LA1 >tPn=aAW such that,

for each i, the interval [Lpi,ipi+1] is in C.

(d) T >CW iff there is a finite sequence with
[tpi,ipi+1]EC for each i.

Proof Let n:L-+>nL = L/cC be the canonical projection.
(a) This is immediate since nL is a modular lattice and so nip = rc(TAW) = nipAT1W iff

nip? nip, and this is so iff n(ip+W) = nip+ni = nW.
(b) This follows in the same way (using (a)).
(c) Let us set ip'W if there is a finite sequence between ip+W and LPAW of the form

described. It will be sufficient to show that "'" is a congruence, since it certainly collapses all
intervals of L which are in C and any congruence which does this must contain "-".

For convenience, say that there is a "C-chain from ip to W" if there is a sequence
ip = Wo > Lp, > ... > Wn = W with [Lpi, LPi+ 1] E C for each i. Observe that our assumptions on C

imply that, if ip > ip' > W' > W and if there is a C-chain from ip to W, then there is a C-chain
from ip' to W'. Also, if there is a C-chain from ip to W then, for any ip', there is a C-chain
from ipAip' to WAtp'. Moreover the existence of a C-chain from ip to W and of one from W to
a implies the existence of a C-chain from ip to a.

To see that "." is an equivalence relation is easy; only transitivity needs a little checking.
So suppose that tp'W."a. Then there is a C-chain from lp+W to 1PAW and hence there is one
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from p+W to W. Similarly, there is a C-chain from we to W. Therefore, by modularity,
there is a C-chain from Lp+W+e to W. Analogously, there is a C-chain from W to 'PAW AU.
So, in particular, there is a C-chain from lp+e to ipAe. Hence ip^'W.

Next it is shown that"-" is a lattice congruence. So suppose tp'"W and let 6E L. There is a
C-chain from tp+W to ipAW and hence there is one from ip+W+e to (LpAW)+e. Now,
(ip+e)+(tp+e) = tp+W+e and also (tp+e)A(W+e),>LpAW + e. Hence there is a C-chain from
(gyp+e)+(W+6) to (Lp+e)A(tp+e) - so tp+e-W+e. The proof that IpAe"-WAS is entirely
analogous.

Modularity of L/ - follows, since any quotient lattice of a modular lattice is modular (the
identity for modularity is (cA(avb))vb = (cvb)A(avb) - see [Co81; Exercise 11.4.1]).

(d) This follows immediately from (c) since tp >CW iff ip+ p...ip. o

The two examples which are of interest to us arise from 10.1 and 10.2, being given by
taking B, respectively CA, for C. By 10.3 one has, using the obvious notation, iff the
interval [ip+W, TAW] has finite length. The description of the points which are identified
under #CX is also given by 10.3(c).

The process which takes L to L/pi may be applied to any modular lattice. In particular it
may be applied to L/ . Let us therefore define the following sequence of congruences and
corresponding quotients on L: L°=L, Having defined the congruence Pj«
on L and the quotient set La+1= (L°°)' and let be the congruence on L
such that L«+1. At a limit ordinal 'A we let Pj' be U00« : oo<'a) and set
L_A=L/P0,. Thus one has the sequence of surjective morphisms
L»LI )oLZ>...»Lo )).... In all this notation we may, if necessary, introduce "C".

Define dim CL to be the least ordinal o` such that L«+1 is the trivial lattice: if there is
no such ordinal we set dim CL = oo, saying that dim CL is undefined or that L does not have C-
dimension. Observe that if a is a limit and if 1L"A OL then, for some o:<), one must have
1L «OL - so dim L is well-defined.

For example, dimCL = 0 iff L has finite length; dim2(w, <) =1,
dim2(w2, <) = 2 =dim2(w2+w, <) (exercise, also cf. 10.41 below).

Finally, let Loo be the colimit of the system of morphisms shown above:
LOO=L/(U{#a :« is an ordinal)).

Lemma 10.4 dimCL<o: iff for all quotients n:L-*L, of L one has dimCL,<a.
Proof One direction is trivial. For the other it is enough (by induction) to show that
C(L,) 2 where by the latter I mean { (nip, nip) : (tp, tp) C r C(L) ). But this is clear,
since if tp,W E L with [ip,W] in C then the assumptions on C entail [nip, nW] E C. o

The next result is a characterisation of those lattices L with dimCL <00. Say that the
modular lattice is C-dense if for all tp>W in L there are pp' and W' in L with
a % T' > tp' > tp and [tp', W'] E C. So "C2-dense" means "contains no densely ordered interval".

Proposition 10.5 The following conditions on the lattice L are equivalent:
(i) dimCL<oo;
(ii) every quotient of L is C-dense.

Proof (i)= (ii) Suppose that there is some quotient rt:L -'L, of L which contains an
interval [nip, nW] with no non-trivial sub-interval in C. If there were distinct points 6>6'
between nip and nW which became identified under the congruence P4C on L, then, by 10.3,
there would be a non-trivial interval in C between a and e' and hence between nip and nip
- contrary to assumption. That is, [nip, nW]/ "equals" [nip,ntp] . So, clearly, dimCL, = oo.
So, by 10.4, dimC L = oo.



Chapter 10: Dimension and decomposition 205

(ii)=(i) The assumption implies that on every quotient, L1, of L, the congruence #C is
non-trivial unless L, is itself trivial. In particular this applies to L00. Hence L00=0, as
required. o

Even if L is C-dense it may be that dimCL = oo. For example, it follows from 10.5 that
dim2(Q, <) = 00. Consider the ordered set Q)xI with the lexicographic ordering (I being the
two-point lattice) - thus every point of Qd is replaced by a two-point interval. Then clearly
Q X1 is C2-dense but, by 10.5, dim2Qxl = oo.

From now on we will be concerned only with dim2 which will be called m-dimension and
denoted "m-dim" ("m" for minimal congruence). Ziegler says just "dimension", but the term is
already over-worked in these notes. Also, dim0X which will be called "breadth" and denoted
"br".

Exercise 1 Let B be a boolean algebra. Show that B/'2 = B iff B is atomless and this will
be so iff B/ Coq= B. Deduce that dim B < oo iff brB < oo iff every quotient of B is atomic (in
fact dim B = br B). Boolean algebras B with dim B < 00 are termed superatom ic.

The following result appears to be "folklore": it is stated explicitly in [Gar80a,
Lemma10].

Corollary 10.6 The following conditions on L are equivalent:
(i) m-dim L < oo;
(ii) the ordered set (Q),<) is not a subquotient (i.e. sublattice of a quotient) of L.

Proof (i)==> (ii) It follows from 10.5 (and 10.4) that (Q, <) is not a quotient of L. More
generally, suppose that the quotient L-*>L1 has a densely ordered subset. Then by 10.3(c) it is
clear that no two distinct points of this sublattice may become identified under the projection
L1---»L1/o 1. So, by induction, one has dim L1= oo and hence dim L = oo.

(ii)=(i) Let Tc:L-»L1 be a quotient of L which is not trivial. Since (Qd, <) does not
embed in L1, there must be points rcnp> nW of L, such that the interval [nip, nW] is just the
two-point lattice (exercise). Therefore the congruence d 1 is non-trivial on L1. In particular,
it follows that LOO = 0, as required. a

Before going on to the equivalent result for breadth, I present Ziegler's definition of "width"
of a lattice (on which I have based the definition of breadth). I present this here, rather than in
§5, where the various ranks are compared, since at one point (10.12) it seems that width is the
appropriate tool.

So let L be a modular lattice. Define, by induction, the width, w[1p,1V] or just w(ip/W),
of an interval [Lp,ip] of L as follows (by the way, a rather different measure of the "width",
and indeed "breadth", of a poset is also in use):
w(Lp/W) = 0 iff LP= V;
w(ip/W)=o: iff w(Lp/W) is not less than a and if, for all 81,82 with ip_> 8i->W (i=1,2),
one has w(e1/e1Ae2)<a or w(e2/e1A82)<«.
Set w(ip/W) = oo if w(Lp/W) m a for each ordinal a. Define w(L) = w(1L,OL).
Observe that w(ip/W)=1 iff the interval [Lp,W] is a chain: CJ= (L:w(L)=1).
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Example 1

w(L)=2
br(L)=o
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An example with breadth 1 can be got by
placing lattices as opposite, of increasing
width, on top of each other. To illustrate
breadth "oo", I picture a sequence of nested
sub-lattices of a lattice (which can be taken to
be the union of these).

.

1

beginning of refining sequence for breadth=oo

Exercise 2 Show that if L Li is an epimorphism of modular lattices and if w(L) < oo then
w(L1) < oo.

Next we see that a lattice has width (i.e. has width < oo) iff it has breadth. The difference
between these two measures of complexity lies only in their rates of growth - and these are not
entirely unrelated.

Lemma 10.7 Let L be any modular lattice. Then:
(a) br L C w(L);
(b) if br L = « then w(L) < w«+i, hence:
(c) brL<oo iff w(L)<oo.

Proof (a) The proof is by induction on w(L) = o:, where the case a = 1 is clear since any
chain (w(L)=i) has breadth 0.

So suppose that we have the result for all ordinals p <o: and suppose that w(L) = U. By
definition of width, for each pair 61,82 in L, at least one of the intervals [81,e1Ae2],
[62,e1Ae2] has width strictly less than a - say w([61,61A62])=p<a. Let ti be the
congruence By the induction hypothesis, br[61,61A0215 p and so 61" 61A62.
Thus, in L/-, one has (el/ -) < (e2/"). Therefore, if is U { %t,Cgp(L) : p <c O, then L/pe

is a chain (every two points are comparable). Then, momentarily separating the cases a a
limit or not a limit, one checks that brL S o, as required.

(b) This is proved by induction on o = brL.
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So suppose that br L = 0. By 10.3 there is a finite sequence in L, 1L = Po > Pi > . > LPn = OL
with each [1Pi,tPi+1] a chain. It is claimed that w(L) < n (in fact this is a rather lax bound).
The proof of the claim is by induction on n, where the base case is clear.

Take any incomparable pair 61,62 in L and consider
e1=61ATO +01A62>eintp1+61A62>...>6lALpn+61n62=8,ne2. If not all these inclusions
are strict then one has, by induction (for clearly each gap is a chain), that w(61/e1ne2) < n, as
required. If, on the other hand, these inclusions are all strict, and if the same were true of the
chain with ei and a2 interchanged, then one would have, towards the bottom of each chain, the
diagram shown below.

eiA(pn-1+elne2
e2AIP n-1+61A62

01A02

But, since [LPn-1,LPn=OL] is a chain one has,
say, e1ALPn-1> 82ALp77-1 and hence
8 1ALp77 -1+01A02 > 82ntpn-1+61A82 >
61A62, which of course contradicts the
definition of 01A02!

Thus the case a = 0 has been dealt with. The general case is proved in j ust the same way.
Suppose br L = a. Then there is (by 10.3) a sequence 1L = LPo >'P1 > ... > LPn =OL in L such that,
if n:is the canonical projection, then each interval [nipi,nipi1] is a chain. The
claim, inductive on n, is that w(L) < wa.n. For the base case we need a separate argument and
have to use the fact that if e1 < 62 < 63 then w(63/61) < w(63/62) + w(62/e1) (cf. [Zg84;
7.4]) (the first part of the argument was a special case of this and the details are left as an
exercise).

Take any incomparable pair in L and consider
nel=ne1nrc1po+n81nne2>...> ne,AULpn+ne1nne2 =ne,nne2. If not all the inclusions
are strict then one has, on applying the induction hypothesis to the lattice [01,61A62], the
image of which under n can be spanned by n-1 chains, that w[e1,6,ne2] < wa(n-1), as
required. Otherwise, as in the case a=0, one derives, say,
1101 nn1Pn_1 > 1182 nnip77-1 > ne, nne2 - contradiction as before.

Thus the result is established.
(c) This is immediate from (a) and W.

One should note that the connection between brL and w(L)
is not very tight. For example the lattice shown has br = 1
and has width 2 (< < w2).

infinite

descending

chain

of
diamonds

Having established the connection between breadth
and width, one has the equivalents to br < oo given by the
next result, which is immediate from 10.5 and 10.7.

Corollary 10.8 [Pr82a; 1.20] The following conditions are equivalent:
(i) brL<oo;
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(ii) w(L) < oo;
(iii) no non-trivial quotient of L satisfies

Vtp,lp (tp>ip -+ 381,82 (ip 81+82 > 81> 81A82 ? ii');
(iv) every quotient of L "has dense chains" - i.e., is CX-dense. o
Of course m-dim L _> brL for all L, since I'CX, and the example (Q, <) shows that it is

possible to have m-dimension "oo" but breadth zero.
If M is a module then dimCM means dimCL, where L is the lattice, Lattf(T), of pp-

definable subgroups of M. For T a complete theory of modules dimCT means dimCM, where
M is any model of T. Also, I sometimes use m-dim(tp/y,) and br(tp/y,) rather than
dim[tp,l,] and br[tp, p].

10.3 Modules with width

This section presents results of Ziegler which relate the condition w(T) < oo to that of T
having continuous part zero. In the countable case, the conditions are equivalent: in the
uncountable case, the former implies the latter.

Theorem 10.9 [Zg84; 7.8(1)] Suppose that tV is pure-injective and that w(//) <00.
Then N has continuous part zero.

Proof If V' is any direct summand of h' then its lattice of pp-definable subgroups is a
quotient of that of N so, by 10.4, w(d') <oo also. Therefore 10.8 implies that every non-
zero direct summand of N has a non-trivial interval which is a chain. So, by 10.2, every
direct summand of Al has an indecomposable factor. o

Corollary 10.10 [Gar80a; Thml] Suppose that N is pure-injective with m-
dim N < oo. Then N has continuous part zero. o
Corollary 10.11 [Zg84; 7.1(1)] If T is a complete theory with w(T) < oo then
Tc = 0; so every pure-injective model of T is the pure-injective hull of a direct sum
of indecomposables. o

Within various classes of modules, ring-theoretic finiteness conditions may be given which
ensure that the situation of 10.11 obtains. Examples of such conditions are provided for:
injective modules 1.12; projective modules 14.14, 14.15; modules over commutative regular
rings 16.26; modules over valuation domains and Dedekind domains §2.7Z, §10.V; and modules
over path algebras of quivers §13.3.

Let me remark at this stage that whenever these dimensions are being discussed, it may be
assumed, if convenient, that our theories are closed under product: for T and T'o have the
same lattice of pp-definable subgroups.

Before embarking on the proof of the converse to 10.11 in the countable case, it is
worthwhile noting the following local version of 10.9.

Prooosition 10.12 [Zg84; 7.8(1)] Let T be a complete theory and let tp>v be pp
formulas with w [tp, V] < oo. Then every type p with tp/ip E p has a large formula.
In particular, N(p) has an indecomposable direct summand.

Proof I reproduce Ziegler's proof and actually work with the equivalent (10.7) assumption
that w(tp/tip) < oo, since breadth seems to be too coarse for this proof.

So suppose that tp/tip E p. Choose tp'/,' E p with w(tp'/ip') = a minimal (and <oo by the
hypothesis). It is claimed that p' is large in p.



Chapter 10: Dimension and decomposition 209

N' To see this, take y0142 E p- with 411,2 -> y,'.
Then, for i =1, 2, one has
IV'<1p,Akp2ALp'<wiAtp'<<p'. If, for some iE(1,2),

tiV,Ap'+W2ALp' one has Lp,Atp2Alp'=V1A(p' then
tp,MID' + p2Alp'=y,3_iALp'Ep-, as required. So it may
be supposed that the inclusions

1V1Alp- V 2Atp' (yi1 Aip')A(ip2ALp')<y,iAip' are strict. Thus, one has
the diagram shown.

W, AV AT,
Since w(Lp'/ p') = u one has, from the definition of

2 width, that w(1p1ALp'+ 2AT' / VIAlp') < oo for i=1 or

I

i=2.

Now, ViALp' E p-, so minimality of u yields ip,Aip' + y,2 Aip' ff p+, as required (for the
definition of "large").

The last statement now follows by 9.16. o

Theorem 10.13 [Zg84; 7.8(2)] Suppose that T is a complete theory of modules
such that, with respect to the CX congruence, Lattf(T)°O is non-trivial (i.e.,
br T = °o) but countable. Then Tc m 0.

Proof A type with no large formula is to be constructed: by 9.16, this will be enough. The
construction is performed in LOO = Lattf(T)OO and is then pulled back to L = Lattf(T) via the
canonical projection n:L-+>LOO.

Since LOO is assumed to be countable, let us suppose that it is enumerated as (6n : n E w )
say, in such a way that each element occurs infinitely often.

Very roughly, one may view the construction as a process of continual refinement between
what is to be p + and what is to be p-.

At the end of the n-th stage of the construction, one will have decided for each m-< 77
whether 6m E p+ or 6m E p- and one will set pn to be the intersection of those 6m in p
with m <n. Moreover, one will have constructed a finite set In of intervals of the form qP/y,
(i.e. [ip, p]) such that: (i) each such "top point" ip satisfies ip<pn; (ii) for each interval
ip/.p in In there is an interval Lpo/ p0 of I77_1 with ipo/%Vo _> ip/y, (in the sense of Exercise
2.4/1) and with ipo_> ip

Set I-1 =[1L,OL].
The (n+1)-st stage of the construction is as follows. Consider 6=6n+1: there are two

cases.

Case (a) 6ALp> 6Alp for each ip/ip E ln.
In this case put 6=6n+1 into p+, set Pn+1 = PnA6n and form In+1 by replacing each

Lp/y, E In by 6ALp/6AW (= Pn+1ALP/Pn+1A1V since, by induction, lp<Pn).
Case(b) 6ALp=6A1V forsome lp/yiEI .

In this case put 6 into p- and choose, for each such "type (b)" pair Lp/y, E In, a pair of
incomparable formulas as shown - there is such a pair, since br(lp/gyp) = oo - and put
both intervals e,/8,A62 and 62/8,A62 into 1n+1
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Those intervals ("type (a)") T/y, of 1n for which 6Alp strictly
contains (5 AV are replaced by 6Alp/6A1V, in 1n+1. Set p77 +1=p77-

IF Let us note immediately that: (ii) if ip'/y,' E 1 then there isn+1,
I ip/y, E In with Lp/gyp >_ ip'/y,' and ip3ip'; (i) each "top point", ip', of an

81+82 interval ,p'/y,' E 1n+1 is below P,+1 (by induction).
Moreover, if k 3 m is such that 6k = ipi' - the sum of all "top

e1 82 elements" of members of 1n+1 then, since for each such Lp', the
2 statement (ii) above (inductively extended) implies that case (a) will

btain t th k-th t nd thi ill In tit + Al ifw eo a e s a e a so s sum u n o so
e1Ae 2 / E I and if l > n+1 is such that 6 then from= W , ,IF F n+1 l

61A,p' = 6Z AV' (and (the inductively extended) (ii)), it follows that case
W (b) will obtain at the l-th stage and hence W will be put into p-. Note

also that the same argument shows that if 6t=6t+r then 6t+r will be
put into p+ or p- according as 6t was; so our construction does hang
together.

Each point eventually is assigned either to p + or to p- (and p+ will be given by the
descending sequence po 3 p, _> ... _> p77 _> ...). The type q which we want has, of course, to lie in
L, and it is simply defined to be the pullback along v:L-*L0° of the "type" which has been
constructed (so ipEq iff ntp E p+). "Consistency" must be checked. The first point to note is
that p+ (and so q+) is a filter - this is clear on considering the pn's - moreover, arguing
as in the last paragraph, one sees that p+ (so q+) is closed upwards. Then the fact that
(L00)' equals L- is, together with Neumann's Lemma 2.12, enough to ensure that q is indeed
consistent.

The other point to be checked is that no formula is large in q. Looking at the definition of
"large", one sees that it is simply a lattice property which may be tested equally (and more
easily) on p as on q.

So let 6=6n+1 be any formula in p-. Let
1n={p,/Wl,...,tPt/y,t,apt+1/Wt+1, tpt+r/Wt +r ), where the first t are (in relation to
6) of "type (b)" and the rest are of "type (a)". Since 6E p-, t >,1. For j = 1,...,t let
eji/e j,Ae j2 (i=1,2) be the two corresponding intervals in In+1. It is claimed that for each
j=1,...,t and i=1,2, one has 6+ejiEp-, but that for every ipEp+ one has
1j:, I:,=,, (6+e ji)Aip E p + - which will be as required; for this yields that 6 is not large irr
p (cf. before 9.14).

First, for each j, 6+eji is in p- (say i=1). For one has (6+ejl)A8j2=
(6+ej1)ALpjA8j2 =(8j1+6ALpj)A8j2 (by modularity) =(ejl+6Aej,)A8j2 (since
6Aipj=6A\pj and ipj>ej,3y,j) =ej,Aej2=(6+ej,)Aej,Aej2. But ej2/8jiAej2 E 1n+1
so, at the appropriate stage (since case (b) will obtain), 6+e j1 will be put into p-, as claimed.

Now let 't=6rn+1 (m large enough) be an arbitrary member of p+. Fix Lp'/y,' E Im+1:
then Lp'/.p'<<pj/tpj for some ipj/ta,j in In+1 and, since 't is put into p+ (case (a)), one
has 'trip'.

If j>t then by construction at the (n+1)-st stage), one has 6ALpj >_ ip', so one concludes
that lp'<6At<I,,,(6+eji))A-t.

If j<t then one has for, i=1 or i=2, that gp'<eji. Since also ip'<'t, one again
concludes that (6+eji))A1:.

Thus one has that (1,,, (6+e ji))A-t is above each "top" element in 1, +i. So (as argued
before), at an appropriate stage (1,, (6+e ji))A't will be put into p+, as required. o

Corollary 10.14 [Zg84; 7.1(2)] Suppose that T is a complete theory of modules
over a countable ring. Then T has continuous part zero iff br T < 0 iff w(T) < oo. o

g 6k p p . ,
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10.4 Classification for theories with dimension

In this section a structure theory is developed for the pure-injective models of those
theories which have m-dimension in the sense of §2. By 10.10, we know that every pure-
injective model of such a theory is discrete. The structure theory, which is due to Ziegler, is
analogous to, indeed generalises, that of §4.6. In particular, it gives precise limitations on the
number of times each member of z(T) can occur in the decomposition of a pure-injective
model. I do not know to what extent a similar structure theory may be developed if T has width
but not dimension.

Our analysis of a theory, T, with m-dimension proceeds by successively stripping away
the simplest components of T. "Simplest" will be measured by CB-rank in z(T), but our first
task is to tie this in with m-dimension. This dimension was defined for intervals in the lattice of
pp formulas, but there is an natural way in which this induces a dimension on the points of
z(T). It is shown that, at least if T is countable or dim T < oo, then this latter dimension
coincides with CB-rank in z(T).

Recall (9.3) that for any complete theory T, if the interval ip/yi is T-minimal then the
open set (p/gyp) in z(T) has just one point N (say) and so, in particular, N is isolated. For
the theory of this section to apply to T it appears that we need the converse also (recall that
when I say that a point is isolated, I mean that it is isolated as a point of z(T) rather than

Condition (n) if T'ST then Al is an isolated point of z(T') iff
there is a T'-minimal pair ip/u, with (ip/gyp) = (N }.

Thus, in a theory T satisfying (A), the isolated points of z(T) are precisely those which
realise a type with a T-minimal pair or, to put it another way, an open set (Lp/ip) contains an
isolated point iff there is a minimal pair between ip and y,. This condition on T and its
components implies that the topological and lattice-theoretic measures of the complexity of
pure-injectives will coincide, not just at the base level, but also through the inductive
extensions - CB-rank and m-dimension. Observe that if m-dim T < 00 then any isolated
neighbourhood in z(T) contains just one point. Indeed, if N=_N' are indecomposable pure-
injectives and m-dim N < 00 then, by 10.5, N has an N-minimal pair ip/ p say. Since
N'=N, Lp/ p also is a minimal pair for Al'. So by 9.3 and 10.1, NON': this result is due to
Garavaglia [Gar80a; Cor6].

Before examining the consequences of condition (n), let us establish that the condition is a
reasonable one. We will see that if R is countable then (n) holds for any complete theory of
modules over R. Then, more to the point as regards a structure theory, we see that if T has
breadth (in particular if T has m-dimension) then T satisfies (A) (in fact this last may be
proved locally).

Theorem 10.15 [Zg84; 8.3] Let T be a complete theory over a countable ring and
let ip> ip be pp formulas. If there exists a densely ordered subset of the interval
[LP,W]T, then the open set (lp/lp) of z(T) contains 2ko points. In particular, if
[ip,tp] does not contain a minimal pair then I(ip/iy)I>1; so T satisfies condition(s).

Proof First of all, 2Ao types are produced. Then it is shown that no point of z(T) can
realise more than countably many of them.

It may be supposed that the densely ordered subset is indexed by the rationals so that
Tr < Ws iff r<s (r,s E Q). Define the partial types corresponding to real cuts:
pu=(Lpr:r>- u) u(-1tps:s<u) (u EP).

Let (ei}i E w be an enumeration of all pp-formulas; we use this enumeration to give
sufficient coherence to our extensions of the pu to complete types. For each a EP, define a



Chapter 10: Dimension and decomposition 212

sequence of extensions of pa by putting p(a, 0) = p« and, having defined p(a,i), setting
p(a, i+1) = p(a, i) A 6 if this is consistent and p(a, i+1) = p(a, i) A 16 if not. Then let q«
be the limit of these: q« is irreducible by
4.33 - since it has in effect been defined to be maximal with respect to missing the chain p«-.

Next we show that these 2'k irreducible types represent 2'k indecomposable pure-
injectives. It will be enough to show that if N E Z(T) then N realises at most 'k. of the q«.
Suppose that, on the contrary, N realises uncountably many of the qu - say op E N realises
qp for suitable p. Choose and fix some non-zero element oEN. Since U is indecomposable
there is, for each ap, some pp formula wp linking a and ap: wp(a, Op)

A lwp(0, ap)
Since there are only countably many pp formulas, there is an uncountable set, D, of reals

with w«(w,v) = wp(w,v) for all a,p in D. Let nEw be such that w«(0,v)=en for each
aED. For each such a the formula en does not go into q«, so by construction it must be that
p(«, n) proves ,en. Choose p <a both in D such that XP n n = X« n n (there are only
finitely many subsets of n). So, for i<n, ei(a«) holds iff ei(ap) does and, in this case,
ei(ao,-ap) holds. Since pp+ > pa+ we also have pa(aa-op) (since there is rE Q with
a>r>p!). Therefore o«-ap satisfies p(a,n) and hence ien(aa-ap), that is
-iw«(O,a«-ap), holds. On the other hand, from wp(a,ap) A W«(a,aa) we deduce (since
woe=wp) that w«(0,aa-ap) holds - contradiction as desired. a

Exercise 1 Suppose that IRI = K. Suppose that there is a subset of Lattf(T) of cardinality K
and with >, cuts. Find (set-theoretic) conditions on K and 'which allow the proof of 10.15 to
go through.

The generalisation of 10.15 to uncountable rings is not true without some set-theoretic
assumptions: I discuss an example of Hodkinson after 10.22.

Our main interest in this section is in developing a structure theory for theories with m-
dimension. Fortunately such theories do have property (n ). Indeed, one has the following.

Theorem 10.16 cf. [Zg84; 8.111 Suppose that Tc = 0 (in particular suppose that
m-dim T<oo). Then T satisfies (n).

Proof By the remarks at the beginning of this section, it will be enough to show that if the
interval [lp,w] does not contain a minimal pair then the neighbourhood (ip/w) contains more
than one point (that seems to be the best we can do under the hypothesis of the theorem). Our
aim, then, is to produce two irreducible types which contain ip/w and which are so different
that they cannot be realised in the same indecomposable pure-injective. Assume, then, that
there is no minimal pair between Lp and w.

One irreducible type is found easily. Let p be maximal with respect to containing ip and
missing w; by 4.33, p is irreducible and neg-isolated.

Now, recall that if q is related to p then q also must be neg-isolated (9.24). This
suggests the following approach to finding a second point of (i.p/w).

Let 'pr (rE 0) be a densely ordered subset of [ip,w] such that r<s iff LPr < <ps. Let Of
be any irrational and define q to be a maximal pp-extension of the cut, p«, at a (as in the
proof of 10.15). Then q will be irreducible by 4.33, and one is tempted to think that q cannot
be neg-isolated - for the pp formulas which define its negative part form a chain with no
maximal element. How, though, does one exclude the possibility that adding a single ,ipr (r<oc)
to q+ will imply nips for all s with rSs<a? I don't expect that this can happen for all a
but, in the absense of a proof for that, we reverse our strategy and note that what we have to
avoid is adding a pp formula whose intersections with the various 'Pr collapse. Then we will
invoke the assumption Tc=0 to get an irreducible type.
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Therefore, let q be a type maximal with respect to containing tp, missing W and having
the property that for every 8E q + and r < s one has e n tPr < e nips. Note that no ipr is in
q+. Observing that (using 4.40) one may suppose that T=T'tk°, one sees that q is consistent
(this is also easy to see directly).

Since it has been assumed that T has zero continuous part, one deduces that N(q) is
discrete. So N(q) realises an irreducible type containing Lp/tp. If (ip/tp) contained just one
point then the corresponding indecomposable would be the hull of p. We will see that this leads
to a contradiction.

By 9.24, q is neg-isolated (since p is), by tp' say. Since tp' E q-, there are tE q
and r<t in Q with tntP'ALPr=tntp'nipt (a). Choose sEQ with r<s<t and consider
the formula ip" - LPs At + tp'.

First we see that this formula is not in q+. For
w"At ALPt=(ipsnt+tp'Ad A1pt=ipsnt+tp'At ntpt=ipsnt+tp'ntALPS (by(a))
=(Lpsnt+w')Atnips=W"ntALP5. So tp"nt$q+; hence W"fq+.

So, since tp' neg-isolates q, there is 6Eq+ with entp" Sq,'. Then
8AtntPs<entntp'ALPt=entntp'n(Pr (by(a)) =en(tn(pr)ntp'=entnipr, the first
inequality and last equality since tp'>entp">OAtnips>en(tnlPr). But entEq+ -
contradiction. a

Exercise 2 The proof above shows that if 'p> ip are such that for every continuous pure-
injective E E Z'(T) one has tp(E) = V(E) (in the terminology of [Zg84], (Lp/tp) is small ),
and if (ip/tp) contains just one point, then there is a minimal pair between ip and tp.

Ziegler proves the results of this section under the assumption that R is countable or that
we are working within an interval which is "small" in this sense. The condition (n) that I work
under (cf. [Zg84; 8.1]) includes the first case but does not entirely encompass the second;
however, the reader should have no difficulty in seeing how to replace the global assumption
"Tc=O" by Ziegler's local one.

From now on in this section we assume that we are working with a theory T which satisfies
condition (A).

Supposing that (ip/tp) isolates a single point N (say), let us consider the interval
Every non-trivial sub-interval also isolates N, so contains a minimal pair, but the example
given after 10.5 warns us that we cannot immediately conclude that dim [ip,tp] < oo. But, in fact,
m-dim (ip/tp) is 0 - in other words the interval ['p,w] has finite length.

Proposition 10.17 (A) Suppose that the open set (ip/tp) contains just one point.
Then the interval [ip,tp] has finite length.

Proof Let 0 be the set of elements, e, of [tp, p] such that [e,tp] has finite length: clearly
0 is +-closed. Let p be maximal with respect to containing ip and avoiding the ideal
generated by 0; p will be consistent unless [T,tp] has finite length and, by 4.33, p is
irreducible. Since I(tp/tp)I = 1, it must be that N(p) = N is the unique point in (gyp/y,). By
condition (A) there is some type q with a minimal pair realised in N. So, by 9.12, p must
contain a minimal pair. We show that this is impossible unless a=0.

Suppose then, that ip'/tp' E p is a minimal pair. Since tp'(p there must be ip" E p+ such
that ,.p" ntp' ,< a for some eE 0; in particular tp" ntp'+tp E 0. Since tp"nip'+w is minimal
above (or equal to) pp" ntp'+tp, it must also be in 0. But ip" nip'+tp E p+ - contradicting the
definition of p. o

Now define the derivatives of T as follows: T(a) = Th((D (N o : CB-rk N > a )). Thus:

T(o) = T; T' = T(O) is obtained from T by removing all isolated points from Z(T) and
"taking the theory " of what remains; and so on. Thus (since the set of points of CB-rank > of is
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a closed set) %(T(u)) = (z(T))(u), where the derivative on the right-hand side is the Cantor-
Bendixson derivate.

In general, we have (9.4) that if the interval [ip,p] is of finite length then the
neighbourhood (ip/y,) contains only finitely many, necessarily isolated, points (no more that
its length). Therefore we obtain the following.

Proposition 10.18 (A) The derivative, T', of the theory T is axiomatised by
T u (i.pHtp : ip/ip has finite length modulo T). Therefore, the lattice of pp-definable
subgroups for T' is just that of T, modulo the congruence 2.

Proof Let T" be T u (ip H tp : ip/V has finite length modulo T ). If N E z(T) has CB-rank at
least 1 then it does not lie in any (ip/4) with '.p/ip of finite length, so N satisfies V. On the
other hand, by condition (A), no isolated point satisfies T". Hence Z(T") = z(T'), as
required. a

If this is extended inductively, one obtains that the u-th derivative of a theory T satisfying
(A) is derived from T by declaring all intervals of m-dimension<u to be trivial (see below).

Let us first define "m-dimension" for the points N of z(T) by: m-dimN = min(m-
dim[ip,w]:ip(N)>up(N))=min (m-dim[ip,up]:NE(ip/tp)). That is, m-dim N is the
minimum dimension of a non-trivial pp-definable interval of At, where the dimension of an
interval is measured relative to T. This turns out to be the same as the CB-rank of Al, as

measured in z(T).

Proposition 10.19 cf. [Zg84; 8.6] (A) If N E z(T) then m-dim N = CB-rk N and
the a-th derivative T(u), of the theory T is axiomatised by
Tu dimip/up <u).
In particular m-dim T = CB-rk z(T) and the lattice of pp-definable subgroups for
T(u) is just that for T, modulo the congruence Pju which collapses all sub-
intervals of dimension strictly less than of. The identification is the natural one,
which sends ip to ip/csu.

Proof The proof that m-dim N=CB-rkN is by induction on a. The case a=0 is immediate
by condition (A) and the definition of the topology. So suppose that the equality holds for points
of z(T) of dimension strictly less than a and also suppose inductively that the p-th
derivatives of T are axiomatised as stated, for p<u. Let T(u) be the a-th derivative of T
and suppose that CB-rkN = u; so N is an isolated point of and hence its CB-rank in
z(T(u)) is zero. Therefore, by condition (A) and the case a=0, N contains a non-trivial
interval of finite length with respect to T(«). Also, the assumption on axiomatisations implies
(consider the congruence W-W T(u) I- ip-* iv) that tp(N) = V(N) modulo T(u) iff
dim [ip, up] < of modulo T. It follows from the definition that m-dim N = a. The correctness of
the axiomatisation of T(u) now follows (by 10.18) o

It is not known whether the first statement follows without hypothesis (A) (cf. [Zg84;
after 8.6 ] ).

Exercise 3 ([Zg84; 8.7]) (A) Show that if 8 is a basis of basic open neighbourhoods of
NEf(T) then m-dimN=min (m-dim[ip,to]: (ip/up)E8).

The first corollary follows from, and generalises, 9.4.

Corollary 10.20 [Zg84; 8.12] (A) Let ip and tp be pp formulas such that m-
dim (ip/p) = of (modulo T). Let n be the length of the interval [ip,ip]/emu (this is
what Ziegler calls the "multiplicity" of (tp/tp) ). Then (tp/up) contains no more than
n points of z(T) of m-dimension u. o
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The next corollary follows from the description of the topology on the space of
indecomposables over a Dedekind domain (cf. §2.2Z, Ex4.7/1; alternatively, see the proof of
10.28 below).

Corollary 10.21 [Gar80a; Thm3] If R is a Dedekind domain and if T" is the
largest complete theory of modules over R then m-dim T*=2. a
Corollary 10.22 [Zg84; 8.1,8.4] Let T be a complete theory of modules over a
countable ring. Then the following conditions are equivalent:
(i) m-dimT<oo;
(ii) CB-rk z(T) < oo;
(iii) Z(T) is countable;
(iv) Iz(T)I<2'ke.

Proof Since there are only countably many pp formulas, (ii)==) (iii) (each point uniquely
determines a pair of formulas which isolates it in the appropriate derivative). Certainly,
(iii)= (iv) and, by 10.15, (i). Since R is countable, 10.15 yields that T satisfies (A),
so 10.19 applies. In particular, CB-rk Z(T) = m-dim T and so (i)=(ii) follows. a

It was left open in [Zg84] whether 10.22(i)<-*(iv) remains true over an uncountable
ring. Hodkinson investigated this problem and, as a by-product of a general construction that he
introduced, he proved a result which shows that the answer depends on one's choice of set theory.
He produced a commutative von Neumann regular ring of cardinality k, whose largest theory of
modules has m-dimension oo but with only 'R, indecomposable (pure-)injectives (it is
perhaps worth observing that also T* satisfies (A)). Thus, whether or not m-dim =oo
implies 2'ko indecomposable pure-injectives, depends on whether or not one takes on board the
continuum hypothesis. Hodkinson's proof is complex and the methods are very different in
character from those used here. So I refer the reader to [Hod85] and [Hod85a] for details.

We have defined the m-dimension of an indecomposable pure-injective to be the minimum
value of m-dim [ip, ip] where N E (Lp/gyp), and we saw that this coincides with the Cantor-
Bendixson rank of Al in Z(T). Similarly, we may define the dimension of a type p by: m-
dimp=min{m-dim[Lp,y,]:Lp/y,E p). We show that this value coincides with m-dim N(p).

Lemma 10.23 [Zg84; 8.7, 8.10] If p E ST is any irreducible type, then m -
dim hl(p) = m-dim p. In particular, if p and q are irreducible types with N(p)
N(q) and if m-dimp < oo, then m-dim p = m-dim q.

Proof Let aEN(p) realise p. Since (4.66) the set of (Lp/tp) with ip/y, E p provide a
neighbourhood basis for N(p), this follows by the exercise after 10.19 (it also follows from
9.9). a

Now we are in a position to prove the promised structure theorem. Let T be a complete
theory of modules with dim T < oo. Let N be any point of Z(T). As in 4.53 and 9.6, let d(N)
be the cardinality of the division ring End#/UEndN. We assign the members of Z(T) to four
sets, according to essentially the same criteria used in §4.6:
N E IL iff CB-rk(N) = 0 and for any (equivalently, by 9.6, every) isolating neighbourhood

(lp/ip) of N, one has Inv(T,ip,W) finite - set K(N)= Inv(T,ip,y,)/d(N);
N E IUF iff CB-rk(N) = 0, d(N) is finite but for any (equivalently every) isolating

neighbourhood (Lp/W) of N, one has Inv(T,Lp,ip) infinite - set K(N)
A/ E IUI iff CB-rk(N) = 0 and d(N) is infinite - set K(N) = 1;
N E U iff CB-rk(N) >0 - set K(N) = 0.

Then we obtain the following generalisation of 4.62/4.63.
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Theorem 10.24 [Zg84; 9.1, 9.2] Let T be any theory of modules with dim T < 00 and
let Z(T) be partitioned as above. Then the pure-injective models of T are
precisely the modules of the form pi (®i Ni(Kt)) where:
Ki = K(N1) if N E IL;
Ki >_ 'JZ, if AV E IUF;

Ki 1 if !V EIUI;
Ki0 if NEU.
In particular, there is a prime-pure-injective module M. which is given by setting
the Ki to have their minimal admissible values, K(4/1).

Proof The proof is directly analogous to that of 4.61. First, it is clear, using 9.3, that Mo is
a direct summand of a model.

Suppose that Inv(T,ip,yi) is finite. Then the interval [ip,V] is of finite length, so we may
reduce to the case of a minimal pair ip/gyp. Then the open set (ip/W) contains a single point N
and, by definition of K(Y), one has Inv(NK(M), ip, IV) = Inv(T, ip, ip) (it was noted above that
the definition was independent of the minimal pair chosen). Then, since (ip/tp) isolates Al, it
follows that Inv(M0,ip,yi)= Inv(T,ip,V).

Suppose, on the other hand, that Inv(T,tp,y,) is infinite. If the interval [ip,y,] is of
infinite length then it contains an infinite sub-chain, each gap of which must contain a minimal
pair. Either (ip/y,) contains infinitely many points or else contains an indecomposable which
itself has its lattice of pp-definable subgroups of infinite length - in either case Inv(M0,ip,y,)
is infinite. If, on the other hand, the interval [ip,ip] is of finite length, then every point in
(ip/ip) must be isolated and so the fact that Inv(T,Lp, p) is infinite means, by definition of the
K(/V), that also Inv(Mo,&p, p) is infinite, as required. o

The prime model of an arbitrary theory (if it exists) realises exactly the isolated types.
One sees that the prime pure-injective model above realises precisely the irreducible types
with minimal pairs. Also, by 9.11, every type realised in Mo has a minimal pair.

Even without assuming (A), one may say the following ([Zg84; 9.3]).
(i) The indecomposable pure-injective Al is a summand of every discrete pure-injective

model of T iff CB-rk N = 0.
(ii) The indecomposable pure-injective N is a summand of every pure-injective model of T

iff Al contains a T-minimal pair.
The first equivalence is immediate by 4.68: and the direction ' ' of the second follows
from 10.1 and 9.3. As for (ii)i; clearly N must be isolated so, by the exercise after
10.16, it will be enough to show that Al has an isolating neighbourhood of the form (LP/I,)
where Lp/ip is "small" in the sense discussed after 10.16. But if there were no such
neighbourhood, then clearly Al could be replaced by a direct sum of continuous pure-
injectives in b'(T) - contrary to hypothesis.

Exercise 4 Use the above to prove that if the countable theory of modules T is not i,-
categorical, then it has infinitely many non-isomorphic countable models (6.32).

10.5 KruII dimension

Analysing the lattice of pp-definable subgroups in terms of m-dimension proved to be of
value to us in developing a structure theory for discrete pure-injectives. We also found that the
property of having breadth was relevant to the non-existence of continuous pure-injectives.
There are a couple of other measures of the complexity of a poset or modular lattice which are
probably more familiar than m-dimension and breadth. These other measures share a feature:
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they have a "direction" (so their values on a lattice do not, in general, coincide with their values
on the opposite lattice).

The first such measure which I consider is Krull dimension in the sense of Gabriel and
Rentschler. The second measure, considered in §6, is the "height" of a lattice. I will, also in §6,
define a 2-valued rank (following Garavaglia) which will give us the Krull dimension, but which
is finer and will allow us to encompass classical Krull dimension and a rank introduced by
P i l l ay.

Krull dimension The Krull dimension of a modular lattice (or even of a poset) was introduced
in [R067] as a means of generalising the classical notion of Krull dimension for commutative
noetherian rings. Rather than being defined in terms of the prime ideals of the ring, the
definition of their dimension makes sense for any module (indeed, for any modular lattice) and is
in terms of the lattice of all submodules. It turns out that, for commutative noetherian rings,
this dimension coincides with the "classical Krull dimension" of the poset of prime ideals (see
[GR73; §9]). This and related notions have become important tools in non-commutative ring
theory.

Garavaglia [Gar80a] had the idea of using the Krull dimension of the lattice of pp-definable
subgroups as a measure of the complexity of a theory of modules. He showed that when this
dimension is defined (less than "oo") every pure-injective model is discrete. This work of
Garavaglia was a major inspiration for the work of Ziegler described in this chapter.

Now, we will see (after 10.27) that a modular lattice has Krull dimension iff it has m-
dimension in the sense of §10.2: there are, however, a number of places where Krull dimension
is a more natural measure than m-dimension. The way in which I define Krull dimension is not
the usual one as seen, for example, in the monograph of Gordon and Robson [GR73] but rather is
more in the spirit of §10.2. The idea is that a lattice with the dcc has Krull dimension 0; that a
lattice has Krull dimension 1 if it does not have the dcc but, "when intervals with dcc are
ignored" does have the dcc; and so on.

Therefore, let D be the class of all modular lattices with the dcc and let Kdim (for Krull
dimension) be the corresponding notion of dimension as defined in §10.2. Thus, to measure the
Krull dimension of a lattice L one forms the congruence "." generated by all those sub-
intervals of L which have the dcc - observe that, by 10.3, a > b in L are identified under this
congruence iff [avb,anb] has the dcc. If L'=L/- is trivial then KdimL=0. If not, then
apply the same process to L'; and so on. Recall what one does at limit ordinals v one defines
L^A to be L modulo the union of the - for a <-A: then 0A = L l-' (in particular, L" cannot
be trivial without L« being so for some z<), assuming that L has a 1 and 0). Then one sets
Kdim L = a if a is the least ordinal such that La+1 is trivial. One may check that this does
give the same notion as in [GR73] and [RG67] and gives the same value, modulo quibbles at
limit ordinals (cf. [OR74]): the details of this are left as an exercise for the reader. The
quibbles at limit ordinals are there because there is a choice of what to do at a limit stage: one
may merely take the union of the congruences generated so far, or one may do this and then apply
the derivative immediately.

If T is any complete theory of modules then by EKdim T is meant the Krull dimension of
the lattice of pp-definable subgroups of any model of T. Ziegler uses "Kdim" but, since on
occasion I will want to refer to the Krull dimension, Kdim M, of the lattice of all submodules of
some module M, I will follow Garavaglia and use EKdimM instead (for elementary Krull
dimension).

Proposition 10.25 [Gar80a; §2] Let T be any complete theory of modules.
(a) T is totally transcendental iff EKdim T = 0.
(b) If T is superstable then EKdim T = 1. 13
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Part (a) is obvious from 3.1, and part (b) also follows immediately from that result, on
noting that a "finite index" interval certainly has the dcc. The converse of (b) is of course false
since, for any theory T, T and T o have isomorphic lattices of pp-definable subgroups but,
if T is superstable and not totally transcendental, then Two is not superstable.

Garavaglia also showed that if T* is the largest theory of abelian groups then Kdim T* = 2
(cf. 10.28 below). In fact the same is true for the largest theory of modules over the very
similar ring K[X] (K a field) and, indeed, over any commutative Dedekind domain. More
generally, Ziegler showed that if R is commutative noetherian with every localisation a field or
a discrete rank 1 valuation domain, then T* has elementary Krull dimension ([Zg84; 8.2]).

There is little relation between the algebraic Krull dimension of a ring (which is the largest
possible Krull dimension of a finitely generated module over that ring [GR73], so equals
Kdim(RR)) and the Krull dimension of the largest theory of modules. This may be seen by
comparing these dimensions for K[X] and K[X,Y], where K is a field. The algebraic
dimensions are respectively 1 and 2; the model-theoretic dimensions are respectively 2 and
00. Of course we are not really comparing like with like: a better comparison would be the
algebraic Krull dimension with the elementary Krull dimension of the largest theory of
injective modules (to appreciate this, consider Gabriel dimension or quantifier-elimination - cf.
10.32 below) - and here we do find broad agreement. Another valid comparison would be
between the algebraic Krull dimension of the functor category (mod-R,Ab) and the elementary
Krull dimension of T*(R).

Let me also take the opportunity here to compare Krull dimension and m-dimension. The
lemma which follows is obvious, since the congruence used to define Krull dimension is
generated by the intervals with dcc, and these include the simple intervals (which generate the
congruence used to define m-dimension).

Lemma 10.26 Let T be any complete theory of modules. Then EKdim T < m-dim T. n

One feature which separates Krull dimension from m-dimension is that the former has a
"direction" in the sense that, in general, a lattice and its opposite do not have the same Krull
dimension (consider any lattice with the acc but without the dcc); whereas it should be clear,
from the definition, that a lattice and its opposite have the same m-dimension.

One may ask what relation there is between the dimension and the Krull dimension of a
lattice. As already noted, one always has Kdim L < m-dim L; in general one can say little else -
for an ordinal, considered as a lattice, has Krull dimension zero but may have arbitrarily high
m-dimension. On the other hand, one has the following (the proof is by induction since, if L has
the acc, then a sub-interval has the dcc iff it has finite length).

Lemma 10.27 If the lattice L has the acc then m-dim L = Kdim L. a

Consider the following example. Let L be the chain consisting of elements ai j (i, j E 00)

with the ordering given by: ai j < ai+1,k and ai j > ai j+1: then add a top and bottom element.
Thus L consists of an infinite ascending chain where each "gap" is filled by an infinite
descending chain; so L has neither the acc, nor the dcc. One easily checks that: Kdim L =1;
KdimL°P=1 and m-dimL=2.

The interested reader may work out the precise relationship between Kdim L, Kdim L°p and
dim L.

Although the dimensions grow at different rates, m-dimension and Krull dimension are co-
extensive in the sense that, for any modular lattice L, one has Kdim L < oo iff m-dim L < oo. The

direction ",# " is immediate, by 10.26). For the other direction, one need only note, for
example, that if Kdim L < oo then L can contain no densely ordered subset (exercise) and so, by
10.6, m-dim L < oo.
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If R is a Dedekind domain (such as 2 or K[X]) then the elementary Krull dimension of
the theory of R-modules is 2. This was shown by Garavaglia. The proof is left as an exercise
(one should find a suitable chain of pp formulas).

Theorem 10.28 [Gar80a; Thm3], (also of. [Zg84; 8.2]) Suppose that R is a
Dedekind domain which is not a field and let T* be the largest theory of R-modules.
Then m-dim T* = EKdim T* = 2. o

The next result is immediate from the description of the pp-definable subgroups of an
injective module given in 15.40 (for the definition of E-closed and the results used, see §15.1).
Observe that we do not need to assume that the injective is coherent (has elimination of
quantifiers) but only that the theory has an injective model - for each model displays the full
complexity of the lattice of pp-definable subgroups, even if it does not realise every pp-type.

Proposition 10.29 Let E be an injective module and let T be its complete theory.
Then the elementary Krull dimension of T equals the Krull dimension of the
opposite of the lattice consisting of the E-closures of those right ideals which are
pp-definable as subgroups of RR. o
Corollary 10.30 Let E be a coherent injective module (e.g., suppose that R is
right coherent and let E be any injective) and let T be its complete theory. Then
EKdim T = Kdim (LattE-fg(R))°P where LattE-fg(R) is the lattice of all E-finitely
generated E-closed right ideals of R.

In particular, if R is right coherent, then the largest theory of injective R-
modules Tinj has elementary Krull dimension equal to the Krull dimension of the
opposite of the lattice of finitely generated right ideals of R. 0
Corollary 10.31 [Gar80a; Thm 5] Suppose that the ring R has Krull dimension and
let E be any injective R-module. Then EKdim E exists and is bounded above by
KdimLattf(R)°P. Hence E has a decomposition as the injective hull of a direct sum
of indecomposable injectives (a result due to Gabriel [Gab62; p386, Thm 1]. In fact
(1.12), the same conclusion holds under weaker conditions). a

If R is right noetherian, it follows that every injective module is U. (has EKdim 0) and it
makes sense to consider the finer measure m-dimension. By 10.27 one obtains the following.

Corollary 10.32 Let E be a 1-injective (=t.t.+injective) module (for example,
suppose that R is right noetherian and that E is any injective module). Then m-
dim E = Kdim LattE-fg(R), where LattE-fg(R) is the lattice of E-closed right ideals
of R (they are all E-finitely generated since E is F-injective). 0
Corollary 10.33 If the ring R is noetherian then the largest theory Tinj of

injective modules satisfies m-dim Tinj = Kdim RR. 0

The classical Krull dimension, clKdim P, of a prime ideal P of the ring R is the
foundation rank of P in the set, specR, of all prime ideals of R, ordered by reverse
inclusion. The classical Krull dimension of the ring is defined to be
clKdim R = sup( clKdim P : P E specR). If R is commutative then its classical Krull dimension
exists [GR73; §8]. This generalises the original definition of Krull dimension (as given in e.g.
[Kap70]) and, insofar as the latter exists, coincides with it: Gordon and Robson show that for a
commutative ring R one has clKdim R = Kdim R [GR73; 8.12]. Furthermore, by 10.32, we
have Kdim Tinj = Kdim R. Therefore we obtain the following corollary (if the prime P is non-
minimal then work over RIP).
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Corollary 10.34 Suppose that R is a commutative noetherian ring and let P be a
prime ideal of R. Then the (classical) Krull dimension of P is equal to the m-
dimension of the theory of injective R/P-modules. As a theory of R-modules, this
is obtained as Th((D { E(R/Q)'o : Q is a prime with Q>P )).

It follows that clKdim R = m-dim Tinj, where Tinj is the largest theory of
injective R-modules. n

Now we turn to commutative regular rings. This material overlaps with that in §16.2, but
the approach here is different. A regular ring has Krull dimension iff it is semisimple artinian.
It is, however, possible for the lattice of all (right) ideals to fail to have Krull dimension, while
the lattice of all finitely generated right ideals has Kdim <oo. In fact, we will now see that this
latter is the case for a commutative regular ring iff the CB-rank of the space of indecomposables
(i.e. of SpecR - see §16.2) is defined. First, we need the fact that if R is a commutative
regular ring then every complete theory of R-modules satisfies the condition (A) (see 16.24).

Therefore 10.19 applies and we deduce the following.

Theorem 10.35 [Gar8Oa; Thm 4] (cf. 16.25) Suppose that R is a commutative
regular ring and let T* be the largest theory o_f R-modules. Then:
CB-rk SpecR = m-dim T* = EKdim T* = Kdim (Lattt(R))op.

Proof The first equality is 10.19, using condition (A), and the third is by 10.30. So it
remains to show that m-dimension and Krull dimension coincide. That is, it must be shown that
an interval in the lattice of finitely generated right ideals which has the dcc must actually be of
finite length. But that follows easily from 16.B. a

Here are some further examples, due to Garavaglia, of modules with elementary Krull
dimension. The first result follows since, in a module over a commutative ring, every pp-
definable subgroup is a submodule. The second then follows since every projective module is a
direct summand of a free module (a module of the form R(K)).

Proposition 10.36 [Gar80a; 4.c] Suppose that R is a commutative ring and let M
be any R-module with Krull dimension. Then EKdim M -< Kdim M. a

Corollary 10.37 [GareOa; 4.d] Suppose that R is a commutative ring with Krull
dimension. Let P be any projective module. Then EKdim P < Kdim R < ao. a

This also follows from 14.14.

Proposition 10.38 [Gar8oa; Lemma7] Let M be any module. Let I be any set and
take F to be any filter on 1. Then M has elementary Krull dimension iff M1/F
has, and then their dimensions are equal. a

The last corollary follows since (Exercise 2.3/4) pp formulas commute with reduced
products.

10.T Teq

Now I say something about Teq. The language for Teq is that of T, expanded by new sorts,
one for each definable equivalence relation on n-tuples. The elements of the sort corresponding
to a given definable equivalence relation are to be thought of as equivalence classes for the
relation. Also, to the language is added a function symbol, fE, for each definable equivalence
relation E: this function takes each n-tuple to its equivalence class mod E. For the complete
definition, and discussion of the relation of Teq to T, see, for example, [Mak84], [Poi85;
§16.d]. The point is that properties such as stability, categoricity, complexity of models, ... are
not changed in going from T to Teq, but in Teq discussion of many aspects becomes
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simplified. For instance, n-tuples of elements are just elements of a certain sort in Teq. In the
modules case, morphisms from a given finitely presented module to the model are just elements
of one of the new sorts, as are the elements of quotients ip(M)/ .p(M) of pp-definable subgroups
(cf. end of §15.4; problem: clarify the relationship between Teq and the classifying topos).

Here, we will be interested in sorts of the following kind. If lp is a pp formula, then there
is a sort for cosets of W (corresponding to the equivalence relation whose classes are the cosets
of gyp).

I will not give detailed proofs of the assertions that I make concerning this but, rather,
indicate how this ties in with material that has been discussed elsewhere in the notes.

I will assume, for convenience, that T=To.
Let W be a pp formula and let p be a type over 0 with pE p-. Then there is a

corresponding complete type of cosets of y,: I will denote this type by [p/ip](w). It says: "I

am (a coset of p) not equal to yi itself; for each TE p+ I intersect the subgroup ip non-
trivially and for each ip'>ip with y,' E p-, I am not contained in the subgroup q,'
(equivalently, I have trivial intersection with ip' - this can be said by "there is no element a
with V'(a) and "f aEw")". This does specify a complete type which (see below) is non-
orthogonal to p.

We will see that types with minimal pairs thus "become" regular types in Teq. Perhaps
this gives some explanation of the importance of the property of having a minimal pair. It also
means that §4.6 and §10.4 are even closer than one might have imagined.

I give a couple of examples to indicate what can happen in Teq.

Example 1 T=Th(7l4The possible U-ranks of elements are 0, 1 and 2. Let p be the pp
formula which defines the group of elements of order 2 and let p be the type of an element of
order 4. So UR(p) = 2. Recall why this is so. Fix a model M: then p has a forking extension
to M which is the type of an element of the form m+ a where m is an element of M of order
4 and a is an element of order 2 which is not in M. Consider the type of [p/1p]: this is the
type of a coset of the set of elements of order 2 and, from this point of view, the element m+a
is algebraic, since it is in M+M2. Thus one sees that UR([p/W]) = 1. Note that p is non-
orthogonal to [p/tip]: clearly one increases in a model iff the other does.

In the same way, one sees that every type of the theory of 22'k, ®7l4' a is non-orthogonal
to a type of U-rank 1 (this illustrates a result of Lascar [Las84]), provided one works in Teq
(it is simply not true if one confines oneself to "elements" in the usual sense).

Example 2 T =Th(7l(p)o). The same kind of argument applies. One may consider, for
example, the type of a coset of Mp3 which "lies in" Mpg. Any forking extension of this type is
algebraic, so it has U-rank 1. Thus we see that, although this theory is not superstable,
nevertheless, every type is non-orthogonal, in Teq, to a type with U-rank (=1).
Example 3 T = Th(7lpoo). Consider the type, p, of a non-zero element of Q. Since this type
does not contain a minimal pair, fixing a coset of some formula in p- does not allow us to drop
the U-rank to 1. One sees, therefore, that p is not RK-equivalent to a type of U-rank 1.

A type [p/ip](w) forks if a formula is added which makes the difference between "w" and
some named coset of i have non-empty intersection with some "W'/LP" in [p/1,]-.

Using this, one sees that [p/W] is RK-equivalent (in particular, is non-orthogonal) to p
(consider M ® N(p)). The argument for regularity of types (6.23) applies as well in this more
general situation, and we deduce that [p/W] is regular iff there is no type q realised in V(p)
with qp+ and 41Eq-: that is, [p/gyp] is regular iff p is maximal in N(p) such that

V(P.
Proposition 10.39 If p is an irreducible type over 0 and LpEp- then [p/.p] is
regular iff p is maximal among those types realised in N(p) which omit v;
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this is the case iff p, (or, rather, its pre-image in Th(N(p))) is neg-isolated by w
in Th(N(p)). o
Hence:

Theorem 10.40 An irreducible type p is RK-equivalent to a regular type in Teq

iff p is related to a neg-isolated type hence, by 9.24, iff p is neg-isolated, in
Th(,V(p)). o

As a corollary (by 9.25 and 9.3):

Corollary 10.40a If m-dim T < oo then every irreducible type is RK-equivalent to a
regular type in Teq. o

Therefore, the analysis of §10.4 was based on removing successive layers of orthogonality
classes of T-critical types.

Of course, if there are continuous pure-injectives (for example, if w(T)=00 and R is
countable) then it is not even true that types of weight one suffice to classify the pure-injective
models.

In the gap between m-dim T=oo and w(T)=oo it appears to be that it may or may not be
the case, for a particular example, that regular types in Teq suffice. For instance, it appears
that certain algebras of tame but non-domestic representation type (see Chapter 13) provide
examples where every indecomposable pure-injective realises a neg-isolated type and so there
are enough regular types in Teq to classify the models, but m-dim T'= oo.

For an example where there are not enough regular types in Teq, take R to be a complete
valuation domain with infinitely generated maximal ideal. Then the finitely generated ideals
form a densely ordered chain and R is an indecomposable pure-injective (see §10.V). If a is a
non-zero element of R, then the type of a is not neg-isolated (by 9.12, since this is true of the
element 1). So regular types in T* do not suffice, yet (10.V3) w(T) < oo.

10.6 Dimension and height

height Given a lattice L and an element a of it, the height of a is defined to be its
foundation rank. Dually, the depth of a, dp(a), is the height of a(0p) in L°p.

For example, if L is an ordinal considered as a poset, then the height of an element is just
itself. If R is a commutative noetherian ring and if spec is its set of prime ideals, ordered by
inclusion, then the depth of a prime is just its Krull dimension in the classical sense. Chapter 5
contains many special cases of height (U-rank, pp-rank,..).

The relation between Krull dimension and height Suppose that the lattice L has the

acc: so each point a has associated to it the Krull dimension, Kdim [1L, a] = m-dim [1L, a], and
its depth. The basic result is the following (also cf. [Bas7l], [0u173], [Kr73], [Rh74],
[GZ86]).

Proposition 10.41 [GR73; 10.2] Let L be a modular lattice with the ascending chain
condition and let a be an element of L. Set a = Kdim [1L, a] = m-dim [1L, a]. Then:
wa _< dp(a) < wa+1

Proof The proof is by induction on a. In the case a=0, the interval [1, a] has the dcc and
hence has finite length, as required.

Suppose that the result is true for intervals of m-dimension strictly less than a. Let
be the congruence which collapses all intervals of m-dimension strictly less than a: so the
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assumption is that, in the quotient lattice L/c, is of finite length. Suppose that
1=b0/ >b1/pi >...>bn/M=a/;u with each gap simple, biEL and bi>bi+1 for each i.

Then, in the interval [bi,bi+1] in L, each element is to either bi or
bi+1. Take (by acc) c in [bi,bi+1] maximal such that Then, if bi>d>c, one has
bird and so, by the induction hypothesis, the depth ofd in this interval satisfies
wp S d <wp+1 for some p<a. So, by definition of depth, the depth of c in [bi,bi+1] is
<wa+1 (also, by an obvious induction, it is at least wa). Hence, using the induction
hypothesis, the depth of bi in [bi,bi+1] satisfies the inequality in the statement of the
result.

So, by additivity of depth (cf. 10.43), the result follows. a

Corollary 10.42 [Gar80a; Thm7] Let T be a totally transcendental theory of
modules and let ip be a pp formula. Then:
wm-dim(tp) 5 pp-rk(Lp) < wm-dim(Lp)+1 G

Suppose that the lattice L has Krull dimension (the example that we have in mind is the
lattice of pp-definable subgroups). To each member a of L we assign a pair of ordinals. The
first is the Krull dimension of the interval [a,0] and the second is the foundation rank of the
equivalence class of a in the well-founded lattice [a,0]/, where is the congruence which
collapses intervals of Krull dimension strictly less than the Krull dimension of [a,o].
Notationally, we will simplify by writing Krk(a) = (a,p) = (K(a),rkK(a)(a)).

This definition has more than one source. It was defined by Garavaglia in the first version
of his paper [Gar808] on elementary Krull dimension. The specific result for which it was
introduced was superceded in the second version, so this OrdxOrd-valued rank makes no
appearance in the latter. Essentially the same idea is well-known in the study of Krull
dimension as a ring-theoretic tool (see, e.g., [GR73]). There is a notion there, termed "a-
critical", which is really just our "a-regular" below. For the special case of Krull dimension
zero (i.e. totally transcendental theories) Pillay ([P184]) introduced a rank closely linked to
rk0. Work of Lascar ([Las84]) on the relation between the U-rank and regularity of a type is
influential here. Finally there are analogous ideas of Berline and Lascar in [Be82], [BeLa86].

The definition is extended to types by setting Krk(p) = min (Krk(pp) : tpE p + ) - since Krk
takes values in the lexicograhic product of two ordinals, this minimum does exist. Note that
Krk(p)=Krk(Lp) for some pE p+.

The point of introducing this rank is that it allows a finer analysis of types - one which
parallels the use of U-rank in theories which are superstable. It should be clear that if we are
dealing with a theory T satisfying T=T'o, then a type p satisfies Krk(p) = (0,p) iff p is
a type having U-rank and with U-rank equal to p. I make the following tentative definitions.

First we define Krk for sub-intervals of L in the obvious way; if [a,b] is a sub-
interval of L then we define Krk(a/b) to be Krk[a b](a).

Suppose that q is an extension of the type p where K(p) = a. Say that q is an a-
forking extension of p if either K(q) < a or K(q) = K(p) and rka(q) < rkk(p). In
particular then, an a-forking extension of a type is a forking extension, but the converse is in
general false. The idea is that we ignore "small amounts" of forking.

For example, let T be the theory of Z(p)1k and let p be a type with G(p) = M: so
Krk(p) = (1,1). Let q be any forking extension of p with M/G(q) p-torsion. Then q is not
a 1-forking extension of p, because q does not have U-rank (observe that Krk cannot take
values of the form (a,0) with a> 1). If q is a non-algebraic 1-forking extension of p then
the hull of the unlimited part of q is 0.
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This definition having been made, one is tempted to make some others. In particular, we
may say that a type p is a-regular if K(p) = a and if p is orthogonal to each of its a-
forking extensions.

Again let T be the theory of 7l(p) and let p be any type with hull 2(p). Then p is
not regular - indeed the hull of p has no minimal pp-definable subgroup, so p is not even
related to a regular type. On the other hand p is 1-regular. An example of a type which is not
regular in this sense is tp(1) in 7140.

The next result is in the first version of [Gar80a] (the case a=0 survives as Lemmas 12
and 13 in [Gar80a]) and follows since rka is foundation rank in the lattice of pp formulas
modulo .a. The case a=0 is just Lascar's inequalities [Las76; §5] (see [Pi83] or
[Poi85]) for the case of modules (by 5.12). To see that the left-hand inequality should not be
equality, consider the lattice of pp-definable subgroups of 71200 ®712, take a to be v=v, b to
be v2 = 0 and c to be v= 0.

Proposition 10.43 For any a >_ b >_ c in the modular lattice L such that K(a) = a
one has: rka(b/c) + rka(a/b) 5 rka(a/c) S rka(b/c) ® rka(a/b) (here, "+"
denotes ordinal addition and "®" denotes natural sum of ordinals - see, e.g., [Poi85;
§19.b]). o

For totally transcendental theories of modules the definition of Krk allows us to connect and
unify various of these ranks, including that of Pillay defined below. But the main point of
introducing this 2-rank is that it gives a good generalisation of U-rank to non-superstable
theories (of modules, but the question is how far can one take this in the general case - is
modularity of the fundamental order enough?). For, although outside the superstable case one
cannot expect to find enough regular types (at least in T) to classify the sufficiently saturated
modules, one may ask when there are enough weight one types to do the job. The effectiveness of
concentrating on types of weight one rather than on regular types is well -illustrated in
Ziegler's paper [Zg84].

Pillay's rank In [Pi84], Pillay introduced a rank which provides a "layering" of
orthogonality classes of regular types in non-multidimensional w-stable theories. In
particular, his results apply to modules. I describe briefly what he does, and then compare this
notion of "rank" to those which we have considered already.

The ubiquituous theory is supposed at this stage only to be complete and stable. Let I be a
set of formulas and let ip be a formula. Then ip is `Y-algebraic if whenever M <<p N one has

M<LPN. The notation M<TW means that no formula increases between M and N: that
is, if ipEIF then p(M) = V(N). So ip is 'P-algebraic iff it cannot increase between two
models without some formula in `Y increasing. For example, 0-algebraic is just "algebraic" in
the usual sense.

Say that ip is 'P-minimal if it is not IF-algebraic and, whenever M<kN, if
a,b E T(N)\M then tp(a/M) = tp(b/M). Thus 0-minimal is just strongly minimal.

Pillay shows that if such Lp and IF are with parameters in A then there is some
stationary type p over ff such that, whenever k M <,k N and a E ip(N)\M, one has that the
type of a over M is the non-forking extension of p to M. Moreover, (p,T) is strongly
regular.

Specialising now to the case of T non-multidimensional w-stable, he defines a process
rather like that seen in §10.4. He works over the prime model, Mo, for convenience. Let To
be a maximal set of inequivalent 0-minimal formulas over Mo (the equivalence relation is "Lp,
is IF U (Lp2)-algebraic" - it is shown that this is an equivalence). Then let `P, be a maximal set
of inequivalent `Yo-minimal formulas over Mo. And so on (through the ordinals). To each
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formula in `L there corresponds a strongly regular type as described above. Pillay shows that
all orthogonality classes of regular types are reached in this way (and the layering is
independent of choices made). The rank of (the orthogonality class of) a regular type is defined
to be the ordinal a such that the type is non-orthogonal to the type corresponding to a formula
in `Y«. The rank of T is defined to be the maximum a such that 'P is non-empty.

Specialising to modules, one may see that negations of pp formulas do not contribute to the
property of'-minimality, so the formulas involved in the above may be taken to be pp. Thus,
the orthogonality classes of rank 0 are those containing what I called a T-critical type (in §4.6).
The rank 1 classes are those which are T1-critical, where T, is the "derivative" of T which is
obtained by removing all the points of Z(T) which realise a T-critical type (note that all these
are isolated). And so on.

The example 712, e 714 , shows that this does not coincide with the derivative T' of
§10.4, for 'Y0 contains only the orthogonality class of 714; so the rank of T is 1. Pillay then
observes that in Teq the rank of this example is 0, which is in accord with the rank in §10.4.
Indeed, it seems that, as with Lascar's results on regular types and U-rank, one should work in
Teq to obtain "nice" results.

Pillay defines the derivative implicit in his rank: the "CB-rank" on the (unlimited)
indecomposables which I described above (i.e, remove only T-criticals at each stage, rather than
removing all isolated points), and then shows that the rank of a type in his sense does correspond
to the "CB-rank" (in the sense just described) of its hull.

It does seem more reasonable to work in Teq where this derivative is precisely the CB-
derivative on Z(T), for then Pillay's rank exactly corresponds with the CB-rank. By the
results of §10.4 and 10.41, one sees that the rank, in Pillay's sense, of a regular type p is
exactly that « such that w« 5 UR(p) < wa+1 - i.e., that a such that p is non-orthogonal to
a type in Teq of U-rank w«.

In Pillay's paper the above equality was left as an open question: an answer was given by
Baudisch [Bd8?], who gave a sufficient condition (one satisfied by modules) on a non-
multidimensional w-stable theory for Pillay's rank to equal Lascar's "a" above (the condition
concerns the relation between Morley rank and U-rank in Teq). Certainly some condition on the
theory is necessary: Pillay provides [Pi84] an example of a non-multidimensional w-stable
theory for which, even in Teq, his rank and the rank "«" as above, are different.

10.U Valuation rings

A valuation ring is a commutative ring whose ideals are linearly ordered: it follows that
every finitely generated ideal is principal. Such a ring has a unique maximal ideal, which will
always be denoted by P. We shall be concerned with valuation domains (i.e. valuation rings
without zero-divisors). If R is a valuation domain then it has a field of fractions Q: the R-
submodules of Q are linearly ordered and are called fractional ideals of R (so these include
the ideals of R and, note, I include, for convenience, Q among the fractional ideals). The
reader may consult [End72], for example, for more about valuation domains, including the way
in which they arise: for valuation rings in general, consult [FS85] (especially see Chpt XI, on
pure-injective modules). Ziegler [Zg84; §5] classified the indecomposable pure-injectives
over a valuation domain and showed that there are no continuous pure-injectives (this extends
results of Kaplansky and Warfield). The classification over discrete rank 1 valuation domains
was given in §2.71. The general classification will be described in this section. These rings also
provide us with useful (counter-)examples.
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A valuation domain is discrete rank 1 if its ideals are exactly R > P > P2 > ... > P77 > ... 0.

These are the only noetherian valuation domains. (Often these valuation domains are called just
"discrete", but there is a more general notion of discrete valuation domain, see [FS85; §1.2]).

Given any field K and totally ordered abelian group T, there is a valuation domain R with
residue class field (i.e., RIP) K and value group (Krull, see [FS85; 1.3.4]) r: then
the principal ideals of R correspond bijectively to the positive elements of T.

An embedding R ) S of valuation domains is an immediate extension if the obvious
maps between the respective lattices of ideals (I'--> IS and I'r-4I'nR) are inverse
bijections (so the value groups are isomorphic) and if the inclusion induces an isomorphism
between the respective residue class fields: RIP S/PS. If R ) S is an immediate
extension and if I is an ideal of R then I is finitely generated iff IS is so ([FS85;
Exercise 1.1.5]). The valuation domain R is maximal if it has no proper immediate extension:
this is so iff R is complete in the topology which has as a neighbourhood base at 0 all the
ideals. In particular, a maximal valuation domain is pure-injective. The most familiar example
is the p-adic integers 7l(p). Every valuation domain has an immediate extension which is
maximal. Much of this can be extended to valuation rings (see [FS85]).

Lemma V1 [Zg84; §5] Suppose that R is a valuation domain. Then the pp-
definable subgroups of R are just the principal (=finitely generated) ideals.

Proof The direction "p" is clear. The other direction depends on Warfield's characterisation
of the finitely presented modules as the direct summands of direct sums of cyclic modules
[War70; Thm 3]. For then, any matrix over R is equivalent to a "diagonal" one (see [FS85;
Exercise 11.3.8]), and the proof of 2.711 applies (I leave the details, and the details of the
corollary which follows, as an exercise). o

Theorem V2 [Zg84; after 5.1] (also see [War69; CorS]) Suppose that R is a
valuation domain. Then every pp formula in one free variable is equivalent, in every
R-module, to a conjunction of formulas of the kind: tPr s(v) __ 3w (us=wr).
Moreover, there are no implications between these formulas beyond the obvious ones.
In particular, the largest theory of R-modules has m-dimension less than "oo" iff
the lattice of finitely generated ideals contains no densely ordered subset. o

For m-dimension, see §10.2. What Warfield shows is that if R is a Prufer domain, then
purity is equivalent to the (in general weaker) RD-purity ("relative divisibility"). A module M
is RD-pure in the module N if Mr = Nr n M, for each element rE R.

By V2 the pp-type of an element says (i) what the annihilator is, and (ii) to what extent
the element and its multiples are divisible. It follows (exercise: cf. proof of 2.713) that the
indecomposable pure-injectives are obtained from the pairs I> I' of fractional ideals via the
corresponding pp-type, p(v), which says "annu = I'; every element of I divides v; us is
divisible by r only if rE Is". From this we get the following description of the
indecomposable pure-injectives ([War69; §6] contains partial results).

Theorem V3 [Zg84; Remark after 5.1, Example(i) after 7.3] Let R be a valuation
domain, with quotient field Q. Then the indecomposable pure-injectives are the
modules of the form A%8, where A>8 are fractional ideals (with the possibility
that A is Q). One has R/BBC//D iff there is xEQ\(0) with C=xA and D=xB.
Furthermore, there are no continuous pure-injectives (indeed, the width, in Ziegler's
sense, of the largest theory of R-modules is 2).

Proof The last statement follows (with a bit of work) from the description of the pp formulas
in V2 and the description of width (and breadth) in §10.2 (going from a discrete rank 1 to a
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general valuation domain replaces the congruence which collapses two-point intervals with that
which collapses intervals which are chains). The details are left to the reader. o

Exercise 1 Describe the topology on the space of indecomposables.

Together with 2.718, this gives the complete list of indecomposable pure-injectives over a
PrUfer domain ([War69; §6] has partial results).

Facchini [Fac8?; 5.9, 6.9, 6.4] extends, by different techniques, Ziegler's result to Prufer
rings (i.e., the ring is not assumed to be a domain). Also, Monari-Martinez [M-M84] re-
derives the first part of V3 using purely algebraic arguments.

There is a detailed discussion in [FS85; ChptXl] of pure-injective modules over valuation
domains (and, more generally, over valuation rings), especially in terms of height functions.

Example 1 Suppose that R is any valuation domain (not a field) and consider the theory of R
(or R"*o if P is finitely generated and the residue field RIP of R is finite). By V1 and V3,
the members of Z(R) are the isomorphism classes of fractional ideals of R (for every model
is torsionfree and R'o = R (D I for every fractional ideal 1). We always have in Z(R);
necessarily not isomorphic to R is its quotient field Q (the hull of the unique type of U-rank
1). If the maximal ideal P is infinitely generated then we obtain P as a third member of
Z(R). Since every fractional ideal I other than Q is R-isomorphic to an ideal of R

(exercise: consider a non-zero element of { rER : r-i I )) the members of Z(T) may be
characterised as the isomorphism classes of ideals, together with Q.
Example 2 [Zg84; Example after 9.3] The valuation domain R is archimedean if P is the
only non-zero prime ideal of R; equivalently, if nn Pn =0. An equivalent condition is that the
poset of non-zero finitely generated ideals of R be order-isomorphic to the positive elements of
an additive subgroup (the value group) of the reals (any additive subgroup of the reals can be
realised). In such a ring, the maximal ideal is finitely generated iff the ring is discrete rank 1.

Suppose that R is archimedean. Then every non-zero ideal of R is elementarily
equivalent to R. For if I is any non-zero ideal of R and if r is a non-zero element of R then
I > Ir (otherwise I would be idempotent, contradicting that the intersection of the powers of
P is the zero ideal): then check the invariants, using V1. Indeed, by [FS85; Exercise 4.31, all
non-zero ideals are elementarily equivalent to R iff R is archimedean.

If R is discrete rank 1, then Z(R) = (R, 0). If R has value group IR then (see [FS85;
Example 1.4.3]) Z(R) = (R,P,Q). If R has value group Qd then (see [FS85; Example 1.4.4])
there are 20 non-isomorphic ideals, so Z(R) has 2a points, yet IZ(R)/=I= 2! In this
last example, since the pp-definable subgroups are densely ordered, no indecomposable pure-
injective contains a minimal pair.

In connection with valuation domains, Shelah has shown [She86; §5] that there is a
valuation domain which has a uniserial module (i.e., its submodules are linearly ordered) which
is not simply the image of a fractional ideal.
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CHAPTER 11 MODULES OVER ARTINIAN RINGS

In this chapter we consider those rings which are simplest, as measured by the complexity
of the category of modules: the rings of finite representation type or, more generally (?), the
right pure-semisimple rings.

A ring is right pure-semisimple iff every module over it is a direct sum of indecomposable
submodules. These are precisely the rings whose every right module is totally transcendental
(§i). To put this another way: a ring is right pure-semisimple iff the lattice P of pp-types has
the ascending chain condition - so right pure-semisimplicity is the "with quantifiers" version of
the right noetherian condition. The first section contains various equivalents to right pure-
semisimplicity, as well as "local" versions of some results (i.e., applying to arbitrary theories
closed under product, rather than just to T*). I also include a proof of the fact that a right
pure-semisimple ring is right artinian and that each of its indecomposable modules is of finite
length.

A ring is of finite representation type if it is right pure-semisimple and if there are, up to
isomorphism, only finitely many indecomposable modules. It is not known whether or not a
right pure-semisimple ring must be of finite representation type. If the ring is an artin
algebra, then the concepts are equivalent (though I don't prove that here): the artin algebras
include the algebras which are finite-dimensional over a base field. We see 02) that an artin
algebra is of finite representation type if it has only finitely many indecomposable finitely
generated modules (in fact, this is true of any right artinian ring). It is also seen that a
countable ring is of finite representation type iff it has, up to isomorphism, fewer than 2"*o
countable modules.

This chapter is concerned with finitely generated modules over right artinian rings. Such
modules need not be pure-injective: yet we wish to use pp-types and the associated techniques,
without having to step beyond the realm of finitely generated modules. In the third section, a
theory of hulls is developed for finitely generated modules over right artinian rings. It is shown
that if a is an element of such a module M, then there is a minimal direct summand of M
containing a; this summand is unique up to a-isomorphism and depends only on the pp-type of
a. We are then able to use these finitely generated analogues of hulls, more or less as we used
the hulls of §4.1. Although we do not use the fact, it is nice to know that the two notions of hull
fit together in the sense that the "finitely generated" hull of an element purely embeds in the
hull of the element, and the one module is indecomposable iff the other is.

The main result of the fourth section is that a ring is of finite representation type iff every
module over it has finite Morley rank. This second condition is equivalent to the lattice of pp-
types having finite length. Thus finite representation type may be viewed as the "with
quantifiers" version of the right artinian property. Our proof of the result is self-contained for
artin algebras but, for general right artinian rings, we have to quote a result of Auslander which
says, in effect, that if R is a ring of finite representation type then every irreducible type is
neg-isolated. Indeed, this condition on irreducible types characterises the rings of finite
representation type.

There is a supplementary section on the "pathologies" one encounters if no restriction is
placed on the modules under consideration.

Throughout the chapter, I have made some attempt to distinguish between what is true for
any totally transcendental theory closed under products and what is at least less local than this
(though the correct setting for some of the results eludes me).

11.1 Pure-semisimple rings

The ring R is said to be right pure-semisimple, rt. pss for short, if every right R-
module is a direct sum of indecomposable submodules. For instance, semisimple artinian rings
are right pure-semisimple; for other examples, see below. As is suggested by the terminology,
these generalise semisimple artinian rings, which may be seen as the quantifier-free version of



Chapter 11: Modules over artinian rings 229

right pure-semisimple rings (the modules over a semisimple artinian ring have complete
elimination of quantifiers, so all embeddings are pure).

It turns out that, over a right pure-semisimple ring, every indecomposable module is
finitely generated. The same class of rings is defined by the requirement that there be a cardinal
K such that every module is a direct sum of submodules each of cardinality no more than K. It is
not enough to require that there be only a set of indecomposable modules, as is shown by any
regular ring which is not actually semisimple artinian.

Proposition 11.1 Let T be a theory of modules, not necessarily complete, which is
closed under products. Suppose that every model of T is a direct sum of
indecomposable submodules. Then T is totally transcendental.

Proof [Pr84; 2.1] Set T1=Th(®(MT' : T' is a complete extension of T and MT' is any
chosen model of T' )). Thus Ti is the join, in the sense of §2.6, of the various T' and is itself
a complete extension of T. So, if M is a model of T then M purely embeds in a model of Ti.
Thus we reduce to the case where T is complete.

So suppose that T is complete. Recall that a module is totally transcendental iff it is I-
pure-injective (3.2). I show that every module is U. by establishing first that every pure-
injective module is 1: -pure- injective.

So let N be pure-injective. By assumption, one has a decomposition N= (D A // where
each N^A is indecomposable and, being a direct summand of N, is also pure-injective.

Then pi(N( °))=pi((D AN'X('k° )=pi(®A®iEwN'X i) say, where for each i E w one
has M1=Al. By assumption, pi(N( °)) has a representation ED IM, (say), where again
the MG are indecomposable pure-injectives. Now, by 4.A14 the two decompositions

pi(®Axc/V i ) and (IM6= ®g/ are essentially the same, in the sense that there is a
bijection f : A xw- F such that i M f(, i) for each ), i.

Thus:
N( That is,
N('°) is pure-injective and so hl is I-pure-injective, as desired.

Thus every module purely-embeds in a U. module (namely its pure-injective hull). Hence
every module is t.t. (3.7); as required. o

Applying this to T', we obtain the following characterisation of right pure-semisimple
rings (the direction "4" by 3.14).

Theorem 11.2 The ring R is right pure-semisimple iff every right R-module is a
totally transcendental. o

So we obtain the following list of equivalents.

Corollary 11.3 The following conditions on the ring R are equivalent:
(i) R is right pure-semi simple;
(ii) every module is pure-injective;
(iii) every direct sum of pure-injective modules is pure-injective;
(iv) every pure-injective module is E-pure-injective. o
I now go on to derive further equivalent characterisations of and information about such

rings. I should say at this point that I am not going to try to carefully assign credits for these
results, since they evolved over some time around the early/mid 70's and in a number of papers:
see [Pr84] for references. I do, however, take the opportunity to add the following to the list
of references in [Pr84]: [Aus7l], [Gri70a], [KS75], [She77].

The next theorem replaces indecomposables by modules of bounded size: but the result is
the same. The injective case is the Faith-Walker theorem [FW67; 1.1].
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Theroem 11.4 [Gar80; Lemma 4] Suppose that T=T' o is a theory of modules.
Then the following conditions are equivalent:
(i) T is totally transcendental;

(ii) there is a cardinal K such that every model of T is a direct sum of
submodules each of cardinality no more than K;

(iii) there is a cardinal K such that every model of T purely embeds in a direct
sum of modules each of which may be purely embedded in M and is of
cardinality no more than K.

Proof As in the first result, we may assume that T is actually complete. Already we have
(i)=: (ii) by 3.14 - the existence of K is obvious since each summand may be taken to be the
hull of a single element. Also 00 =* (iii) is trivial.

(iii) (i) Since T is closed under products, it will be enough to show that T is
superstable (3.3). This will be done by directly verifying the defining condition (3.A and
comment following that). So let R be any subset of the monster model and let N(R) be a copy
of the hull of R. Let us assume, for convenience, that K is infinite.

By assumption, there is a pure embedding of N(R) into N"= ® ANA where, for each
AE A, one has that N-A is a direct summand of M and JN-AJ_K. Since T is closed under
products it follows that N" also purely embeds into M. In particular, N(R) has the same pp-
type whether regarded (algebraically) as a pure submodule of N" or as sitting inside M. So we
may as well suppose that we are working inside the monster model.

Each element aE A is contained in a finite sub-sum of N". Hence R is contained in a
direct summand, N'= ® of N" with IA'ISIRI+'ko and hence with IN'kkK(IRI+'tko).

Since A is contained in the pure submodule N' of M, one has that its pp-type is the
same, whether measured in N(R), M or V. So the morphism f: V, which is the
composition of the pure embedding of N(R) in N with the canonical projection from N" to
Al', preserves the pp-type of A. By 4.14 it follows that f preserves the pp-type of N(A).
In particular, f is an embedding of N(R) into V. Hence IV(R)J_<IN'I, so N(A) has

cardinality bounded by KIAI.
We show that T is superstable, by counting types over R. Set M=N(R) ® M for some M.

If p is a 1-type over A then take any realisation c= (ao, b) E N(R) (D M of it.
Suppose also that the 1-type q, over R, is realised by c'=(ao,b') E N(R)®M where

tp(b)=tp(b'). It is shown that q must equal p (so a bound on IS,(R)I will be obtained). Let
Lp(v, a) be pp with a in R. Then the following assertions are equivalent: ip(v, a) E p(v);
ip(c, 0) holds; ip(ao, 5) A gp(b,0) holds (on projecting); Lp(ao, a) A Lp(b',0) holds (by
assumption); ip(c',7) holds (on adding); Lp(v,0)Eq(v). Thus p+=q+ and so (2.17) p=q,
as desired.

There are at most IN(R)ISK(IRI+ "2p ) choices for ao and at most IS1(0)I521TI choices
for tp(b). Hence In particular, if IRI_> K.2ITI (a constant) then
IS1(R)kkI41 - so T is superstable, as required. o

Corollary 11.5 Suppose that T is a complete theory of modules such that there
exists a cardinal K With IN(R)k_<KIRI for every subset R of the monster model.
Then T is superstable.

Proof This was shown in the last part of the proof of 11.4. o

Corollary 11.6 The following conditions on the ring R are equivalent:
(i) R _'is right pure-semis imple;
(ii) there exists a cardinal K such that every module is (or even, purely embeds

in,) a direct sum of modules, each of cardinality bounded by K;
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(iii) every module is totally transcendental;
(iv) T* is totally transcendental;
(v) the lattice P(R) of pp-1-types has the ascending chain condition.

Proof The equivalence of (iv) and (v) is immediate from 3.1(c); that of (iii) and (iv) is clear
by 3.7. Setting T=T* in 11.4 yields (ii)<#(iv). The equivalence of (i) and (iii) is 11.2. c

The equivalence of (i) and (v) in 11.6 says that right pure-semisimplicity is the pp-version
of the right noetherian condition. It will turn out that finite representation type is the
corresponding strengthening of the right artinian condition.

Setting T=T* in 11.5 and applying 11.6 yields the next result.

Corollary 11.7 The ring R is right pure-semisimple iff there exists K such
that for every A (= M )-- T*) one has IN(A)I, KIAI. o

The corollary above is not "purely algebraic", since it explicitly refers to the pp-type of
A; but there is the following stronger result.

Corollary 11.8 The ring R is right pure-semisimple iff there is a cardinal K

such that for every module M one has IMI S KIMI.
Proof The direction "z" is clear by what has been shown already. So suppose that the
cardinality restriction is satisfied: we verify that the corresponding condition of 11.7 also
holds. Given a subset A of the monster model of T*, there exists a pure submodule, 8, of M
which contains q and has cardinality no more than IAI.ITI (add in witnesses for every pp
formula with parameters in A=Ao; this gives A1; repeat; ... and set 8= UWAi). Then

IN(A)I s IaI s KITI-IAI - so 11.7 does apply.

One knows ([Sab7oa; Cor2]) that, in any case, IMI SIMI(IRI+' o). If R is regular one
has complete elimination of quantifiers for T* (16.16) and so, using 16.B, a special case of
11.7 is the following.

Corollary 11.9 Suppose that R is regular and non-artinian. Then for every
cardinal K there exists a module M such that IE(M)I>KIMI G

The condition of right pure-semisimplicity is very strong. The next result details some of
its consequences.

Theorem 11.10 Suppose that R is right pure-semisimple. Then:
(a) R is right artinian;
(b) there are, up to isomorphism, at most IRI+kko indecomposable modules;
(c) every indecomposable module is finitely generated.

Proof (c) Let N be indecomposable and choose a non-zero element o of N. Let p be its pp-
type in N and let ip be a pp formula which generates p modulo T* (ip exists since T* is
t.t.). Then (cf. 8.4) there is some finitely generated submodule, M, of N in which a lies and
in which the pp-type of a is p.

Since M is, by 11.6, pure-injective it has, as a direct summand, some copy N' of the hull
of a. Since M is finitely generated, so is its direct summand N'. But Al' is isomorphic to
N: hence N is finitely generated (it follows easily that, in fact, N=M).

(b) This is immediate from (c) (or use that every indecomposable pure-injective is the
hull of a pp-1-type and, since T* is t.t., there are at most IRI+'ko of these).

(a) The original proof is [Ch60; 4.4]. I give one slightly closer to that in [Fai76].
Notice first that R is right noetherian: the lattice of right ideals embeds in the lattice of

pp-1-types which, by 11.6, has acc.



Chapter 11: Modules over artinian rings 232

Let N be the nilredical of R (the sum of all the nilpotent ideals). Then the module
E(RIM) is finitely generated. For, by assumption, E(RIN)= ®IEi for suitable
indecomposable injectives Ei. Since RIM is finitely generated it is contained in some finite
sub-sum which, by (c), is itself finitely generated. So E(RIM) is also finitely generated,
being a direct summand of this last injective module.

Now let E' be the injective hull of RIM as an R/N-module. Since E', as an R-module,
is an essential extension of RIM it follows (see §1.1) that RIM 5 E' S E(R/N) (as R-
modules). Therefore, since E' is a submodule of a finitely generated R-module and since R is
right noetherian, E' is itself finitely generated as an R-module (hence as an R/N-module).

Now, by Goldie's Theorem (see [St75; §2.2]), E' has the structure of a semisimple
artinian ring of fractions of RIM. Let c E RIM be a regular element. Then, inside E', there
is an inverse c-' for c and one has RIM 5 c-1(R/11) S c-2(RIM) 5 ... (note
1=c-1.c E CV/N)). Since E' has acc on submodules, there is some integer n and some
b E RIM such that c-(77 +1)=c-77b. Hence c-1=b E RIM: that is, c already is invertible in
RIM.

Thus, every regular element of RIM has an inverse in RIM. Hence RIM is its own ring
of fractions. So, by Goldie's Theorem, RIM is a semisimple artinian ring.

Furthermore, since R is right noetherian there is an integer k with 0= 0. Each factor
Nz/0 +9 (an R/M-module) is finitely generated as an R-module, hence as an R/N-module.
Therefore R is a finitely generated right R/N-module. Since the latter is artinian, it follows
that R is right artinian. e

The property of being semisimple artinian is a two-sided one: but the corresponding
question for pure-semisimplicity is open.
Open question 1 If R is right pure-semisimple is R left pure-semisimple?

A positive answer to this would have further consequences; for right and left pure-
semisimplicity together imply finite representation type (see §2). A weaker (possibly - see
[Sim77a]) question, suggested by 11.10(a) is the following one.
Open question 2 If R is right pure-semisimple, is R necessarily left artinian?

Of course a positive answer to the first question entails an affirmative answer to the second.
At least for hereditary rings ([Sim81]), a positive answer to the second question would imply a
positive answer for the first: indeed, Simson reduces the question for hereditary rings to that

for rings of the form ( M ) where F and G are division rings and M is a bimodule.

Furthermore, Simson\showed ([Sim77a]) that if every right pure-semisimple and left
artinian ring is also left pure-semisimple, then every right pure-semisimple ring is left
artinian (this follows by 8.A).

Note the model-theoretic reformulation of the first open question.

Open question 1' If every right R-module is totally transcendental, does it follow that every
left R-module is totally transcendental?

In connection with the result of Simson mentioned above, one may show the following
(perhaps it can be established more easily, but the proof does illustrate how one might use the
results of §8.3). If one could show the result below with the cardinality restriction replaced by
one on the dimensions, then it would, by [Sim8l; 3.3], imply that every right pure-semsimple
hereditary ring is of finite representation type (the proof could hardly be described as delicate,
but any extension of it would seem to need consideration of the geometry involved).
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Proposition 11.11 [Pr83; 1.18] Let R be the matrix ring
F

0 G
M 1where

F and(
G are infinite division rings and M is an (F,G)-bimodule. Suppose that BFI < 161.

Then R is not right pure-semisimple.
Proof It will be enough to produce a sequence of pp formulas, with ...ipn 4 Pn-1 -' LP1-,'Po
(in every module) and none of the implications reversible. By the results of §8.3, it is

r
equivalent to produce a sequence of matrices An = Sn such

that, for no matrices E,H is
0

).,q77_,1=Yq77HE and where An+1 is formed from An by

adding columns.

Therefore, the kind of equation that we want to avoid is (0 D(Sn
+

which re-arranges to (r
o+1)_ (D Sn) +J

Let us assume inductively that An has coefficients from M: so c and D may be assumed
to have entries from F, and H to have entries from G. Also assume, inductively, that Sn is
diagonal with non-zero entries on the diagonal: so if X is a matrix with entries in G then

S77X=0 implies X=0. Choose any non-zero element a of (0 o ) and set Sn+1 = ( S77 0 }
Let X be the set of those matrices H with entries in G such that there exists a solution

D to DSn+1= S,H. Note that, for HER, the map HH D is 1-1 (by assumption on Sn and
choice of a). So, since D has entries in F, it follows that IXk <. IFI.

Now, we wish to choose T77+1 = (rn, x) such that the equation(*) has no solution. That is,
given H, choose fn+1 not equal to -cSn+1 + rnH. There are only IFI possibilitesfor H
and, for each of these, no more than IFI possibilities for c so, since 1G1> IFI3)k0, a suitable
choice of rn+1 may be made, as required. n

11.2 Pure-semisimple rings and rings of finite representation type

The ring R is said to be of finite representation type, FRT, if it is right pure-
semisimple and if there are, up to isomorphism, only finitely many indecomposable modules.
Thus, every R-module has the form N1(K+) ® ... ® Nt(Kt), where Vt represent the
finitely many isomorphism types of indecomposables and Kl,...,Kt are cardinals.

It is known that a ring is both right and left pure-semisimple iff it is of finite
representation type (see §8.4). In particular, finite representation type is a two-sided
property. The following question is, however, open and is, by the result just quoted, equivalent
to the Open Question 1 of §1.

Open question 1 If R is right pure-semisimple is R necessarily of finite representation
type?

The answer is known to be affirmative for certain types of ring, and this will be discussed
below.
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Example 1

(a) Any semisimple artinian ring is of finite representation type.
(b) One kind of semisimple artinian ring is the group ring, K[G], of a finite group 6 over a

field K, where the characteristic of the field does not divide the order of the group. Even
if the characteristic, p, of the field does divide the order of the group, it may be that
K[G] is of finite representation type. Specifically, K[G] is of finite representation type
iff each Sylow p-subgroup (maximal p-subgroup) is cyclic (see [CR62; 64.1]). Thus,
for example, F2(712x7L2) is not of finite representation type but F2(S3) is, where F2
denotes the field with two elements and S3 is the symmetric group on three symbols
(exercise: exhibit infinitely many finitely generated indecomposables over the first [See
[CR62; 64.3]]).

Example 2 The ring 7l4 is of finite representation type. Indeed, every 7l4-module has the
form 7L2(K) ®a4(>) for suitable K, '.

Example 3 The ring ( o K ) of upper-triangular 2x2 matrices over the field K is of finite

representation type: it is just the path algebra of the Dynkin quiver A2 (see §13.2). I justify
this statement by describing all the modules.

Let e11, e12, e22 be the usual matrix units in R. Let M be any R-module. Then, as a K-
vectorspace, M decomposes as M.1=M&11 ® Me22. Consider the annihilator, A, in Me11 of
the element e12 - so ff=(mEM : m=me11 and me12=0). It is trivial to check that R is a
submodule of M. It is not much more difficult to see that A is injective and is a direct sum of

(copies )I( 0 K
of the unique indecomposable (indeed simple) injective module S=

K

0 0

K

0 0 J'
Thus every R-module decomposes as a direct sum of copies of S and a module, M' say, in

which the K-linear map -xe12:M'e11) M'e22 is manic with image M'e12=M'e11e12. Such
a module M' may usefully be thought of as a pair (1/=M'e22, U= M'811) of K-vectorspaces
together with a specified embedding W-U (and every such pair arises in this way from an
R-module).

It is easy to show that direct-sum decompositions of R-modules without injective direct
summands are equivalent to direct-sum decompositions (in the obvious sense) of the
corresponding pairs of vectorspaces (cf. §3.A). And it is not difficult to see that every pair
W, 40 is a direct sum of copies of just two indecomposable pairs: (K,o) and (K,K).

The indecomposable (K,o) corresponds to the simple projective module

P1=(0
K ) (0 0

and (K,K) corresponds to the indecomposable projective
KP2_ (K

0

0

0

(exercise).
Thus, every R-module has the form S(K) ® p1('A) ® P2(n) for suitable cardinals K, -A, P.

In particular, R is of finite representation type.
K K K

Exercise 1 Show that the ring 0 K 0 is of finite representation type,
(0 0 K
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(K K K K K

1

0 K o 0 0

but that 0 0 K 0 0 is not. [Hint: c.f. Ex13.2/1, 17.5.]
0 0 0 K 0
0 0 0 0 K 11

Exercise 2 [Bau75; Thm3] (R countable) Show that every R-module is k,-categorical iff
R is a finite ring of finite representation type (cf. §4.C).

In order for a right artinian ring to be of finite representation type, it is enough that there
be, up to isomorphism, only finitely many indecomposable finitely generated modules ([Tac73;
§9]). This is false for arbitrary rings (cf. Ex 16.2/3)). I include a proof of this fact for the
(important) special case of Artin algebras, after giving some related results (all from
[Pr84]).

Proposition 11.12 [Pr84; 2.5] Suppose that there is a totally transcendental
module C such that every finitely generated module purely embeds in C. Then R is
right pure-semi simple.

Proof Let M be any non-zero module and take a non-zero element a of M. Let p be the pp-
type of a in M. Set Ao to be the submodule generated by a and let po be the pp-type of a
in Ao (so po=p).

Choose, if possible, a sequence Ao <A1<... <M of finitely generated submodules of M such
that, if pi is the pp-type of a in Ai, then po c plc ...c p.

By hypothesis there is, for each i, a pure embedding fi:A1- C; by purity
ppC(fiai)= pi. Since C is t.t., eventually pi=pL+1 - contradiction.

So there is some finitely generated submodule, A, of M with ppA(a)=ppM(a) (since R
is not assumed to be noetherian, 8.4 cannot be applied to conclude that p is finitely generated).
Since A purely embeds in C, it is U. (but p being finitely generated in A need not imply
that p is finitely generated in M, so we continue...). In particular A is pure-injective. So
there is a copy N(a) of the hull of a, which is a direct summand of A.

It is claimed that N(a) is actually a direct summand of M; but this is immediate from
4.14, since ppA1(1)(a)=ppM(a). Now we use an argument already seen in 3.14. Let be a

family {Ni)i of finitely generated direct summands of M, such that the sum of the family is
direct and pure in M, and which is maximal such (clearly Zorn's Lemma applies to give
existence). Since ®iNi can be embedded in some power of C - still a U. module - this direct
sum is itself U. so, in particular, is pure-injective. Therefore M =( ED i /(i) e N' say. If N'
were non-zero then what was shown first would give a non-zero finitely generated direct
summand of N' - contradicting maximality of 7.

Thus every module is a direct sum of finitely generated submodules. So by 11.6 (with
K=tR1+' ,) one concludes that R is indeed right pure-semisimple. a

Corollary 11.13 [Pr84; 2.6] The ring R is right pure-semisimple iff every
direct sum of finitely generated modules is totally transcendental.

Proof This is by 11.6.
This is by 11.12. a

Corollary 11.14 [Pr84; 2.7] Suppose that every finitely generated R-module is
totally transcendental and that there are only finitely many indecomposable finitely
generated modules. Then R is of finite representation type.
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Proof Let C, be the direct sum of one copy of each of the finitely many indecomposable
finitely generated modules. Since the sum is finite, the hypothesis implies (3.5) that C1 is
itself totally transcendental. Hence C = C1(Aa) is U. (3.4).

But every finitely generated module, being t.t., is a direct sum of indecomposable
submodules (3.14) and so is isomorphic to a direct summand of C. Therefore the result follows
by 11.12 and the definition of finite representation type. o

A ring is said to be an Artin algebra if its centre is an artinian ring and if the ring is
finitely generated as a module (on the right, equally on the left) over its centre. The main
examples are finite-dimensional algebras over fields. Observe that an Artin algebra must be
both right and left artinian.

Lemma 11.15 Suppose that R is an Artin algebra. Then every finitely generated R-
module is totally transcendental of finite Morley rank (so is in particular pure-
injective) with pp-rank bounded by its length as a module over the centre C(R) of
R.

Proof Let MR be finitely generated. Since R is finitely generated over C(R), MC(R) is
finitely generated. This implies, since C(R) is of finite length, that MC(R) is of finite length.
By 2.1, every pp-definable subgroup of MR is a C(R)-module. Hence the length of M as a
C(R)-module is a (finite) bound on the maximum length of a chain of pp-definable subgroups of
MR. a

Lemma 11.16 Suppose that R is a finite-dimensional algebra over the algebraically
closed field K and let M be an indecomposable finite-dimensional R-module. Then
the pp-rank (and hence the Morley rank) of M is equal to the K-vectorspace
dimension of M.

Proof By 4.53, if ip(M)>y,(M) is a minimal pair of pp-definable subgroups of M then the
quotient ip(M)/.p(M) is a 1-dimensional vectorspace over EndM/JEndM. Since M is finite-
dimensional over K, this division ring is a finite extension of K so, since K is algebraically
closed, it equals K and so tp(M)/ii(M) is a 1-dimensional vectorspace over K. Thus the result
follows (the pp-rank equals the Morley rank since K is infinite!). o

Example 4 If K is not algebraically closed, then the conclusion of 11.16 may fail. Take K to
be the real field and consider the simple module K[X]/(X2+1). This is two-dimensional over
K but is 1-dimensional over its endomorphism ring (the field of complex numbers). Therefore
it has no proper non-trivial pp-definable subgroups, so it has pp-rank 1 but K-dimension 2.

Corollary 11.17 Let R be an Artin algebra. Suppose that there are, up to
isomorphism, only finitely many indecomposable finitely generated R-modules. Then
R is of finite representation type.

Proof This is immediate from 11.14 and 11.15. o

In fact, it is enough to assume just that R is right artinian, rather than an Artin algebra,
in order to obtain the conclusion of 11.17, but the proof for this general case is rather different
[Tac73; §9].

Exercise 3 [War78; 1.2] Show that a commutative noetherian ring over which every
countably generated module is a direct sum of indecomposables is an artinian principal ideal
domain - these are just the commutative rings of finite representation type.

The countable rings of finite representation type may be characterised in terms of the
number of countable modules.
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Theorem 11.18 [BM82] Suppose that R is a countable ring. Then the following
conditions are equivalent:
(i.) R is of finite representation type;
(ii) there are only countably many countable modules up to isomorphism;
(iii) there are fewer than 2' o countable modules up to isomorphism;
(ii)°-(iii)°: as (ii)-(iii), but for left modules.

Proof Since R is not assumed to be right artinian, an appeal to 11.17 would be unjustified: so
there really is something to prove.

As stated above, (i) is a right/left-symmetric condition (see 8.24); (i)==>(ii) is clear;
trivially(ii)==> (iii). So the implication remains.

First, it will be shown that every finitely generated module is totally transcendental.
Assuming that this is not the case, consider some non-t.t. module A generated by a1,...,an
(say). Since q has an infinite descending chain of pp-definable subgroups (by 3.1), it must be
that the number of 1-types modulo Th(A) over A is 2' ^ (compare proof of

(iii)'). Since every element of A may be expressed as a term, using only a1,...,077
as parameters, one has S,(A)=S1(a...... a.). So there are 2 ° 1-types over an). It
follows (exercise) that there are 2' (n+1)-types modulo Th(A) over 0. But every (n+1)-
type over 0 may be realised in a countable model of Th(A). So there must be 2'a countable
models to hold all these realisations - contrary to hypothesis.

Thus every finitely generated module is totally transcendental. Were there infinitely many
non-isomorphic indecomposable finitely generated modules, ( Ni : iEw) say, then one would
have 2 countable modules: the ®(Ni: iEI), for I w, provide 2'a non-isomorphic
(by 4.A14) countable modules -contradiction.

The conclusion now follows by 11.14. a

1 1.3 Finite hulls over artinian rings

It has been seen that if the ring R is right pure-semisimple or if it is an Artin algebra,
then every finitely generated module is pure-injective. Therefore, when dealing only with
finitely generated modules over such rings, we have the full machinery of hulls available.
However, a finitely generated module over a right artinian ring need not be pure-injective (see
Ex 14.2/1).

One may ask over what rings the finitely generated modules are pure-injective (and hence,
if R is countable, totally transcendental)? In the two cases above where one has this property
one also has existence of almost split sequences (see §13.1) on one side: is there a connection
between finitely generated modules being pure-injective and existence of almost split
sequences? (and, therefore, a connection with whether right pure-semisimple implies finite
representation type).

What, then, are we to use in the general artinian case, since hulls are not available if one
restricts to finitely generated modules? Is there still a connection between irreducible types
and indecomposable modules? The material of §8.2 relates to this but, to get the best results
(and the relativisation goes through almost completely), one must restrict to modules of finite
length. No doubt, at least some of this section could be carried over to finitely presented modules
over left perfect rings (cf. [Sab7lb]).

Therefore I show first that if R is right artinian then, within the context of finitely
generated modules, there are finitely generated analogues of hulls.

Throuahout this section. R is assumed to be right artinian.
I begin with two useful, well-known, results about modules of finite length.

Proposition 11.19 (Fitting's Lemma) If M is a module of finite length and if f is
an endomorphism of M, then M=imfk®kerfk for some kEw.
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Proof (outline) Use the (obvious) fact that f is monic iff it is epi iff it is an automorphism.
We have imfk=imfk+l= ... and kerfk=kerfk+l=..., where k is the length of M. So, if
OEM, then fka=f2kb for some bEM: thus a=fkb+(a-fkb)Eimfk+kerfk. Also, fk is
epi on imfk (since the latter equals imf2k); so imfk nkerfk=0. c

Proposition 11.20 (Harada-Sai Lemma) [HaSa71] Suppose that the modules
Mo,...,Mn_1 are indecomposable and all of length bounded by bEw. For each
i=0,...,n-2, let fi: Mi-' Mi+1 be a non-isomorphism. Suppose that the
composition fn-2 ...f1fo is non-zero. Then 77<2b.

Proof (outline) The following statement is proved by induction on k:
Z(imf2k-2...flfo) < b-k, where "Z" denotes the length of a module. For k<1 this is clear,
(since fo is a non-isomorphism, and Z(M0)<b).

Suppose that the statement is true for the particular value k. Set f = f2k-2...flfo and
h = f2k+1-2...f2k. If either of these has image of length strictly less than b-k then Z(imf2k.
1-2...fo) = Z(im hf2k-1f) < b-(k+1), as required. So suppose otherwise and set g = f2k-1
Then suppose, for a contradiction, that Z(im hgf) = b-k.

By the induction hypothesis applied to f, we see that im f n ker hg = 0 (* ). By additivity
of length, we have that Z(im f) = b-k, Z(ker hg) = Z(M2k_1) -Z(im hg) and Z(im hg) = b-k.
Combining these equations, we see from (*) that M2k-1 is the direct sum of im f and kerhg.
But this module is indecomposable, so kerhg must be zero, and g is monic.

Similarly, one shows that g is epi. But that contradicts g being a non-isomorphism. o

Let pEPnf be a finitely generated pp-n-type. There is (8.4) a finitely generated module
M containing a realisation a of p. Since R is right artinian, M has finite length; so there
is a direct summand, H(O), of M which contains or and which is minimal such. I show that
H(Q) is unique up to o-isomorphism: in fact, H(O) is determined by p (as is N(p)).

So suppose that b in the finitely presented (so finite length) module M' realises p.
Choose H(b) in M' in the same way that H(a) was chosen. Since H(-) is a direct summand,
one has ppH(a)(a)=p=ppH(b)(b). Therefore, by 8.5, there are morphisms
f:H(0)) H(b) and g:H(b)'H(a) with fa=b and gb=a. in particular, gf fixes a.

By Fitting's Lemma (11.19) there is kEw such that H(5)=im(gf)k ® ker(gf)k. Since a
is in im(gf)k and since this module is a direct summand of H(a), so of M, minimality of
H(a) gives H(a)=im(gf)k. Therefore g must be epi: also ker(gf)k=0 - so f must be
monic. Then, by the symmetry of the situation, one concludes that f and g are mutually
inverse. This establishes the following result.

Proposition 11.21 [Pr83; §1] (R right artinian) Let p be a finitely generated
pp-n-type, and suppose that a in M and b in M' are realisations of p in
finitely generated modules. Let H(O) be a minimal direct summand of M containing
5 and let H(b) be a minimal direct summand of M' containing F. Then there is an
isomorphism between H(a) and H(b) taking a to b. o

The module H(a) may be called the finite hull or, if no confusion should arise, simply
the hull of 5. If p=ppH(a)(a) then H(p)= H(5) is the (finite) hull of p.

Another question which arises is that of the relationship between H(p) and N(p). It
should be fairly clear that p is irreducible iff H(p) is indecomposable (use 8.7); so N(p)
is indecomposable iff H(p) is indecomposable. Nevertherless, this does not immediately
relate the two modules H(p) and N(p) (although, for our purposes, 8.7 is all that is needed).
An obvious question is: "What is the pure-injective hull of H(p)? Is it N(p)?". Equivalently:

Is the pure-injective hull of H(p) indecomposable?". The next result answers this question
(affirmatively).
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Proposition 11.22 [Pr83; 2.12] (R right artinian) Let p be any finitely
generated n-type. Then the pure-injective hull of H(p) is /(p).

Proof Let a realise p: it will be enough, by 4.6, to show that if b is in H(a) then
pp(Pa) is a maximal pp-type over if (where the over-theory may be taken to be that of
H(a)).

Notice that pp(b/o) is finitely generated. For, by 8.4, ppH(a)(b"a) is finitely
generated - say by the pp formula Lp(U, w). Then the formula ip(v, a) generates pp(b/a). So
if pp(b/o) were not maximal there would be a finitely generated pp-type over a strictly
containing it. Then there would be a finitely generated module, M, containing if in such a way
that ppM(i)= p, and containing a tuple c in M with pp(c/a)z'pp(b/a).

By 8.5 there would be morphisms f:H(07)--4M and g:M-- H(a), the first taking
a^b to a^c, the second fixing a. Consider the endomorphism gf of H(a). This morphism
fixes if but is strictly pp-type increasing on b. From the fact that if is fixed, we deduce
quickly that gf is an isomorphism (an application of Fitting's Lemma, just as before 11.21) and
so cannot strictly increase the pp-type of b - contradiction.

Thus the pp-type of H(a) over a is maximal. So, by 4.6 and 4.14, H(a) is purely
embedded into //(a), as required. a

Corollary 11.23 (R right artinian) Let p be any finitely generated (pp-)type. If
f:H(a)-*M is such that pp(f5)=p then f is a pure embedding.

Proof This follows by 11.22 and 4.14. o

Exercise 1 One may give a more algebraic proof of the fact that if H(p) is indecomposable
then so is its pure-injective hull.

Suppose that R is right noetherian such that every finitely generated module is a direct
sum of indecomposable submodules, each with local endomorphism ring (e.g., suppose that R is
right artinian or a principal ideal domain; also see [Bra79; 9.2]). Let MR be finitely
generated and indecomposable; then M is indecomposable.
[Let M be generated by b and suppose that M has a non-trivial decomposition as N1 e N2.
Choose non-zero elements a1ENi and pp formulas ipi linking at to b (i=1,2). Then there
is M'=Mi eM2 say, a finitely generated submodule of M with aiEMi and with M' containing
b together with witnesses for the quantifiers in the ipi(ai,b). Clearly M is pure in M' (it is
even pure in q) and so, since M'/M is finitely presented, M is a direct summand of M'
(Exercise 2.3/1). By locality of endomorphism rings, one has the exchange property (see, e.g.,
[Fai76; 18.17]): so (decompose then recompose), M'=MeM"eM2 say. On projecting
lp2(021b) to M2 one obtains a contradiction to _11p2(a2,0).]

Exercise 2 Give yet another proof of 11.22 using 8.4 and 8.7.

Corollary 11.24 [Pr83; 2.13] Suppose that R is right artinian and let M be
finitely generated.
(a) M is indecomposable iff M is indecomposable.
(b) M is a direct sum of n indecomposable modules iff the same is true of M. D

Corollary 11.25 (R right artinian) Let p be a finitely generated pp-type.
Suppose that H(p) is a direct sum of k indecomposable submodules. Then the
algebraic weight of p is k (cf. §6.4). a

Corollary 11.26 [Pr83; 2.14] If R is right artinian then every finitely generated
pp-type over 0 has finite weight. a
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One does need the type to be over 0 in 11.26 (see after 6.27); and some condition on the
ring is necessary - consider R=M=72, where the pp-type of the element 12 has weight to.
The next result shows that if R is a right artinian ring then the correspondence NH N
between indecomposable finitely generated modules and their pure-injective hulls, is 1-1
(modulo isomorphism).

Proposition 11.27 Suppose that R is right artinian and that Al and N' are
indecomposable finitely generated R-modules. If N ti N' then N = N'.

Proof Take non-zero elements a, a' in Al, Al' respectively. Suppose that their pp-types are
respectively generated (modulo T') by the pp formulas ip, gyp'. We may consider N and N'
as both purely embedded in the same copy N=N' of the pure-injective hull. By 11.24(a), N
is indecomposable so, by 4.11, there is a pp formula ip(v,w) such that
N k ip(a, a') A -1 w(a, 0).

Since N is pure in N, it satisfies 3w (.p(a,w) A Lp'(w)): say bEN witnesses "w".
Since N, so N, satisfies -V(a,0), b is non-zero. Also, since b satisifes Lp'(w) and since
this formula generates the pp-type of a', there is (8.5) a morphism f: N- * N' taking a'
to b.

If f is an isomorphism, then we finish. Otherwise, repeat the argument with a' and b in
place of a and a'. Since N and N' are of finite length, eventually we find that they are
isomorphic or we reach a contradiction. o

The next lemma, which is immediate if R is an Artin algebra, will be useful later.

Lemma 11.28 Suppose that R is right artinian. Let M be indecomposable and
finitely generated. Then the sub-poset {pEPnf : of Pnf, consisting of
those pp-n-types realised in M, has the ace - even has finite length.

Proof Any strict chain in this subset of Pnf induces, by 8.5, a sequence of non-
isomorphisms from M to itself. But if the length of M is k then (11.20) any such chain has
length bounded by 2k, as required. o

One should beware that 11.28 does not say that M has the dcc on pp-definable subgroups
(for then M would be U. - in contradiction with Ex14.2/1): not every pp-definable subgroup of
M need have the form So where S=EndM and aEM.

Exercise 3 (cf. Exercise 2.3/3) Let M be a finitely presented module (over any ring) and let
S be its endomorphism ring.
(i) If aE M and if ip is app formula equivalent to the pp-type of a in M, then ip(M) = Sa.
(ii) Every finitely generated S-submodule of M is a pp-definable subgroup of MR.
NO If SM is noetherian then the S-submodules of M are precisely the pp-definable

subgroups of MR.
(iv) If MR is weakly saturated and if every S-submodule of M is pp-definable, then SM is

noetherian.

Exercise 4 [Pr83; 3.13] Prove the following slight strengthening of the Harada-Sai Lemma
(11.20). Let fi: Mi) Mi+1 (i=0,...,n-2) be a sequence of non-isomorphisms and let ao
be in Mo such that, if we set a,=foao, a2=f131, ..., then Mi is the finite hull of ai. If each

Mi has length no more than b then n < 2b.

"What makes a module indecomposable": this is a well known question of Auslander. On the
basis of the results of this section, we can give one answer to this: a module (finitely generated
over an artinian ring) is indecomposable iff, for every two non-zero elements a, b of it, there
is a system of linear equations and a solution vector of the form (a b x) but no solution vector
of the form (a 0 y).
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11.4 Finite Morley rank and finite representation type

It is shown in this section that the ring R has finite representation type iff every R-
module has finite Morley rank. Essentially this is done by showing that both conditions are
equivalent to the requirement that all irreducible types be isolated. In the important case of
Artin algebras the proof given here is self-contained: for the general artinian case we need to
quote a result of Auslander for one direction.

Actually, that every module having finite Morley rank implies that the ring is of finite
representation type (11.29) already follows from 7.23 (or [Zg84; 8.12]) 5.13 and 5.18.

Theorem 11.29 If the Morley rank of the largest theory, T*, of R-modules is
finite, equal to n say, (that is, if the length of the lattice P1(R) is n) then R
has no more than n indecomposable modules up to isomorphism. In particular, R

is of finite representation type. o
Another result, from which 11.29 follows, is 9.4.
The converse to 11.29 is easy if R is an Artin algebra.

Theorem 11.30 Suppose that the ring R is such that every finitely generated
module has its lattice of pp-definable subgroups of finite length. If R is of finite
representation type then the Morley rank of T*, and hence of every module, is
finite.

Proof Let N1,...,Nk be the finitely generated indecomposable modules. The assumption on R

implies that the Morley rank of (M1 a ... a Nk)(K) is finite for every cardinal K. But every
module is (since R is right pure-semisimple) a direct summand of such a sum of copies of
N1 e ... e Nk. Hence the result follows. o

Corollary 11.31 [Pr84; 3.9] Let R be an Artin algebra. Then the following
conditions are equivalent:
(i) R is of finite representation type;
(ii) P1(R) has finite length;
(iii) every module has finite Morley rank (and there is a uniform bound);
(iv) MR(T*) is finite.

Proof Clearly (iii) and (iv) are equivalent by 5.21; the equivalence of (ii) and (iv) is by 5.13
and 5.18. Then, by 11.15, 11.30 applies to give (i):= (iv). Finally 11.29 gives us (iv)==) (i). o

Example 1 Let R be the path algebra of the quiver A2 (see Ex 11.2/3). There are three
indecomposables; two with pp-rank 1 and one with pp-rank 2. It is left as an exercise to show
that the Morley rank of T* is 4 (see 11.39 below).
Exercise 1 Let R be the ring of nxn matrices over some division ring. What is MR(T*)?

In fact 11.31 does not need the assumption that R is an Artin algebra: R being right
artinian will do (note that all the conditions of 11.31 imply right pure-semisimplicity, so imply
right artinian). But the general case involves more work and brings to light the importance of
the property of irreducible (pp-)types being isolated. This property links up with elementary
cogeneration (as has been seen in §9.4), with finite presentation of certain functors (§12.2) and
hence ([Aus74a; 2.7]) with existence of almost split sequences.

The next result was proved first for totally transcendental theories [Pr84; 3.6]. Then the
global case (i.e., R rt. pss) was generalised to the case where every finitely generated module is
totally transcendental [Pr83]. Using the machinery of §3 one can now give a proof for
arbitrary right artinian rings.
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Proposition 11.32 Suppose that R is right artinian and let p be a finitely
generated irreducible type. Then the following conditions are equivalent:
(i) p is isolated (as a pp-type, equivalently as a type);
(ii) if (Ma),X is a set of indecomposable finitely generated modules and if H(p)

purely embeds in TT XMa then H(p)_M,, for some ^A;

(iii) if (1,),, is a set of indecomposable finitely generated modules and if H(p)
purely embeds in T[t1 then, for some ^X, the morphism H(p)-*MX
induced by the projection rc-A: TT JA MP-> M-,, is an isomorphism.

Proof (iii) Let a in H(a)=H(p) realise p. Inside the product M=TT M'X one has
5= (57-A).>, for suitable a, in M,,; set p-A to be the pp-type of S. in MX. Since H(a)
purely embeds in M, one obtains p= fl^A p-A. Since p is irreducible and isolated in Pf (8.7)
it must be that p= pX for some '. Therefore, the projection na preserves the pp-type of a,
hence (by 11.23) is a pure embedding of H(a) into MX. Since M-A/H(a) is finitely
presented, it follows (Exercise 2.3/1) that H(o) is a direct summand of M^A But M-A is
indecomposable; so tt>:H(a)---M. is an isomorphism, as required.

(iii)=(ii) This is immediate.
(ii)=(i) Suppose, for a contradiction, that p is not isolated but that, nevertheless (ii)

holds. Then there is a representation p = fl { ^AE A ), where the p , may be taken to be
irreducible, finitely generated and with p-A > p for all '(exercise: use the fact that if q> p
then there is a finitely generated pp-type p' with q-> p'> p, and p' is a finite intersection of
irreducible finitely generated pp-types).

Set H-A =H(a.A) where is some realisation of p.. Then, if ETTHA=H
(say), one has that the pp-type of a in H is fl , p, p. So, by 8.5, there is a morphism from
H(a) into H which, since it preserves the pp-type of 5, is a pure embedding (by 11.23).
Then from (ii) it follows that one has H(a)-H(a,) for some a.

If p^A were not itself isolated then one could repeat the above argument with p'X replacing
p: and so on. Noting that p <p , and that H(p)=H(p'), we see that 11.28 guarantees the
termination of this process after a finite number of steps. Therefore there is a finitely
generated pp-type q with H(q) = H(p) and with q isolated. Let b in H(a) realise q.

By (i)= (iii) applied to q and H, some projection rll, preserves the pp-type of b.
Hence (11.23) ny must preserve the pp-type of S. That is, p=pq - contradiction (for p.
is isolated), as required. o

Corollary 11.33 Suppose that R is right artinian. Let p and q be finitely
generated irreducible pp-types with H(p)_H(q). Then p is isolated (with respect
to a given T) iff q is isolated (with respect to T).

Proof This follows from 11.32 since condition (ii) holds equally for p and q. Of course, if
H(p) is a U. module (e.g., if R is an Artin algebra) then this is immediate from the fact that
the prime model realises exactly the isolated types.

Alternatively the result follows easily by 9.26 and 9.24 (say). o

Next, I give the totally transcendental version of 11.32 which overlaps with, but also
diverges from that result.

Proposition 11.34 [Pr84; 3.6] Suppose that T is totally transcendental. Then the
following conditions are equivalent for any irreducible type p over 0:
(i) p is isolated;
(ii) if {N-,).x is any set of indecomposable pure-injectives and if N(p) is a

direct summand of the product TTXN-, then Y(p) _//(p-) for some 'X;
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(iii) if (N-A)a is any set of indecomposable pure-injectives and if N(p) is a
direct summand of the product

) ¼ ) ,
#,A then, for some 'A, the canonical

projection TT uAtu >N-A induces an isomorphism N(p)=N-A.
Proof First note that none of the conditions (i), (ii), (iii) is changed by assuming that
T=T'&a (by 4.39 and (say) 9.26).

and are just as in the proof of 11.32. A proof of very
much like that in 11.32, may be given using the U. condition in place of 11.23.

Alternatively; let Mo = ®-A N-A (K-A), with the N-A being the hulls of all the isolated
irreducible 1-types, be the prime model of T (4.62). By 9.33, Mo is an elementary
cogenerator: so there is K with N(p) purely embedding into M. K. Since

A N A (K^MoK= (® A))K is pure in TT N AKAXK one has the failure of (ii) if p is
non-isolated (for then N(p) cannot be isomorphic to any N-A). o

The next result, needed for the converse of 11.29, is due to Auslander.

Theorem 11.35 [Aus76; 2.4] Suppose that the ring R is of finite representation
type. If {N))) is a set of indecomposable modules and if N is an indecomposable
which purely embeds in the product TT XN% then, for some -A, one has N=N,A. o

Corollary 11.36 If R is a ring of finite representation type then every irreducible
type (in finitely many free variables) is isolated.

Proof Since finite representation type implies right pure semisimplicity, hence every pp-
type finitely generated, this follows by 11.35 and 11.32. o

Of course, even if R has finite representation type one cannot expect all types in finitely
many free variables to be isolated - for then T* would be )k0-categorical (assuming IRk< 'tA.).

Example 2 Take R to be the ring QI of rationals; so T*=Th(Qa). Since T* is not )k0-
categorical (for Q=-Q(DQd) there must be non-isolated types (necessarily of weight ?2). Since
there are only two 1-types (the type of the zero element, and that of any non-zero element), or
by 11.36, we must look to 2-types for non-isolation. In QU eQd let a be the element (1,0) and
let b be (0, 1) - so b is not a multiple of a. Then the type of the pair (a,b) is non-isolated
(exercise).

The converse of 11.29 is then provided by 6.28.

Corollary 11.37 If the ring R is of finite representation type then T* has finite
Morley rank.

Proof Otherwise, 6.28 would imply that there was a non-isolated irreducible 1-type over 0,
contradicting 11.36. o

Summarising, we have the following.

Theorem 11.38 [Pr84; 3.9] The following conditions on the ring R are equivalent:
(i) R is of finite representation type;
(ii) T* has finite Morley rank;
(iiii) every R-module (equivalently every left R-module) has finite Morley rank;
(iv) P1(R) has finite length;
(v) every irreducible type (in finitely many free variables) is isolated.
If R is right artinian, then a further equivalent is:
(vi) z(T*) is finite.

Proof The equivalence of (i) and (ii) is 11.29 and 11.37. That (ii), (iii) and (iv) are
equivalent follows as in 11.6. By 11.36, (i) implies (v).
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Suppose that (v) holds. It follows by 6.28 that T* has finite Morley rank - that is, (ii)
holds. The last statement follows by [Tac73; §9] (cf. 11.17 above). n

Example 3 If R is not assumed to be right artinian, then Z(T*) being finite does not imply
that R is of finite representation type. Consider Ex16.2/3.

Given a ring of finite representation type, the Morley rank of T* is easily calculated if one
knows the indecomposables. It is just the pp-rank of the module M which is a direct sum of one
copy of each indecomposable (so, by 11.16, if R is a K-algebra with K algebraically closed, it
is just the K-dimension of M). This follows from the next result which, in turn, is an
immediate consequence of 9.3.

Lemma 11.39 Let M and hi be modules of finite Morley rank. Then
MR(M®N)=MR(M)+MR(M). o

Thus, for example, if R is the path algebra of the quiver E6 then MR(T*)=156.

Exercise 3 It's not difficult to classify the rings of finite representation type such that the
Morley rank of T* is very small.
(i) Show that if MR(T*)-<2 then R is semisimple artinian.
(ii) Show that if MR(T*)=3 then either R is semisimple artinian or else R/J-J is a

division ring (e.g. R=714).
(iii) Show that if MR(T*)=4 then the only essentially new possibility is that R is of the

' D
form

D
0 D where D and D' are division rings and D has a (D',D)-bimodule

structure (e.g. the path algebra of A2). [Hint: show that J2 = 0 - this is a useful first
step in all three parts (and in the first two, pretty well the last step).]

Fix an integer d and consider the class 7d(K) of all d-dimensional algebras of finite
representation type over the base field K. Any d-dimensional K-algebra can be described by
d' structure constants, which tell how the elements of a chosen K-basis multiply together. In
particular, any d-dimensional K-algebra with a chosen K-basis determines a point of affine
Kd 3-space. Different bases of the same algebra are related by invertible dxd matrices over
K - that is, by elements of GLd(K). The action of GL5(K) on Kd induces an action on the
points of Kd

3
which stabilises the set, Xd, of points corresponding to members of VA).

Under this action, the orbits are precisely the isomorphism classes of d-dimensional K-
algebras of finite representation type. The question of whether there are, for each d and K,
only finitely many algebras of finite representation type (up to isomorphism), was open.

Gabriel [Gab75a] showed that if K is algebraically closed then the set Xd is an open
subset of the set Yd of all members of Kd

3
which correspond to algebras: there exist

polynomials f,,...,f E K[Xi : 1_<i< d3] such that a point k of Yd corresponds to an algebra
of finite representation type iff not all of f,(k)...... are zero. Gabriel left open the
question of whether there are such polynomials over the prime subfield.

Herrmann, Jensen and Lenzing in [HJL81] and [JL82] (also [JL80]) went some way
towards answering this, by showing that the class 7d(K) for any field K is finitely
axiomatisable so, using the'elimination of quantifiers in the case that K is algebraically closed,
they deduced that, for K algebraically closed, the set Xd is constructible over the prime
subfield (that is, Xd is defined by a certain finite set of equations and inequations over the
prime subfield). These papers contain a number of results on axiomatisability, effectivity,
bounds on the dumber of indecomposables and the effect of extending the base field.
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On the question of the finiteness of 7d(K), the further development of covering theory (see
[6082]), together with the fact that there is a bound, in terms of the dimension of the algebra,
on the number of indecomposables (see [JL82: 3.6] and also [HJL81: 5.1]; alternatively, see
[Bon82; §5] plus [BaBr8l; §4]) shows that, outside of characteristic two (where there the
map from an algebra to its Auslander-Reiten quiver need not be 1-1), there are indeed only
finitely many d-dimensional K-algebras of finite representation type (there are, no doubt, a
number of routes to this fact).

In any case, the multiplicative basis theorem [BGRS85] supercedes all this, at least for
algebraically closed fields. The theorem says that, if R is a algebra of finite representation
type over an algebraically closed field K then there is a K-basis of R in which the product of
any two basis elements is either zero or a basis element. In particular, over such K, there are
only finitely many orbits in d(K). For a discussion of the situation over non-algebraically
closed fields, see [Gus85].

11.P "Pathologies"

The area that I touch on here is really rather large. So what I do is to direct the reader to
some review papers and just mention some results which directly impinge on what is discussed
elsewhere in the text. For a more balanced presentation, the reader should consult the review
works that I mention.

In [Cor63], Corner showed that every countable reduced torsionfree ring is the
endomorphism ring of some countable reduced torsionfree abelian group. He then gave examples
of various pathologies which can arise in abelian groups (cf. Kaplansky's "Test Problems"
[Kap54; p12]).

Corner's results were extended in the work of Brenner and Butler and Corner [BB65],
[Bre67], [Cor69]. Brenner and Butler showed that every associative algebra over a field K
can be realised as the algebra of those endomorphisms of a K-vectorspace which leave invariant
a specified set of subspaces. Brenner improved this by showing that the number of subspaces
may be taken to be five, provided the algebra is countably generated over K. Set theory began to
make its appearance when Corner showed that it is enough to suppose that the number of
generators of the algebra is less than the first strongly inaccessible cardinal. (In fact, Corner
had already noted that a "proof" of Fuchs that there are arbitrarily large indecomposable
torsionfree abelian groups failed at certain large cardinals.)

Since then, these results have been extended in many directions. One direction is, of course,
to wild representation type (see Chpt.13). In another direction, one is concerned with realising
algebras as endomorphism rings of members of various classes of modules. So this enterprise
includes finding large indecomposable modules, finding large modules with no indecomposable
direct summands, and so on. Set-theoretical techniques have turned out to be essential, and set-
theoretical axioms beyond ZFC have to be invoked for some results.

The other source of related material is Shelah's solution to the Whitehead Problem
([She74], see [Ek76]).

The following are some survey papers: [C085]; [0i b83]; [Gob84]; also see the
introduction to [DuGo82].

The following sort of result, this one taken from [DuGS82] (also see [C085]), is
particularly striking. First note that a complete discrete rank 1 valuation domain does not have
arbitrarily large indecomposable modules.

Theorem Let R be a Dedekind domain, not a field. Let K be an infinite cardinal.
Then the following are equivalent:
(i) R is not a complete discrete valuation domain;
(ii) there exists an indecomposable R-module of rank-> 2
(iii) there exists an indecomposable R-module of rank3K;
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(iv) there exists an R-module (not pure-injective!) of rank-> K with no
indecomposable summand;

(v) there exist R-modules of rank->K which do not satisfy Kaplansky's Test
Problems;

(vi) if A is any cotorsion-free R-algebra then there exists an R-module with
endomorphism algebra isomorphic to R. a

There have been recent extensions of these results to arbitrary rings.
The above result can be used to answer in the negative a question of Kucera [Kuc87]. For it

follows that there are arbitrarily large abelian groups with local endomorphism ring: since
such a group M may be as large as one desires, the weight of M in Th(M o) need not be, 1.

It is shown in [DU6o85] (also see references in §15.1) that the class of all torsion theories
of abelian groups (cf. §15.1) is a proper class this contrasts with hereditary torsion theories, of
which there can be at most 2a where -A= 2[R1. Also see [DFS87].

[Hu83] contains related results on reflexive modules.
There are examples of the sort of pathology one obtains, even over tame rings, by working

with arbitrary ("large") modules in [BrRi76].
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CHAPTER 12 FUNCTOR CATEGORIES

In the early 70's, M. Auslander initiated a novel approach to the study of modules over
artinian rings: rather than dealing directly with the modules, one works in the functor category
(mod-R,Ab) of additive functors from the category of finitely presented modules to the category
of abelian groups. In other words, one studies modules over the category of finitely presented
modules. It might seem that this is piling complication upon complication, butAuslander's
approach has been remarkably successful.

One main point of this chapter is to reconsider some of Auslander's results, especially the
functorial characterisation of rings of finite representation type, in terms of pp formulas and
pp-types. The other main purpose is to set down the material on pp-types and functors which
should be useful in the classifications of infinite-dimensional indecomposable pure-injectives
over particular (classes of) algebras.

Let U be the forgetful functor from mod-R to Ab - the functor which simply forgets that
an R-module is anything more than an abelian group. If N is a pp formula in one free variable,
then the assignment MH ip(M), with the induced action on morphisms, is a functor, from
mod-R to Ab: indeed, it is a subfunctor of U. We see in §1 that every subfunctor of U is a
(possibly infinite) sum of such functors induced from pp formulas. It is also shown that the FLP
are finitely presented functors and that, if one allows pp formulas in more than one free
variable, the FLp are generating. Therefore, one may use these "pp-functors" in place of the
more usual representable functors (M,-).

The main reason for looking at (mod-R,Ab) is that the simple functors are in bijective
correspondence with the indecomposable finitely generated modules. Of course, we are also
interested in certain infinitely generated indecomposable modules (viz. the pure-injective
ones), and this functor category is not large enough to let us see these. But we can replace
mod-R by a variety of other subcategories of MR. In particular, we can replace it by the full
subcategory with objects all the pure-injective modules (or "small" parts of this). If we do
this, then there are more subfunctors of the forgetful functor but, still, all are sums of functors
of the form Fp, where now p may be any pp-type.

In the second section, we consider the connection between the simple objects of
(mod-R,Ab) and the indecomposable finitely generated modules (R right artinian): in
particular, we describe the natural bijection between them. If one replaces mod-R by a
category of pure-injective modules, then there is no particular reason to suppose that every
simple functor arises from an indecomposable pure-injective. What we do see is that every
simple subquotient of U does correspond to an indecomposable pure-injective (and conversely).
That seems to be enough for the applications that I have in mind.

Also in that section, there is a proof of the fact that a ring is of finite representation type iff
every simple functor in (mod-R,Ab) is finitely presented and every non-zero functor has a
simple subfunctor. We see first that a simple functor is finitely presented iff the corresponding
indecomposable is the ("finitely generated") hull of a neg-isolated type. So the condition that
every simple functor be finitely presented is equivalent to the condition that every finitely
generated irreducible type be neg-isolated. The other condition - that every non-zero functor
have a simple subfunctor - is seen to be equivalent to the ring being right pure-semisimple.
Putting these together, we obtain the functorial characterisation of finite representation type
(our proof is self-contained only in the artin algebra case).

In the third section, we turn to somewhat different matters. It has already been mentioned
in Chapter 4 that there are ways of turning pure-injectives into the injectives of suitable
categories, thus allowing one to apply the well-developed theory of injective objects. There is
more that one way of doing this: I describe a couple. I also show how to embed the model-
theoretic context CT* into an abelian category. I finish the section by indicating how to develop
a theory of torsion-theoretic localisation at pure-injectives.

There is a supplementary section which directs the reader to related work on pure global
dimension and Krull dimension of functor categories.
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12.1 Functors defined from pp formulas

Readers who take fright at the mention of categories and functors may be relieved to learn
that they have been using them all along in these notes. For, given any pp formula ip, the
assignment which takes each module MR to the pp-definable subgroup ip(M) actually yields a
functor from 7118 to Ab. Let me be more precise.

Given a pp formula ip in n free variables, the functor Fop from the category 1R of R-
modules to the category Ab of abelian groups takes the module M to the abelian group
FPM = ip(M), and takes a morphism M--t---> M' between R-modules to the induced morphism of
abelian groups FLpf : ip(M)--a'.p(M'). This morphism is well-defined, since if ip(a) is true
in M then ip(fa) is true in M' (2.7). In practice, I will tend to blur the distinction between
f and FLpf. It is easy to check that the conditions for F,, to be a functor are satisfied. In all
this, we rely on the fact that T(M) is an abelian group: it may be that it is more - for example,
if R is a K-algebra then it will be a K-vectorspace. In any case, it will be assumed for the
moment that the image category is Ab, but what I say applies just as well if the image category
is IIZK, for example. It should be observed for future use that if, in the above, the pp formula
ip is replaced by a pp-type p, then one may define the corresponding functor FP which takes
M to p(M).

It will turn out that 7728 is not a very good category on which to define our functors. It is
too large, and infinitely generated modules display too many pathologies. Especially when R is
an artinian ring, and even in general, it is more appropriate to look at functors from the
category, mod-R, of finitely presented modules. These functors will be the the main topic of
this section. When, however, we are lead to deal with infinitely generated modules - for
example, when we look at infinitely generated pp-types - then we have to expand mod-R
somewhat.

Let us note some basic points about these functors which are defined from pp formulas. The
functor corresponding to the formula "u=u" is, of course, the underlying, or forgetful,
functor which simply forgets the R-multiplications: we denote it by U. Observe that its
powers, Un, are the functors corresponding to formulas of the form If ip is app
formula in n free variables then, clearly, FLp is a subfunctor of Un. Moreover if '.p- tp then
FLpS Fw (whether or not the converse is true depends on whether the domain category is large
enough to distinguish between inequivalent pp formulas).

For the sake of readers who are not very happy with functorial language, let me make a few
observations. If F and G are functors, then F ®G denotes the functor which is given on
objects by taking M to FM e GM.

The relationship G S F means, roughly, that for all objects
M one has GMS FM; more precisely, there is a naturalG ti F transformation t:G-* F such that, for every module M,

tM the M-component of t, tM, is an embedding from FM to
M GM - FM GM. If G c F then one can define the quotient or factor

FIG, which is in the same functor category and is defined onfl Gf JFf objects by Mi--> FM/GM and on morphisms in the obvious
way. Recall that a natural transformation from G to F

M' GM' t-) FM' is given by, for each object M, a morphism
tM : GM - FM such that all diagrams of the sort shown
commute.
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There is another sort of functor which is very commonly considered. Let
M be any object of the domain category C (which is always supposed to
be additive): define the corresponding representable functor (M,-)
by: (M,-)(M')=(M,M') on objects (note that our morphism sets are

a H fa abelian groups or K-vectorspaces, as appropriate); and by the
M' > M" "obvious" action, given by composition, on morphisms (the "obvious"

action should become so, on considering the diagram opposite).

One of the key facts about the representable functors is that they are projective and, taken
together, form a generating set of finitely generated projectives for the functor category
(C, Ab). Moreover, this functor category contains a copy of Cop: the embedding is defined by
taking each object M of C to the functor (M,-), and taking each morphism M-1--) M' of C to
the "obvious" induced morphism (f,-):(M',-) ) (M,-). This actually embeds Cop as a full
subcategory of (C,Ab). The last point means that every morphism (natural transformation)
between the functors (M',-) and (M,-) arises in this way from some morphism M-1---) M, in
C (the proof is immediate from the Yoneda Lemma). For more background, see [Aus66],
[Mit72] for example.

In the usual functorial approach to the representation theory of algebras, the representable
functors play a prominent role: here this role will be taken over by the pp-defined functors
above. Such functors appear in [Z-HZ78] under the name "p-functors" and in [Zim77] under
the name "(finitely) matrizable functors" (they are also implicit in [GJ73]).

Lest all this seem overly abstract, I present the proofs for the following special case: R is
any ring (eventually it will be right artinian) and the domain category, C, is the category
mod-R of finitely presented (equivalently, if R is right noetherian, finitely generated)
modules. I will indicate how the results may be generalised, especially since there is another
possibility for C which is of significance. We will see that every subfunctor of the forgetful
functor is a sum, possibly infinite, of the "pp-functors" defined above. Denote the functor
category (mod-R,Ab) by F=F(R).

It is the following property (8.5) of finitely presented modules which is crucial:
(EH) if 07,-5 are, respectively, in the finitely presented modules M, M' and are such that

ppM(5) -< ppM'(b), then there is a morphism M-. M' such that f57=T.

Lemma 12.1 [Pr83; 3.1] Suppose that R is arbitrary and let ip, ip be pp formulas
(both in n free variables for some n). Then tp4 1p iff F4,SFip as functors in
(mod-R,Ab).

Proof If y,- p then, for every module M, one has lp(M)5lp(M) and so, simply by
definition, FW-< FLp. If, conversely, FX,SFLp, then for every finitely presented module M one
has .p(M)<- ip(M). So we finish by recalling that) if there is some tuple in some module
satisfying iv but not lp, then there is such an element in a finitely presented module (8.14). n

It has been observed that every functor of the form FLP is a subfunctor of the forgetful
functor U. The structure of the lattice of subfunctors of U will be a major consideration in
this and the next section. I begin by showing that every subfunctor of U (and of its powers) is a
sum of functors of the form FLp: in consequence, these functors are precisely the finitely
generated subfunctors of U.

Exercise 1 We are concerned here with functors as subfunctors of U. Show that it is
possible to have functors F,G 5 U which are distinct, but which are isomorphic as functors.
[Hint: take R = K[x1, x2 : xixl = 0 (i,j E (1, 2)] where K is a field and consider the category
of functors from the amenable (see below) category of projective = free modules to Ab]
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Proposition 12.2 [Pr83; 3.2] Let nEw and let F be a subfunctor of Un. Then
F=. SF).

Proof Set G to be the sum, { FOP : FMS F ), of those pp-functors less than or equal to F.
Were G strictly below F then (by definition of these functors) there would be some finitely
presented module M, and some a in M with a E FM\GM.

Let p=ppM(a): since M is finitely presented, there is a single formula W equivalent to
p in every (finitely presented) module (8.4). I claim that Fop<F - contradicting that FLp is
not below G.

So let N be finitely presented and let bEtp(N): it must be
U n Mn f n shown that bEFM. Since b satisfies ip, and hence satisfies

ppM(a), one has ppN(b),>ppM(i ). So, by the property (EH),
there is a morphism M-141 taking a to b. Since 5E FMG the image, b, of a under f(n) is in FN (consider the

F FM >F N diagram shown).
frFN] Thus ip(N)=FLP(N)<,F(//), as required. o

We will now see that, like the representable functors, the pp-functors form a generating
set of finitely presented objects of F. A functor F is finitely generated if, whenever it is
expressed as a sum of subfunctors, it is equal to the sum of finitely many of them: in other
words, it cannot be expressed as a directed union (or sum) of proper subfunctors. The functors
F,, are finitely generated: for if we have Fip= I Fi for some Fi _< Fip then, taking a in M
be a free realisation of p (in a finitely presented module M (§8.3)), we deduce that there are
finitely many elements ajEM with a1EFJ(M) and with a=Eat. Then, since each element in
ip(N) for any (finitely presented) N is, by (EH), the image of a under some morphism, it
follows that F is the sum of the corresponding finitely many functors Fj, as required.

The functor F is said to be finitely presented if (it is finitely generated and) there is an
exact sequence H' G-*F with G and H finitely generated. Just as with modules, it
follows that if F is finitely presented then, in any exact sequence of the above form, if 6 is
finitely generated, so is H.

Proposition 12.3 [Pr83; 3.4] If ip is a pp formula then the functor FLP is
finitely presented.

The set of all such functors, F, is generating in (mod-R,Ab): that is, for
every functor F:mod-R--Ab there is an exact sequence G'H-*F with each
of 6, H a coproduct (direct sum) of functors of the form FLP.

Proof Since the representable functors are known to be finitely generated, it will be enough,
for the first part, to show that for every Lp there is an exact sequence of the form
(M', -)-- (M, -)--» Ftp with M, M' E mod-R.

We take M to be any finitely presented module which contains a free realisation, a (say),
of ip. An epimorphism from (M,-) to FLP is defined as follows: it is the natural
transformation which is given component-wise by
where t y is defined to take f E (M,N) to the value, fa, of f at a. By (EH), these
components 'tN are epi (cf. proof of 12.2): this implies that 1; is epi, as required. (Details of
checking that t is a natural transformation are left as an exercise in the definitions.)

So the kernel of t has to be identified. Suppose that a is set

L= I aiR <_ M. The natural projection rc:M--»M/L defines, by composition, a monomorphism
(M/L,-)'--- (M,-). The claim is that this is the kernel of t. Let N E mod-R and let
f E (M,1/). Observe that cNf=0 iff f5= 0; that is, iff fat=...=fan=0 - which is
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equivalent to fL=O. The last occurs precisely if f factors through M/L - that is iff f lies
in the image of (M/L, N) , ) (M, N), as required.

Next, it is shown that the functors Fip are generating. Since the representable functors
are known to be generating, it will be enough to show that every representable (M,-) is
isomorphic to a quotient of a pp-functor.

Take any finite generating set 01,...,an for M, and let p be pp' (a): as noted already,
FP has the form Fop for some pp formula ip. As in the first part, there is an exact sequence
(M/L,-)--- Fop where L = E aiR = M: thus (M, -) is even isomorphic to FLP, as
required. o

At the end of the above proof we saw that every representable functor is isomorphic to a
functor of the form FLp, where Lp is a pp formula in a finite number of variables. The result
would be neater if every representable were an image of (so, by projectivity, a direct summand
of) a functor arising from a pp formula in one free variable. If the representables
corresponding to cyclic modules were generating, then the above proof would show this:
however, that is the case iff every finitely presented module embeds into a direct sum of cyclic
modules. This property is satisfied by PrUfer domains - indeed, these are exactly the
commutative domains over which every finitely presented module is a direct summand of a
direct sum of cyclic modules [War69; Prop5]. On the other hand it will be seen that every
simple functor is an image of a functor Fip where Lp has just one free variable, and that will
be enough for us here.

It follows from what has been said that if a functor F has a presentation FV * FLP -j>F
by pp-functors then it is finitely presented (this is one justification for our use of pp-functors
in place of representable functors).

Corollary 12.4 [Pr83; 3.3] Let FSUn for some nEw. Then F is finitely
generated iff it is of the form Fip for some pp formula Lp in n free variables.

Proof One direction has been established already, so suppose that FSUn is finitely
generated. By 12.2, F is a sum of functors of the form Fop and, being finitely generated, it is
a sum of finitely many of them. So the only point to be checked is that if tp,,...,Lpk are pp
formulas (in n free variables) then the sum 6= E F(Ti) is of the same form; but indeed
(8.1), it is just Fip where Lp is A ipi. o

The point used at the end of the last proof is contained in the next result, the proof of which
is left as an easy exercise.

Lemma 12.5 The map (tp) H F,p defines a lattice anti-isomorphism from the
lattice, Pf, of finitely generated pp-types to the lattice, Lattf(U), of finitely
generated subfunctors of U(n). In particular, the intersection of two finitely
generated subfunctors of U(n) is again finitely generated. a

The last point is in contrast with the situation for right ideals.
Also, the situation for infinitely generated pp-types is rather more complicated. Clearly,

there is a well-defined morphism P---4Latt(U), given by taking p to Fp; but, in general,
this need be neither mono nor epi. An example which shows that it is not mono is obtained by
taking the ring to be 2, and considering the pp-type p(v) which says that v is annihilated by
the prime q and is divisible by every positive power of q: FP is the zero functor on mod-7l.
For some consideration of the extent to which pi-- FP is epi, see after 12.10.

Corollary 12.6 If the elementary Krull dimension (see §10.5) of the largest theory
of R-modules is defined, then so is the Krull dimension of the lattice of finitely
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generated subfunctors of U, and the values are equal. In particular, U has the
dcc on subfunctors iff R is right pure-semis imp le. a

Before going on to look in more detail at the subfunctors of U, I indicate how the results of
this section may be generalised. Say that a full subcategory C of MR is amenable ([Pr83;
§3]) if it is closed under finite direct sums and direct summands and if it satisfies the weak
injectivity/extension-of-morphism property (EH), which was defined above. Of course mod-R
is amenable, but there are other important examples - the full subcategory whose objects are:
the pure-injectives; or the pure-injective summands of models of T (T=Tko); or the pure-
injectives of finite weight in b'(T), where (T=T' o); or the finite abelian groups; or the
finitely generated projective modules. Some examples which I will refer to later are the full
subcategories of T2R whose objects are: all the pure-injective modules - I use the notation
PI(R); or the hulls of finite sets of elements - I use the notation PIF(R). I drop the "R" when
convenient. Also, given a complete theory T=T o, there are the corresponding categories for
direct summands of models of T, and I denote these by PI(T) and PIF(T) respectively. Of
course, PI(R) and PI(T) are not sets, so one might prefer to restrict the size of their objects
by some large enough cardinal (and one would lose little by doing so).

Clearly, if C is amenable then so is ® C - the full subcategory whose objects are the
arbitrary coproducts of members of C.

Given an amenable category C, denote by PnC the sub-poset of Pn consisting of all pp-n-
types of elements of members of C. The special notation Pnf has already been introduced for
Pn(mod-R). It is easy to see that PC is A-closed in P and that, if C is closed under
arbitrary products, then PC is fl-closed in P. On the other hand, PC need not be v-closed
(Exercise: take C to be b'(T) where T is the theory of M = (7l2 09 2,)'k, take
p=ppM(T,0), q=ppM(O,i), and compare the join of p and q in P and in PC).

Let me now indicate how much of the above goes in the general case and, also, in the cases of
particular interest to us.

Replacing elements of Pf by elements of P(C), 12.1 holds for PI and PIF and, indeed,
for any amenable category, provided one replaces the pp formulas by members of PC.

Similarly, 12.2 goes through if one replaces the functors of the form F. by those of the
form FP where pEPC; in particular, if C is PI or PIF, then one has that every
subfunctor of the forgetful functor is a sum of functors of the form Fp for pEP (observe, by
the way, that since R need not be pure-injective, the forgetful functor need not be
representable, although if R is an artin algebra, then it will be).

The statement of 12.3 breaks into three parts. The first is that the functors FP should be
finitely generated. This is true for PI and PIF and, indeed, in general, because we have defined
the members of PC to be just those pp-types which have a "free realisation" in some member
of C.. The next point is whether the Fp are finitely presented. The argument of 12.3 shows
that this is still true for PI, however it may fail for PIF - consider PIF(V and take p to be
the pp-type of 1 E ll - since 7l/72 is not the hull of a finite number of elements, one has that
FP is not finitely presented. A necessary and sufficient condition for all the functors Fp to be
finitely presented is

() for every C in C and every finitely generated submodule L of C, the functor
(CIL,-), when restricted to C, is finitely generated-

The remainder of 12.3, that the functors Fp (pEPC) are generating, is a rather strong
condition. If satisfied, then each (C,-) for CEC is an image of, hence, by projectivity, is a
direct summand of, a finite direct sum of Fp's. In particular, each (C,-) embeds in some
power Un of the forgetful functor. This is a strong condition: for example, if RE C so that
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this implies, by the Yoneda Lemma, that there is an epi from R" to C, i.e., that C
is finitely generated.

Turning to 12.4: the categories C for which a subfunctor of U is finitely generated iff it
is of the form Fp for some pEPC are just those for which the Fp are finitely generated.
Finally, 12.5 also goes through for such categories, provided one replaces Pf by PC.

I finish this section by considering the relationship between PC and the lattice LattU of
all subfuhctors of the forgetful functor (we know already that every such functor is a sum of
functors of the form Y. I will do this only in the two special cases C=mod-R and C=PIF:
let me denote the respective functor categories by F and PIF So let us consider the map
F:pi---) Fp.

The first point to note is that "more" of the elements of Lattll are finitely generated in the
case of PIF than in the case of F: indeed every FP is finitely generated for PIF, whereas
only the Fp, with p equivalent in every finitely presented module to some F,p, are finitely
generated for F.

In the case of PIF, it is immediate that the function F is 1-1; this is not true for F. For
consider the case R=71 and let p be the pp-type of an element of order 2 in 71200. It is easy
to see that if aE p(M), where M is a finitely presented abelian group, then a must be zero.
Thus F p = 0 and so the function F is not 1-1. In contrast, we will see that if R is an artin
algebra then F is 1-1. But, first I show that F commutes with infinite joins in P.

Consider F first. By "tp" I will denote the pp-type generated by ip. Let pEP. Then
p = V { ip : lp E p ). I show that F p = fl (Fp : ip E p ); let G be this intersection of subfunctors of
U. If ipE p then one has that any element satisfying p (in any module) also satisfies ip. Hence
Fp < FLP and so F,-<G. If one had FP <G then, by 12.2, there would be some pp formula V
with G> F4, but FP not containing F, . Then, for any ipE p, one would have from
Fv<G <Fqp that ip<ip in P (this follows by 12.1): that is, W implies every formula in p.
Hence, one would have v> -p and so F, < Fp - contradiction. This has shown that F
commutes with arbitrary joins of finitely generated pp-types. Since every pp-type may be
expressed as a join of finitely generated pp-types, it follows that F does commute with
arbitrary joins in P.

Now consider PIF: suppose that p = V {q-A : xE A }. Since F commutes with finite joins
(by 2.3(iii)), it may be assumed that the join is directed. Let 6 = fl (F(q,,) : ^AE A ). Since
FP < F(q x) for each), (by definition of the functors) one has FP < G. But also, G is a sum
of functors of the form F,p, so the argument in the previous paragraph applies to show that F
commutes with joins.

Now let R be an artin algebra. Let p>q. By the above, one has
FP =fl{F,p:ipEp)<fl{F ,:tpEq)=Fq. To show that the inclusion is strict, take any
ip E p\q; if FP and Fq were equal, one would have Fq < F. By 13.2 (the proof may be read
now), there is an element a, with pp-type q, lying in a direct product of finitely presented
modules: so a has the form (a-A)^A where, for each 'a , lies in a finitely presented module.
Since a satisfies q, so does each ax; since a -A lies in a finitely presented module it
therefore satisfies ip; since each component of a satisfies ip, so does a. That is, ipEq -
contradiction, as required. Thus F is 1-1 on F if R is an artin algebra.

Next, I consider irreducible pp-types: an obvious question is whether, if p is an
irreducible pp-type, the functor FP is +-irreducible.

For PIF this is obvious (by 4.30).
For F ; again let R be an artin algebra. Let pEP. Then, i n P , p = fl (ip : u,-* p ). This is

immediate from 13.2 (cf. the above paragraph). Suppose that p is irreducible in P and that
one has FP = 6 +H in Lattll. By 12.2, G = ET FLp and H = X v F., for suitable pp-
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formulas. Put q = fl
LA

(ip) and q' = fl
W

(iv) in P. Then, since F is 1-1, Fq = G and

Fq' = H. So one has FP = Fq + Fq' and hence, since pF- Fp is 1-1, it follows that
p = q n q'. So p = q (say) and therefore FP=H, as requi red.

Finally, let us consider the relationship between Fp and the functors which lie below it.
Consider F first. Let PEP; then one has F= X (F,, : tv-* p ). For certainly if W

implies p then F,,,<Fp. Conversely, if F, -<Fp then, for every tpE p, one has (as before)
that, in every finitely presented module ip is a consequence of w; therefore this is true in
every module and so does ip imply p, as required. One may ask whether it is, further, the
case that F commutes with arbitrary meets in P. So suppose that p = f)., q-A in P. Then
certainly X, F(q.) S Fp. Let ip be such that Fop 5 Fp: in order to show that F does
commute with arbitrary meets, it will suffice (by 12.2) to show that F tp 5 E-AF(q-A). Again,
it seems that we have to assume that R is an artin algebra: then each may be represented
as a meet of the form flp w-A1J for suitable pp formulas Wa1,; hence p is the meet of all these
finitely generated pp-types as 'a and i vary. So, by what has already been shown, FP is the
sum of all the By the Grothendieck property and since FLp is finitely generated (cf.
proof of 12.9), it follows that Fop is contained in a finite sum of such F(V^A1,)'s and hence is
contained in a finite sum of F(q ,)'s, as required. So, if R is an artin algebra then F
commutes with arbitrary meets in P. We will see that this is not so for PIF.

So consider PIF and let p bean irreducible pp-type. Then (by 4.30) the inclusion
F p > (Fq : q > p) is strict. But if p is not neg-isolated then p = fl (q : q> p ). Now, unless
R is of finite representation type, there are irreducible pp-types which are not neg-isolated
(11.38) and so it follows that F does not commute with arbitrary meets in P. It is clear, in
any case, that 1 (Fq : q> p ) is actually the radical JFp (see §2) and, unless p is neg-
isolated, it is not of the form FP' for any pp-type p'.

So we see that, for an artin algebra, the "gaps" between functors of the form FP (p
irreducible) and their radicals are "closed" when we work in the functor category (mod-R,Ab)
but they open up when we expand to the category PI(F) reflecting the presence of new
indecomposables and their corresponding simple functors (see the next section for these).

12.2 Simple functors

Throuahout this section the ring R is assumed to be right artinian.
Also, I will work mainly in the functor category F = (mod-R,Ab), although I will

sometimes refer to the category (PI(F), Ab).
A major insight of Auslander [Aus74a; §2] is that over a right artinian ring there is a

bijection between the simple functors in F and the indecomposable finitely presented modules.
We begin the section by examining this connection from the point of view of pp-types.

For any functor F the (Jacobson) radical of F, denoted JF, is defined to be the
intersection of all maximal proper subfunctors of F (if F is finitely generated then this
intersection will not be empty). The functor F is said to be local if JF is the unique
maximal subfunctor of F, in which case JF also is the sum of all proper subfunctors of F.

Theorem 12.7 [Aus74a; 2.3] (R right artinian) Let pHip be a finitely generated
pp-type. Then FP is local iff p is irreducible: in this case, denote by SP (or
S(p)) the simple quotient functor Fp/JFp.

Every simple functor in F has the form Sp for some such pp-type.
Proof [Pr83; 3.6] If p is reducible (in Pf, equally in P, by 8.8) then there are
q,q' E Pf strictly containing p and such that qnq'=p. Put in terms of the corresponding
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functors, this says that FP is the sum of the two proper subfunctors Fq and Fq', and so Fp
is not local.

If, on the other hand, p is irreducible and if Fp were not local, then p would be a sum
of proper subfunctors and, since by 12.3 it is finitely generated, it would be a sum of finitely
many (so two) of them. By 4.30, one obtains a contradiction.

Suppose next that S is a simple functor in (mod-R,Ab). Choose NE mod-R of minimal
length such that S##0. Since S preserves finite direct sums, N certainly is
indecomposable. Let a be a non-zero element of U and set p = pp(a). I show that S -Sp.

By the proof of 12.3, there is an exact sequence (N/aR,-)"-- (N,-)-*Fp in F.

Mapping this to S yields the left exact (exercise) sequence in Ab
(Fp, 5)c..__ ((U,-), S)--' ((N/aR,-), S). By the Yoneda Lemma, this is equivalent to the
following left exact sequence: (Fr, S), ) SW ) S(1//aR). By choice of Al, the last term in
the sequence is zero: so we conclude (Fp, S)-S1/. Since the latter is non-zero, it follows that
there is a non-zero morphism from the local functor FP to S. Hence ScFp/JFp=Sp, as
required. o

Exercise 1 Prove the second part of the above by using the fact that the functors of the form
FLP are generating (12.3).

From the above proof, one quickly deduces the explicit action of any simple functor S Sp.
For, i f U Up is the indecomposable on which S is non-zero then, by that proof, we have

where DP is the division ring EndU /JEndU .

Corollary 12.8 [Aus74a; §2] (R right artinian) Suppose that p and q are
irreducible finitely generated pp-types (not necessarily in the same number of free
variables). Then Sp=Sq iff the hulls of p and q are isomorphic.

The action of the simple functor Sp is given on objects by NHDp(K) where K

is the multiplicity of Np in N.
Proof If Sp-Sq then S,// mO since Spllp*O: say a E Fq//p\JFq//p. Then one has
q+(a) and, for every q'>q, not q'+(a): thus tp(a)=q.

The other points are obvious from what has gone before. a

If R is an artin algbra then 12.7 provides us with a bijection between isomorphism types
of indecomposable (pure-injective) finitely generated modules and isomorphism types of simple
functors in (mod-R,Ab). Moreover, every simple functor is a sub-quotient of the forgetful
functor U. This means that one may, in principle, classify the indecomposable finitely
generated pure-injectives by looking at "filtrations" of U by pp formulas (viz. maximal chains
of subfunctors of U). This is precisely the method used (though expressed in slightly different
ways) by Gelfand and Ponomarev, Ringel, Gabriel and others ([Gab75], [GP68], [GP72],
[R1175], [R1175b], [BuRi87]) to classify the indecomposable finite-dimensional
representations of certain finite-type and tame algebras. The success of this method suggests
that one should try to use the same kind of techniques to classify all the indecomposable pure-
injectives over tame finite-dimensional algebras. In §13.3 I will briefly report on some limited
success in this direction; here, I will at least establish the basic connection between
indecomposable pure-injectives and simple functors in an appropriate functor category.

The obvious functor category to try is (P 1, Ab) or, rather, one where PI is replaced by a
small part of it, such as P IF. The specific choice will not matter for what I say here, so let F'
be a functor category of this sort. Since, as we have seen in §12.1, the functors FP need not be
generating in F', there seems to be no particular reason to suppose that every simple functor
in F' is of the form Fp/JFp for some irreducible pp-type p. Probably this does not
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matter: what we do seem to need, in order to apply the method, is that every simple subquotient
of the forgetful functor U should be of this form. I proceed to show this.

Theorem 12.9 Let R be any ring, let F' be a functor category of the sort above,
and let S be a simple sub quotient of the forgetful functor. Then there is an
irreducible pp-type p such that S _ F p /JFp.

Proof By 4.38, every (continuous) pure-injective is a summand of a product of
indecomposable pure-injectives. So there is an indecomposable pure-injective N with
S41#0. Suppose that S has the form FIG where U F > G. Let a E FN \ GN have type p:
then one has (by (EH)) F = Fp+G and so S Fp/GnFp necessarily is isomorphic to Sp. o

Although we began this section by considering finitely generated functors, we have actually
been lead in 12.7 to consider infinitely generated ones - for the radical of a finitely generated
functor need not be finitely generated. In fact, whether JFLP is or is not finitely generated, is
of considerable significance.

First we see what it means, in terms of the corresponding pp-types, for JFLP to be finitely
generated. Then we will go on to derive a proof of the result of Auslander that a ring is of finite
representation type iff every simple functor is finitely presented and every non-zero functor
has a simple subfunctor.

Theorem 12.10 [Pr83; 3.8] Let R be any ring. Suppose that p is an irreducible
finitely generated pp-type. Then the following conditions are equivalent:
(i) the simple functor SP is finitely presented;
(ii) p is isolated in PM;
(iii) the type p is isolated (in the space of all 1-types for T*).

Proof The equivalence of (ii) and (iii) for finitely generated irreducible types has been seen
before in 8.8.

Consider the presentation JP' )Fp-j>Sp of S. It has been remarked already that
SP is finitely presented iff JP is finitely generated; that is (by 12.4) iff JP has the form
Fq for some finitely generated pp-type q. Such a type q (if it exists) is the minimal pp-type
above p in Pf, and hence in P - so the equivalence of (i) and (ii) follows. o

Note that if p is irreducible (f.g. or not) and not isolated in P, then there is no pp-type
going to JFp under the mapping described in §12.1. For, if p = (> q^A is a representation of
p as an infinite intersection of strictly greater pp-types then, certainly one has, for each a,
that F(q^A) 5 JFp; then it follows by 12.2 that, in fact, JFp = E F(q ,) but there is no
single q x with JFp = F(qX).

The next result follows by 11.32 (compare with 11.38).

Corollary 12.12 [Pr83; 3.9,3.11] Let R be right artinian. Set F=(mod-R,Ab).
Then the following conditions are equivalent:
(i) every simple functor in F is finitely presented;
(ii) every finitely generated irreducible (pp-)type is isolated;
(iii) whenever N, N-A (XEA) are indecomposable finitely generated modules such

that N purely embeds in the product of the N,, then, for some 'a, one has
M

Corollary 12.13 [Aus74a; 1.11] If the ring R is of finite representation type, then
every simple functor in (mod-R,Ab) is finitely presented. o
This third corollary is immediate from 12.10 and 11.38.
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An important class of rings satisfying the equivalent conditions of 12.12 are the algebras
finite-dimensional over a field (or more generally the Artin algebras) - see Chapter 13 for more
on these.

Corollary 12.14 Suppose that T =T'a is totally transcendental. Then the
following are equivalent for an irreducible type p:
(i) the simple functor SP in (ZP(T),Ab) is finitely presented;
(ii) the pp-type pEPT is isolated in PT;
(iii) the type p is isolated in ST(O). o

Corollary 12.15 Suppose that T =T, is totally transcendental. Then the
following are equivalent:
(i) every simple functor in (b'(T),Ab) is finitely presented;
(ii) T has finite Morley rank. o
The two "local" results above are obtained by working with the amenable category 6)(T) in

place of mod-R (and applying 6.28 for the second result).
If the ring R is of finite representation type then one can say more than 12.13: indeed, one

has the following result of Auslander.

Proposition 12.16 Suppose that R is of finite representation type. Then every
finitely generated functor in (mod-R,Ab) is of finite length.

Proof By 11.36 and 6.28, Pn has finite length for each n. Hence each underlying functor
Un has finite length, and so the same is true for all the F. Since every finitely generated
functor is an image of one of these (see 12.3), the result follows. o

In fact, Auslander showed that R is of finite representation type if, and only if, every
finitely generated functor in (mod-R,Ab) is of finite length [Aus74a; 1.11]. This latter
condition breaks down into two components, as follows.

Lemma 12.17 [Aus74a; 1.11] The following conditions on F=(mod-R,Ab) are
equivalent:
(i) every finitely generated object of F is of finite length;

(ii) (a) every simple functor in F is finitely presented, and
(b) every non-zero functor in F has a simple subfunctor. o

Clearly (b) follows from (i). Also, if S is simple, with presentation K, ) F-S where
F is finitely generated then, since F has finite length, it follows that K is finitely generated.
For the converse (that (ii) implies (i)), see [Aus74a; §1] (the proof uses the functor F
defined in the proof of 12.18(i)=(ii) below). The converse also follows from 12.19 below (for
an artin algebra our proof of this is self-contained - see 11.31).

An obvious next step is, therefore, to consider the condition that every non-zero (finitely
generated) functor has a non-zero socle: in fact this condition is really dual to that which
requires every simple functor to be finitely presented. It was proved in [Aus76] (also see
[Aus74a; 3.4] - note that Auslander is "working on the other side" there) that this property
characterises the right pure-semisimple rings among the right artinian ones: I give a proof of
this here, using the techniques of this chapter.

Theorem 12.18 Let R be arbitrary and set F=(mod-R,Ab). Then the following
conditions are equivalent:
(i) every non-zero functor in F has a simple subfunctor;
(ii) R is right pure-semisimple.

Proof The proof comes from [Pr83; 3.12], but it is actually quite close to [Aus74a; §i].
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Suppose that R is not right pure-semisimple; i.e. (11.2) suppose that the
largest theory T* of modules is not totally transcendental. A functor in F is produced which
has no simple subfunctor.

Let lk=(y, : w is pp and the interval [.p(v), v=0] has the dcc): in other words ' is the
set of all finitely generated subfunctors of U which are artinian. Let F be the sum of these
functors - it is, of course, also their directed union. The assumption that T* is not U. is just
that F is a proper subfunctor of U. Consider, therefore, the non-zero functor F=U/F: we
will see that the assumption that F has a simple subfunctor leads to a contradiction.

So suppose that G>F is a subfunctor of U such that G=G/F is a simple subfunctor of
F. There is a finitely presented module M and an element aEM such that a E GM\FM. Let ip

be app formula equivalent to the pp-type of a in M: thus FLp<G but ipf'I'. We may in fact
suppose that the pp-type of a is irreducible: write M as a direct sum of indecomposables and
decompose ip accordingly; say as Since [ip:v=0] does not have the dcc this is
true for at least one of the ipi - with which we replace ip.

Since ip& ' there is 6<<p with eff `Y: in terms of functors this gives
F < F+Fe < F+FLp< 6 (the first inclusion is strict by the Grothendieck property and since Fe
is finitely generated). By simplicity of G/F one concludes F+F6=F+FLp=G. Therefore
FLp=Fpn(F+Fe): writing F as a directed union l1 F. one has, by the Grothendieck
property, F,p=FLpn ( Fw+F6)= U(FLPnF, +F6). Since FLp is finitely generated it follows
that F,=FLpnF, +F6 for some ipET. But then irreducibility of (the type generated by) ip
implies that either FLp=FLpnFIP or FLp=F6 - each of which is impossible. This is the
required contradiction.

(ii)= (i) By 11.6, the forgetful functor and its powers Un have the descending chain
condition on subfunctors. Therefore, if Un>F'>F then there is a functor minimal with
respect to being contained in F' but not equal to F: hence F'/F has a simple subfunctor.
Since (12.3) the functors FLp < U generate F, it follows that every non-zero functor does
indeed have non-zero socle, as required. o

Exercise 2 Find conditions on the amenable category C under which, if every non-zero
functor in (C, Ab) has a simple subfunctor, then PC has the acc.

Theorem 12.19 [Aus74a; 1.11] Suppose that the ring R is right artinian, and let F

be the category (mod-R,Ab). Then the following conditions are equivalent.
(i) R is of finite representation type.
(ii) (a) every simple functor in F is finitely presented, and

(b) every non-zero functor in F has a simple subfunctor.
(iii) (a) every (finitely generated) irreducible type is isolated, and

(b) R is right pure-semis imp le.
(iv) T* is totally transcendental of finite Morley rank.

Proof This follows from 12.10, 12.12, 12.13 and 11.38. o

Note that the only part which we have not yet proved here (outside of the context of artin
algebras) is the fact that if R is of finite representation type, then every irreducible type is
isolated. For more on the topics discussed in these first two sections, see [Aus82].

12.3 Embedding into functor categories
or, how to turn pure-injectives into injectiues

My original sub-title for this section was "or, 101 ways of turning pure-injectives into
injectives". Perhaps that does exaggerate the situation somewhat, but it is true that many
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authors have found contexts related to the category of R-modules, together with methods of
embedding MR into these contexts, such that the pure-injective R-modules become precisely
the injectives of the new category. These ways do turn out to be more or less equivalent - in
some cases they literally are equivalent as functors. One could give an alternative presentation
of the model-theory of modules by making use of these functors and what is known of injective
obj ects.

In this section I will describe two methods of "turning pure-injectives into injectives". The
first embeds CT* into (R-mod,Ab) (R-mod is the category of finitely presented left R-
modules); the second embeds CT* into (mod-R,Ab)°p.

The reader may observe, in what has just been said, that each embedding introduces an "op"
(recall that R-mod is mod-R°p). Therein lies a source of annoyance: are we to work with
covariant or with contravariant functors? with a category or with its opposite? The choice is
largely a matter of taste, but one's preference may depend on one's purposes. For example, in
the first two sections of this chapter I have preferred to work with covariant functors, but then
I have to put up with the fact that the natural embedding which takes an object M to the
corresponding representable functor (M, -) is an embedding of the opposite category into the
functor category. On the other hand, in this section I am concerned with embedding a category
into a larger context, and so it is more natural to use a covariant embedding. Therefore, if one
wants to relate some results of this section to those of the previous two, it is necessary to spin
all arrows through 1800. This is almost an argument for using contravariant functors in §1,2
but surely the functors Mi-ip(M) are too natural to distort.

Subsection 1

I follow Gruson and Jensen [GJ73] (also see [GJ81] - I will use the latter for reference)
in defining the category D(R) to be the functor category (R-mod,Ab). This is of course a
Grothendieck abelian category, with a generating set of projectives being given by the
representable functors (L, -) for RL E R-mod. In the special case that there exists a duality
D:R-mod (mod-R)°p, D(R) may be regarded as ((mod-R)°p, Ab) - the category of
contravariant functors from mod-R to Ab (that is, the category of right "Modules" over
mod-R, as opposed to the category (R-mod,Ab) of left Modules over R-mod). In particular
this comment applies if R is a finite-dimensional algebra or, more generally, if R is an artin
algebra.

Now, there is a naturally defined functor [GJ73] from the category MR of all right R-
modules to D(R); namely that induced by -®-:MR xR-mod--- Ab. That is, we have the
functor X:MR --D(R) given on objects by X(M)=M®R-. Thus, the right module M is
taken to the functor M®R- which takes a (finitely presented) left module L to the abelian
group M®L, and which has the natural effect on morphisms between left modules. Then there
is an obvious way of defining X on morphisms between right modules, so that X gives a full
and faithful embedding of MR into D(R) ([GJ81; §1]). Recall that tensor product does not in
general preserve embeddings: in fact, one has that Xf is monic in D(R) iff f is a pure
embedding in MR. Using this (all of which is given in more detail in [GJ81]) one sees the
following.

Theorem 12.20 [GJ73] Let M be a right R-module. Then the functor M®- is an
injective object of D(R) iff M is a pure-injective R-module. o
This, combined with the fact that X is full and faithful, is extremely useful, since there is

a well-develped theory of injective objects in Grothendieck abelian categories which therefore
becomes immediately applicable to pure-injective modules.

For instance, the endomorphism ring of an indecomposable injective is local (4.A13).
Hence the endomorphism ring of an indecomposable pure-injective is local - a fact also proved
independently, and by a different method, in [Z-HZ78; Thm 9] (for a model-theoretic proof see
[Zg84; 4.3] and also 4.27 in these notes). Furthermore, every injective splits into a discrete
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and a continuous part as described in 4.A5: hence the same is true of pure-injectives (shown in
[Fis75; 7.21] and [Zg84; §6]). See also Facchini [Fac85], who points out that this allows one
to carry over the von Neumann decomposition into "Types" and the related dimension theories
(see §16.C).

A second method for turning pure-injectives into injectives will be considered later. Here,
I show how to use the above functor to embed our model-theoretic context into a more algebraic
one; in particular one sees how the theory of hulls of §4.1 may be developed as a theory of
injective hulls.

Recall (§5.4) that a suitable context in which to consider sets with their pp-types is that of
CT- - the category whose objects are subsets of the monster model of T* (so pp-types are
specified along with subsets), or, if one prefers to restrict to submodules, one works with
C*T*. It may be remarked that, in the latter category, the injective objects are just the
sufficiently saturated pure-injective direct summands of the monster model (cf. proof of 15.19).
The category C*T* is generally not abelian (exercise: take R=714 ), and the fact that one does
not have kernels and cokernels makes it difficult to do algebra within that category.

The "dependence on context" seen in C* = 3*T* can be reflected in D(R) by embedding the
former in the latter; but to be satisfactory there should be a description of the image. In fact
there is such a description (12.23). We begin with the following result, which was briefly
described in [Pr81] and is also in [Fac?; §§2,3,5] (Facchini's category of "filtered" modules
is essentially C*T*).

Theorem 12.21 There is a full and faithful embedding of C*T* into D(R).

The proof of this theorem follows. First the embedding is described: it is a pp-version of
tensor product.

Let (A, P,q) be an object of t*=C*T*: such an object will be more simply denoted by R.
Choose a (3*-embedding j:A-) M, where M is pure in the monster model (so PA= P,' rj4).
Although any choice for M will do, it will make life more simple if we always take M to be a
copy of the hull of A.

For L E R-mod set A®ppL to be the subgroup of M®L generated by all elements of the
form ja®l with aEA and ZEL: A®ppL=(ja®l:aEA, ZEL) (for the sake of readability, I

often omit the "j").
Given a morphism f:L-) L' in R-mod, define A®ppf to be the restriction of M®f to

A®ppL. By definition of M®f, one has M®f.a®Z = a®fl: so A®ppf is well-defined.
Thus, from A, we define an object A®pp- of D(R). It will follow from 12.22 that this is

independent of the particular choice of embedding j; but it is perhaps of interest to see this
directly, by showing that ®pp is indeed a pp-variant of the usual tensor product.

Recall how the tensor product MORN of two modules is formed: one factors the cartesian
product MxN by the consequences of bilinearity - that is, by the subgroup generated by the
relators:
(m, n + n') - (m, n) - (m, n');
(m+ m', n) - (m, n) -(m', n);
(mr, n) - (m, rn).

To form the tensor product A®ppN of a (right) pp-type (A, P,q) and a left module N,
one factors the product AxN by the relations above, together with all consequences of the pp-
type of A. To be somewhat more precise: if the pp-type of A, together with the atomic
diagram of N and the bilinearity relations, prove (a, n) = 0, then (a, n) is added to the set of
relators by which one is to factor. On morphisms, the action is the obvious one (well-defined,
since pp formulas are preserved by morphisms).
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Example 1 The standard example showing that tensor product does not preserve embeddings is
obtained by taking R=71, M=71, M'=Q, N=712. One has the embedding 2, ) QQ, but
71®712 7L2 whereas Q022 = 0. The reason for the last equation is that, in Q)®712, one has
a01 = (1/2)0.2(91= (1/2)a(92= (1/2)000 = 0 for all OE Q. Now, although 710712 712, if
one considers 71 equipped with the pp-type induced by its embedding into Q, then one has that
3w (v= w2) is in the pp-type of every element nEZ. So A = ppQ2 u ppo7l2 u bilinearity
proves the formula 3w (vOl = w2(91) and hence A proves vol = 0. Thus
(PP(Q71)®pp712 = 0.

We will see that the functors -®PPL do preserve embeddings of C*.
Exercise 1 Define the obvious functor -®pp-:C*(T*R)x(3*(T*Rop)--*Ab and
investigate its properties.

It is a straightforward exercise to check that these two definitions of R®pp- agree, and
hence to see that ROW may be defined without reference to an embedding such as j above.

It will be seen that R H R(&pp- induces a full and faithful embedding of C* into D(R):
moreover, the image of the embedding may be identified.

Let us note first that embeddings of C are preserved.

Lemma 12.22 If f : (R, P,q)c-3 (8, P3) is an embedding in (3*T* (that is, if Pg
restricted to fR equals P,q) then f®-: A0pp ) 8®pp- is monic in D(R).

Proof Suppose that the embeddings j:R) N(R) and k:B) N(B) are used to define
R®pp- and 8®pp- respectively. Let L be in R-mod. The component of the natural
transformation f®pp- at L is f®pp-: 40 L --- 8®ppL, given by f®ppL.ja®Z = kfa®l.
There is a pure embedding g : N(R)-4 N(8) with gj = kf. Since g is pure, we have
ja®l = o iff kfa®l = 0, as required. o

It follows that the definition of Aepp- is independent of choice of embedding j.
So now let us consider
-®pp R-mod : C*T* ---.) D(R): the action on
morphisms must be specified. So suppose that

(N(4),PN(R)) --9 )'(N(B),PIV (g)) f: (A,P,q)- '(B,Pg) is any morphism in V.
Compose this with an embedding

j - k k : (8, Pg) ---9 (N(8), P,y(g)) of 8 into a
_A copy of its hull to get

(R,PR) (8,Pg) kf : (A) P,q) ---p (410), Py(g)). By 4.12 this
f lifts to a morphism

g : (N(R), PAI(R)) ---' (N(8), PN(B)) with
gj = kf as shown. Given L in R-mod, define
f®ppL.ja0Z to be gja®l (= kfa®l).

It is easy to check that this is a natural transformation from R®pp- to 8®pp- and that,
in this way, a functor -®pp R-mod: C*T*-- D(R) is defined.

To see that this functor is faithful, let f : (R, PR) ---' (B, P8) be a non-zero morphism,
and fix j : (R, P,q) --* (A/ (1q), P1(,q)) and k : (B, PB) -- ) (N(B), P,y(8)). Consider the
component of f®pp- at L = RR: f®ppR : 1q®ppR---4 B®ppR. This takes ja®1 to kfa®1.
There is some oER with fa*o. So f®pp- * 0, as required.

In order to complete the proof of 12.21 it must be shown that this functor is full. So we take
any 1; E D(R®pp-, B(gpp-). It must be shown that there is some f : (R, PR)-- (B, Pg) such
that 't = f®pp-. With notation as before, injectivity of N®pp- ( N®-), plus the fact that
R®pp- embeds in N(R)®- (and similarly for 8), implies that there is a lifting of 't to some

'C' E D(N(R)®-, 41(8)9-). By considering the component of 't' at RR, one sees that 'C' is of
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the form g®- for some morphism g : N(A) ) N(8). Let f be the restriction of g to A. I

claim that t = fOpp-. One has the diagram shown below.
From the commutativity of the upper square, one

N(A) ®R
k N(B) ®R sees that fA=_ B and that the lower square is

commutative. Note also that, since f is the
restriction to A -* B of a morphism

®PP 1R k
®PP1R g: N(A) N(8), f is in fact a morphism of C:

a®1A®ppR
t ,B0ppRbe1 f:(A,PA)-->(8,°8).
R

T
a A - - - -1 8 b

f

N(A) ® L
90 'L N(B) e L

j®pp1L 1k01t
A®ppL 8®ppL

It

L

So it remains to be shown that, for any L E R-mod,
one has 'tL=f®ppL:A®ppL+B®ppL. Since
't' = g®- extends t, we have, for each L, the
diagram shown.
So 'tL = g®iLrA®ppL = f®pp1L, as required. Thus
the proof of 12.21 is complete. o

Those functors in D(R) which arise, in the above way, from objects in C* turn out to be
exactly the epi-preserving functors (also see [Face?; §5]).

Theorem 12.23 The functor defined above, from C*T* to D(R) (which is given on
objects by taking (A, PA) to A(Dpp-), is a full and faithful embedding which has,
as image, the full subcategory of epi-preserving functors in D(R).

Proof First we see that every functor A®pp- preserves epis. Fix a hull j : A N(A). Let

L-'-) L") 0 be exact in R-mod. Since the ordinary tensor functor is right exact, one has
that the induced sequence W(q)0L--* N(A)®L"--- 0 is exact. Consider the morphism
A(&ppL ) A®PPL". To see that this morphism is epi, note that a typical generator of A®PPL"

has the form ja®gl for some a E A and lEL. Now ja®gl=1N(,q)®g.jo®l so, since ja®l
is an element of A®ppL, the point is established.

F- To show the converse, we take any epi-preserving functor FN n R N in D(R). There is,an embedding of F into an injective of
D(R), say i : F ---> We-, where N is a summand of the
monster model. Consider the component of i at RR: it yields
a subgroup of N - FR NOR ti N, where the first

N®R )N® R
1N ® (_xr) morpnrsm is zR anu we seconu farces nesr to nr.

In fact, FR = A is a submodule of N, for consider the
zR G 'R diagram opposite, which compares the action of F and N®- on

the morphism (of left R-modules) -xr: RR a RR for rER.
FR F(-xr) )FR

By commutativity of the lower square, one has that the action of F(-xr) is just right
multiplication by r, and so A=FR is an R-submodule of N (since F is a subfunctor of
N®-, so A
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Next, it is claimed that F = (4, ppN(11)A)®1313-. Essentially, we have just seen that F
and A(g1313- agree on R. It follows easily that they also agree on all Rn (nE w). So let RL be
any finitely presented left R-module: say R77-P--*>L is a presentation of L. One
obtains the diagram shown.

h
N(A) ®Rm

1N (A)®
> N(A) ®Rn

Here the top row is exact, the flanks are commutative, and the left-hand square on the bottom is
commutative. It will be shown that there is an isomorphism tL : A®ppL-* FL which makes
everything commutative.

First, to define tL, we take a typical element a®ppl of A®ppL. There exists rERn
with l= pr. Define tL(a®13Pl) to be Fp.e.(a®ppr). To see that 'tL is well-defined, suppose
that aer E A®ppRn is such that a®pr = 0. Consider iL.Fp.e (a(&r) = 15p.iRn.e(aer) =
1ep. je1(a(&r) = jaepr = 0. Since iL is monic, tL(aepr), which equals Fp.e(a(Dr), is
zero.

To see that tL is monic, suppose that tt(a®l) = 0: so Fpe (a®r) = 0, where rERn is
such that pr=Z. Then, as before, 0 = iL.Fp.e(a(&r) = 10p. je1(a(&r) =jaOpr = jael =
j51L(ael). So, since j®1L is monic, one concludes aeZ = 0, as required. Finally, to check
that tL is onto, consider an element x of FL. Since Fp is epi, there is some y in FRn
such that x = Fp.y = Fp. e(e-'y). So %(1,1eppp).e-'y = Fp.y = x, as required. o

It should be observed that the functors (A, P,q)epp- are, in general, not right exact. For
instance, take the ring to be 714, take A) N(A) to be 7l2' ) 714, and consider the action
on the exact sequence 0j 712 24 )22 -* 0. The pp-tensor of (A, PA) with this
sequence is the non-right-exact sequence 0- 0-)712-> 0-* 0 (the point to note is that
the left-hand term is indeed zero, because of the consequences of the pp-type of 7l2 in 714 ).

The right exact functors are characterised in [GJ81; 5.3].

We now see that the theory of hulls can be developed as a theory of injective hulls. It is
sufficient to show that a morphism (A, PA) ' (B, PB) is monic in C iff the corresponding
morphism (A, P,q)epp- ) (8, PB)®Pp- is monic. One direction is 12.22. For,the other,
suppose that (A, PA)) (B, PB) is not monic; there is no harm in supposing that these
objects of C are summands of the monster model, so the 51313- functor is given simply by
tensor product. So the result follows from the fact that if N--) M is a morphism then it is a
pure embedding iff for every left module L, the morphism N®L -' MOL is monic
[St75; §1.11].

In [Fac85] Facchini takes the following route. Let N be a pure-injective module and set
S to be its endomorphism ring. Since N is an (S,R)-bimodule, the representable functor
(NR,-) may be regarded as going from MR to MS (cf. before 17.1). Set S' to be the
regular, self-injective ring S/J(S).

Given any S-module M, define the submodule tS-M to be fl( kerf : f E (MS,S'S)) (cf.
§15.1). Set RM = M/tS'M - the largest quotient of M which embeds in the S-module S': RM
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carries a natural S'-module structure and, with the obvious action on morphisms, this defines a
functor from mS to MS'. Then Facchini defines the functor FN :77ZR -- NMS' to be the
composition of R with (NR,-). He shows [Fac85; Lemmas] that if N' is pure-injective
then F11 (N') is a non-singular S'-module (so the structure theory of Goodearl and Boyle
[0876] applies).

The functor Fy depends on Al but, by choosing N large enough (specifically, by taking it
to be an elementary cogenerator for the largest theory of R-modules), one sees all "small" pure-
injective R-modules converted into non-singular injective modules over the regular ring S'.

Subsection 2

Now we look at another way, "dual" to that in subsection 1, in which C*=C*T- may be
embedded in an abelian category. I will also briefly indicate how localisation theory may be
developed in this context. The embedding will be described by specifying it on the summands of
the monster model and then extending, via hulls, to arbitrary members of C*. The sort of
embedding that I have in mind here is an extension of that induced by representable functors.

So let Co be the full subcategory of 7)2R whose objects are the pure-injective objects and
their arbitrary direct sums. We first consider the morphism Co --> (mod-R,Ab)°P given on
objects by N H (N, -)°P (the "0p" is there because we want an embedding of (3O, rather than
of Co°P). The problem with this is that it need not be an embedding. For example, let R=72;
the objects of mod-7l are the finite-rank abelian groups: let N be any prUfer module. Then
any quotient module of N, being injective, can be of finite rank only if it is zero. Thus the
morphism N H (N, -)OP does not distinguish between the prUfer modules, hence does not
induce an embedding of CO, let alone of C*. If R is an artin algebra then, by 13.2, and one
may develop the theory without replacing mod-R.

But, here, I wish to work over an arbitrary ring, so I replace (mod-R,Ab) by (CO, Ab).
Indeed, it is just as easy to replace C0 by any amenable subcategory, C, of MR, so the results
of this subsection are initially developed in this generality.

Define F to be such a functor category (C, Ab). Recall that F°P is a Grothendieck abelian
category with, as a generating set of projectives, the representable functors (C, -) for C EC.
It follows that F°P is an abelian category (but, if non-trivial, cannot be Grothendieck - see
[Mit65; I11.1.10]) with, as a cogenerating set of injectives, the representable functors (C, -)°,
where I am using "0" as a superscript to denote objects and morphisms of a category "when
regarded as objects of the opposite category". In particular, F°P has enough injectives (and, if
C=(30, then F°P has injective envelopes). Since F has injective hulls, F°P has projective
covers.

Denote by SC the category whose objects are submodules of objects of C, and whose
morphisms are the pp-type-preserving morphisms. It will be shown (12.24) that SC embeds
fully and faithfully in F°P. Note that this provides another full and faithful embedding of C*
into a Grothendieck abelian category, since one may compose with the full and faithful embedding
(via representable functors) of F°P into the category (FOP, Ab).

Now let AESC. The "representable" functor corresponding to A, or rather, the
restriction of SC(A,-) to C, is defined as follows. If C is an object of C then
(A, C) = SC(A, C); on morphisms, (A,-) is given by composition (note that this is well-
defined). Clearly this does define a functor, which I denote by (A,-), in F. It is easy to verify
that this process defines, in the usual way, a functor, e, from (S(3)°P to F. Therefore we
obtain an embedding, e0, of SC into F°P. It will be seen that the effect of all this is to embed
SC into an abelian category which closely reflects the properties of C and SC.
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Proposition 12.24
(a) Let f:A- >8 be a morphism of SC. Then is epi iff

e°f:(A,-)°>(8,-)° is monic iff f is strictly pp-type-preserving.
(b) e° is a full and faithful embedding from SC to FOP.

Proof Take C and D in C which respectively embed A and 8 with the correct pp-types.
Part (a) is by a straightforward argument.

For part (b) we suppose that a morphism t:(A,-)°--+(8,-)° is given: it must be shown
that some SC-morphism from A to 8 induces t. By injectivity of "representables", there is
a morphism extending t. Since C and D are in C, t' is induced by
some morphism from C to D: it may be checked that the embedding of A into C, composed
with this morphism, yields an SC-morphism from q to 8 which induces t. That e° is
faithful is obvious (every object of SC has a non-zero morphism into a member of (3). n

One of the objects of this sub-section is to indicate how to generalise the notion of
localisation at an injective (as seen in hereditary torsion theories) to that of localisation at a
pure-injective. Of course, since we have just turned pure-injectives into injectives, one might
expect that there is not much more to say. But "localisation at pure-injectives" is at least a
little richer than that, since one has the pp-types which play the part of right ideals: so one
may work at a somewhat more concrete level. It might also be that this notion of localisation is
closer to some other types of "localisation" which have been introduced, see: [Co79], [FZ82],
[Ma182], [O'C84], [Ri79a], [Sc85], [SZ82].

Rather than give a detailed development, I just make a few remarks on definitions and
results - filling in the details should be easy to anyone acquainted with torsion theories (see
[St75], for example). For the sake of simplicity, let us suppose that C is the full subcategory
of mR whose objects are the pure-injective modules and their direct sums (so we have "hulls"
and closure under products).

To specify a torsionfree class in F°P, it is equivalent to specify a subclass of C which is
closed under products and direct summands. If N is an object of C then denote by 24/ the
torsionfree subclass of F°P cogenerated by e°N and let lay be the corresponding torsion
class in FOP. Then, for instance, 'WN, s V# iff N' purely embeds in some power of N. One
defines VA/-closed, V,y-dense and V#-injective as would be expected.

Recall that SC embeds naturally in F°P. Then AESC is in 71V iff, for every 5 in A,
there is a power NK and a morphism f E SC(A,NK) such that pp(f5) = pp(a), that is, iff for
every S in A, the pp-type of a is N-closed. The torsionfree class ,y may be recovered
from the lattice of closed types.

Generally, one uses (N-closed, N-dense) pp-types where one would, in the injective case,
use right ideals.

12.P Pure global dimension and dimensions of functor categories

I will do no more in this section than point the reader towards certain ideas and results
which have undoubted relevance to the concerns of this book, although the exact connections,
beyond the obvious ones, have not been worked out. For example, the results in Chapter 13 on
dimensions and representation type and the work on dimensions of functor categories described
below are surely related: presumably they are connected through the lattice of pp
formulas/ finitely generated subfunctors of the forgetful functor (see 12.2, 12.4).

Let M be a module. Consider the exact sequence (a pure-injective resolution of M)
0 ) the
morphisms are the canonical ones (projection followed by pure embedding into a pure-injective
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hull). If this sequence terminates, then the largest n for which Mn#0 is said to be the pure-
injective dimension of M, p.inj.dim M. The pure global dimension of R, p.gl.dim R, is
sup(p.gl.dim M : M is an R-module). So p.gl.dim R =0 iff R is right pure-semisimple. Also,
by a result of Kulikov (see [Kap69]), 2! and K[X] have pure global dimension 1 (i.e, if M is
any module, then the quotient M/M is pure-injective - cf. Exercise 2.5/5).

There are other ways of obtaining the same dimension. Gruson and Jensen [GJ81], define
the L-dimension of M, L-dim M, to be the global dimension of the functor MR®- in (R-
mod,Ab) (cf. §12.3). They show [GJ81; 1.1] that the L-dimension of a module coincides with its
pure-injective dimension (recall that the functor which takes M to M®- converts the pure-
injective modules into the injectives of the functor category). This L-dimension also may be
obtained from the derived functors of 1Fm (see [OJ81; 3.1): these derived functors were studied
in [Je72]. In particular, L-dim M 5 n iff, for every downwards-directed sequence {Ga}« of
pp-definable subgroups of M, one has 1m (i)Ga = 0, where 1;m (i) is the i-th derived functor
of tim .

It turns out that pure global dimension is curiously dependent on the cardinality of the ring:
Gruson and Jensen [GJ73; 1.3] show that if the cardinality of the ring R is <'kt then
p.gl.dim R 5 t+1. In particular, if the ring is countable and if M is any module, then RIM is
already pure-injective (so, by 2.23, a direct summand of the monster model of the theory of M).

Baer, Brune and Lenzing relate the pure global dimension of hereditary (and related)
algebras to their representation type. Okoh [0k80] had already shown that, over an
uncountable field, the pure global dimension of the path algebra of the extended Dynkin diagram
Al is 2. In [BL82] Baer and Lenzing show that the pure global dimension of a polynomial ring
in countably many, but at least two, variables (commuting or not) is t+1 (i.e., the maximum
possible), where 'kt is the cardinality of the base field (and t is finite). They deduce that the
same is true of the path algebra of a wild quiver without relations. In [BBL82] the tame case is
dealt with and the conclusion is that, if r is a connected quiver without oriented cycles and if K
is a field of cardinality 'kt (t finite), then the pure global dimension of the path algebra
K[L] is 0, 1 or 2 according as r is Dynkin, extended Dynkin or neither of these (i.e.,
according as K[L] is of finite, tame or wild representation type - cf. §13.2).

The fact that one has to tensor up with a large field to see the pure global dimension
contrasts with the fact that the link between our model-theoretic dimensions and structural
properties is often best established by restricting to a countable subfield and then tensoring up
(cf. e.g., after 13.7).

A couple more related references: [JS79], [Sim77].

There are analogous results concerning Krull dimension of functor categories (presumably
they are also just different expressions of certain finiteness conditions on the lattice of finitely
generated subfunctors of the forgetful functor). For example, if R is an artin algebra, then the
Krull dimension of the functor category (mod-R,Ab) is 0, 1 or 2, according as R is of
finite, tame or wild representation type [Gei85], [GL8?]. This is extended in [Gei86] to
tilted algebras. That paper also contains the result that if R is one of Ringel's "canonical
algebras" then the Krull dimension of the functor category (mod-R,Ab) is "oo": a result not
unrelated (see 12.6) to our observation in §13.3 that the m-dimension of the theory of modules
over such a ring is "oo". Also see [Bae85], [Bae86] where representation type is related to
Krull and Gabriel dimension, to the noetherian condition and to the Ore condition on functor
categories from various parts of mod-R to Ab for R a hereditary algebra.



267

CHAPTER 13 MODULES OVER ARTIN ALGEBRAS

In Chapter 11 we considered modules over arbitrary right artinian rings, and found that
there are a number of simplifying features in that case. Modules over artin algebras are even
better behaved, and their theory has been much developed. The main examples of artin algebras
are algebras finite-dimensional over a field, and their theory has been developed farthest: this
is reflected in this chapter in that, although we begin by considering general artin algebras, we
soon focus on the case of algebras over a field.

Recall that a ring R is an artin algebra if it is finitely generated as a module over its
centre and its centre is artinian. Such a ring is, in particular, right and left artinian.
Examples are algebras finite-dimensional over a field and finite rings. Perhaps the most
significant property of these rings is that there is a good duality between mod-R and R-mod.

In section 1, from the existence of almost split sequences, we deduce that the isolated points
of the space of indecomposables are precisely the indecomposable finitely generated modules.

The second section contains background material on representations of quivers and
representation type, as well as descriptions of the finitely generated indecomposable modules
over certain algebras.

In the third section, I outline the classification of the infinitely generated indecomposable
pure-injectives over the path algebras of the extended Dynkin quivers, and indicate what is
known about ZR for certain tame non-domestic algebras.

13.1 The space of indecomposables

Let R be an artin algebra. Since every finitely generated module is totally transcendental
(11.15), every finitely generated indecomposable is a point of the space, Z(R), of
indecomposable pure-injectives. We will see that every such point is in fact isolated. First we
need to know something of the representation theory of artin algebras. That is a vast subject and
so, throughout this chapter, I present just the material which I need. To obtain a more balanced
and detailed picture of this area, the reader is advised to begin with, say, the survey article by
Reiten [Rei85], and more detailed surveys by Gabriel [Gab80] and Ringel [Ri80], [Ri80a],
[Ri86].

An exact sequence 0---)A--L-4B''--)C---)0 is said to be almost split (or to be an
Auslander-Reiten sequence) if it is not split and, for every module X and every morphism
h:X--->C which is not a split epi, there is a factorisation k:X-+B with gk=h. It is
equivalent to require of the sequence the dual property that, whenever h:A-)Y is a
morphism which is not a split embedding, there is a factorisation k:B-3Y with kt=h. One

sees from the definition that the term "almost split" is a singularly appropriate one. It is a
theorem [AR75] that (over an artin algebra) any almost split sequence of finitely generated
modules is determined up to isomorphism by either of its ends. This allows one to use, without
ambiguity, a notation C= -t-'A and A=-tC in the above situation: 1c is called the Auslander-
Reiten translation.

An extremely useful theorem of Auslander and Reiten [AR75; 4.3] is that: if M is an
indecomposable non-projective module over an artin algebra then there is an almost split
sequence ending with M: in particular, 'tM is defined. Dually, if M is an indecomposable
non-injective module over an artin algebra, then there is an almost sprit sequence beginning
with M (so 't-'M is defined). The proof uses the existence of a duality between mod-R and
R-mod for artin algebras (there are examples - see [Ri80; p 126]) which show that over an
arbitrary right artinian ring one need not have global existence of almost split sequences in the
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above sense. Although it is not immediately obvious how one makes use of this, it is a key point
about artin algebras - see the references above, for example.

An associated idea is that of an irreducible morphism. A morphism f :M - N between
indecomposable finitely generated modules is irreducible if it is not an isomorphism and has
no non-trivial factorisation, in the sense that, given any factorisation f=hg through a finitely
generated module, either g is a split mono or h is a split epi. It is easy to see that an
irreducible morphism must be either mono or epi. Given an almost split sequence
0----> A-1 --> 8-1---> C) O, with 8=810 ... ® 8n, the components (with respect to this
decomposition) of f and g are irreducible monos and epis. For more on all this see, for
example, [Gab80].

There seems to be at least some superficial connection between irreducible morphisms and
almost split sequences on the one hand and, on the other, the structure of the lattice of finitely
generated pp-types. Also, Auslander's notion of (universally) minimal element [Aus74a] (also
see [Aus82]) is reminiscent of that of critical type. I have not been able to clarify the
connections (if, indeed, they exist), so I do not elaborate upon these points here, though the
results of §12.2 have some bearing on this.

We will make use in this section, of the functorial version of the existence theorem for
almost split sequences (actually the existence proof is carried out in the setting of functor
categories). For 13.1, we need only the fact that every non-injective indecomposable module
begins an almost split sequence: consider what this means in terms of pp-types.

Let p be a finitely generated irreducible pp-type: say p is equivalent to the pp formula
ip. Let a in the finitely generated indecomposable A realise p (so A is the hull of a).
Consider the almost split sequence 0)4 8-'4 C ) 0 which begins with A, and let q
be the pp-type of fa in B (if A is injective, then one proceeds more directly). Since B is
finitely presented, q is finitely generated (8.4); is equivalent to i (say). I claim that F ,
is the radical, JFP of the functor FLp (see §§12.1,12.2 for these functors) and so, in
particular, JFLp is finitely generated. For, let q' be any finitely generated pp-type strictly
above p: realise q' by c in the finitely generated module X. By 8.5 there is a morphism
from A to X taking a to c. By the defining property of almost split sequences, there is a
factorisation from B to X which, in particular, takes fa to c. Therefore q=pp(fa) 5 q'.
It follows (§12.2) that F,p is indeed the radical of FLP and, furthermore, ip A -np isolates p.
Therefore the following result is an immediate consequence of the existence of almost split
sequences (on one side).

Proposition 13.1 [Pr85a; §2] Let R be an artin algebra and let N be a finitely
generated indecomposable module over R. Then Al is an isolated point of the space
Z(R) of indecomposable pure-injectives. o
The converse will now be established by showing that the finitely generated points are dense

in Z(R). It is the existence of a good duality which is the key to the proof.
Let R be a finite-dimensional K-algebra, where K is a field. Then the functor which is

given on right R-modules by DM = HomK (M, K) and has the obvious action on morphisms, is a
duality between left and right modules and restricts to a natural equivalence
D: mod-R -- (R-mod)°p. Over a general ring, one may use the "duality"
DM = Homl(M,Q/7l). In either case, the duality has the following properties. A short exact
sequence is pure iff its dual is split exact. For any right module M, the dual DM is a pure-
injective left R-module. Since, for any module M, the canonical morphism M-4 D2M (11D2"
means the right duality followed by the left duality, the latter is also denoted by "D") is a pure
embedding, this provides a method of obtaining pure-injective hulls (the hull of M will be a
direct summand of D2M).
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Now, let V contain one copy of each finitely presented module. Fix a module N. For each
F E V let (F, N) denote the set of all R-morphisms from F to N. Set
6 = ®FEV ®fE(F,N) F and let g:G --) M be the morphism whose component at (F,f) is
f- Certainly g is epi, since there is even an epi from an free module onto Al. But also, the
sequence kerg- > G- N is pure-exact. For, given any morphism from a finitely
presented module to N there is a lifting to G (by construction of 6). Now, apply this to the
left R-module ON, where M is any right R-module, and then apply the duality D. We end up
with a pure embedding of the pure-injective module D2M into DG, which is a product of duals
of finitely presented left modules. Applying this in the case that M is pure-injective, we reach
the conclusion that, over any ring:

() every pure-injective module is a direct summand of a direct product of duals
of finitely presented left modules.

Over an artin algebra, the dual of a finitely presented module is finitely presented (this is
obvious for an algebra finite-dimensional over a field). Therefore the next result is obtained. It
may be noted that there is no duality over 2 which takes finitely presented modules to finitely
presented modules, since 2 oo is not a direct summand of a direct product of finitely presented
modules (exercise: cf. 9.29): that is, the dual of 2 is not finitely presented.

Proposition 13.2 [0k8oa; Thm 1], [Len83; p.735], [Fac85; proof of Thm 1] also cf.
[Cou78; §2] Suppose that R is an artin algebra and let Al be any pure-injective
module over R. Then Al is a direct summand of a direct product of finitely
generated modules. a

Corollary 13.3 [Pr85a; §2] Suppose that R is an artin algebra. Then the finitely
generated points of Z(R) are dense in Z(R). n

Corollary 13.4 [Pr85a; §2] Let R be an artin algebra. Then the isolated points of
Z(R) are precisely the finitely generated points. a
Corollary 13.5 Suppose that R is an artin algebra and let N be an infinitely
generated indecomposable pure-injective R-module. Then Al does not realise a neg-
isolated in (T*) type. a
Thus, there is no sequence beginning with N, with the minimality property of an almost

split sequence and with the middle term a direct sum of only finitely many indecomposable pure-
injectives (where one is working in (say) the category of pure-injective modules). That is to
say, the simple functor corresponding to N (§12.2) is not finitely presented, even if we allow
infinitely generated pp-types. This contrasts to some extent with examples such as :2 and
K[X], where there are infinitely generated indecomposable pure-injectives (namely the
torsion injectives) which are hulls of neg-isolated types.

Let N be a finitely generated indecomposable over a finite-dimensional K-algebra.
Suppose that p(N)/v(N) is an A/-minimal pair. By 9.6 one has that the quotient
Lp(N)/V(N) is 1-dimensional over the division ring DN = EndAl /JEndN. This division ring is
a finite extension of K. If K is algebraically closed, then D,y = K and so all "minimal gaps"
are 1-dimensional over K.

These comments do not apply to all the infinite-dimensional indecomposables. Take, as
illustration, the infinite-dimensional pure-injectives over any of the extended Dynkin diagrams
(these are described in §3 below). One sees that if Al is the unique point of Z(T) of CB-rank
2, then Al has no proper non-trivial pp-definable subgroup: indeed D,y is the K-extension of
transcendence degree 1, K(X). On the other hand, if K is algebraically closed then for every
other indecomposable pure-injective Al one does have D,y = K.
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If K is not algebraically closed then a finite-dimensional indecomposable may well have its
"minimal gaps" of K-dimension greater than 1. For instance, take K= f2 to be the real field and
let R be the path algebra of an extended Dynkin diagram over IR. Let R' be R®C. Then the
functor -SC:172R-) 711R' takes almost every indecomposable pure-injective to the
indecomposable pure-injective which is defined in the same way" over R'. The exceptions are
the regular modules (cf. §2 below) corresponding to the irreducible non-linear polynomial
X2 + 1: when tensored with C, each of these splits into two indecomposable factors (the regular
modules corresponding to the linear factors of X2 +1).

As another example, one may take R to be the (hereditary) algebra corresponding to a
species (one with multiple edges) in the sense of [DR76]. Then one may have even (finitely
generated) projective modules with endomorphism ring other than the base field.

13.2 Representation type of quivers

Path algebras of quivers form a large and significant class of algebras: indeed, over an
algebraically closed field every finite-dimensional algebra is Morita equivalent to the path
algebra of a quiver with relations (see [Gab80]). I will begin by describing what a quiver
(without relations) is. It is perhaps appropriate at this point to say that some of the background
in this section is treated more fully in [Pr8?] (conversely, some points are treated more fully
here!).

By a quiver I will normally mean a finite directed graph which has no oriented cycles (on
occasion these requirements may be relaxed).

A representation of the quiver L over the field K (a K-representation of r) is an
assignment of: to each vertex x of r, a K-vectorspace U(x); to each edge e: x---> y of r, a
K-linear transformation 11(e):11(x)-*U(y) between the corresponding vectorspaces.
Examples of quivers and their representations may be seen below.

The path algebra over K of the quiver r is the K-algebra K(t) described as follows
(note that a K-algebra is just a K-vectorspace with a K-linear multiplication defined on it, for
which there is a "11. As a K-vectorspace, K(t) has basis the set of all oriented paths in the
quiver t, where one includes a path of length zero ("starting and ending") at each vertex of r.
To describe the multiplication, it is enough to describe it on basis elements (and then extend to
the whole algebra by K-linearity): it is simply composition of paths (where defined, 0
otherwise) - the paths of length zero compose as "local identities".

For instance, the path algebra of the quiver which has just one vertex and one loop is the
algebra K[X]. Of course, this is not a finite-dimensional algebra (which is why one usually
excludes oriented cycles from a quiver) but one obtains a finite-dimensional algebra by
imposing a relation such as "X"=0" where "X" denotes the (basis element corresponding to the)
arrow of the quiver. This latter is an example of a quiver with relations: a quiver together with
certain sums of paths between points declared to be zero - the representations of such a quiver
then have to satisfy the corresponding zero-relations and the corresponding path algebra K(t)
is obtained by constructing the path algebra as above and then factoring by the ideal generated by
the relations.

It may be seen that a K-representation of a quiver (with relations) t is really just a
module over the corresponding path algebra K(t), and vice versa.
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A2

K(A2(0

K
K(A1)= 0

K11)

K K K
K( A3)= o K K

0 0 K

KKK,
Al

Example 1 The diagram opposite shows the quivers
A2, A. and Al with the corresponding path algebras.
The problem of classifying the K-representations of
Al, equivalently modules over its path algebra over
K, is essentially the problem of classifying pairs of
matrices over K up to simultaneous conjugacy.

For another example, consider any
K(64)-module M (D4 as shown). As a

1 2
Me,, Me22 vectorspace, it decomposes as the direct/

e 00 L//--2
0 sum M= ®o Meii. The element elo

then acts as the zero morphism on each
0 Me00 component except Me,,, where it acts

e 30 a as a linear transformation from Me11
40

3
/154 4 to Me00: similarly with the other eil

Me33 Me44 (eii acts as the identity on Meii and
as zero elsewhere).

Thus we obtain a D4-representation from M. It is clear that the process may be reversed, so
that from a D4-representation we may piece together a K(54)-module.

There is a geometrical way in which one may think of representations of this quiver.
Fix a non-negative integer n. One may ask how n subspaces may be placed within a K-

vectorspace. Of course, the dimensions of neither the space nor its n subspaces have been
specified, so there are infinitely many possibilities; but still, it may be asked whether there is
a classification which gives us some understanding of these structures (which are naturally
described in the language of K-vectorspaces together with n predicates for the subspaces; they
are examples of abelian structures in the sense of Fisher - see §3.A).

Certainly there is a classification for n=0, since then our structures are simply K-
vectorspaces and every K-vectorspace is isomorphic to a direct sum of copies of K, regarded as
a vectorspace over itself.

For n=1 the situation is not much different. One may see that every (space; subspace) pair
may be represented as a direct sum of copies of the two indecomposable pairs (K; K) and
(K; 0). The situation for n=2 and for n=3 is similar. Thus one sees that vectorspaces with
11(53) specified subspaces are examples of abelian structures (in the sense of §3.A) of finite
representation type.

Actually these abelian structures (for any n) are "really just" modules: let us consider
the case n=4 - we may then call our structures quadruples. Any quadruple
(U; U11 U2, U3, U4) gives a D4-representation: place U at the sink vertex (labelled "0"
above) and take the four morphisms to be the canonical inclusions of the Ui in U. Conversely,
any D4-representation with all four morphisms monic "is" a quadruple. In fact, every D4-
representation decomposes as the direct sum of such a quadruple and copies of the four simple
injective D4-representations - these last being the representations with a copy of K at one of
the source vertices and zeroes elsewhere.

In contrast to the cases with 1153, D4 is of infinite representation type.
The following theorem, characterising the quivers of finite representation type, is due to

Gabriel [Gab72].
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Theorem 13.A Let T be a connected quiver and let K be an algebraically closed
field. Then K(t) is of finite representation type iff r, when the orientation of
its arrows is ignored, is a Dynkin diagram.
The Dynkin diagrams (that is, those without multiple edges) are shown below.

An

(n points)

E7

Dn

(n points)

1

E8

It is sufficient to consider connected quivers, since if t is the disjoint union of quivers r'
and r" then K(t) K(t')xK(t") and so every K(t)-module is the direct sum of a uniquely
defined K(t')-module and a uniquely defined MI-module.

It should be noted, and it is quite typical in this area, that the representation type is
independent of the underlying field, and is also independent of the particular orientation of the
arrows (with the, actually minor, proviso that there be no oriented cycles).

Observe that the 3-subspace problem (and the simpler ones) are covered by Gabriel's
result (explicitly, by Al, A2, A. and D4, with appropriate orientations).

Beyond finite representation type there is a dichotomy. There are quivers (algebras) whose
finite-dimensional representations (modules) may be, in some sense, parametrised by those of
K[X] - these are of "tame" representation type. And there are those whose finite-dimensional
representations "include" those of K(X, Y) - these are of "wild" representation type, and it is
generally considered that their finite-dimensional representations are unclassifiable. I will
now give precise definitions.

An algebra R (or corresponding quiver) is said to be of wild representation type if its
category of finite-dimensional representations admits a functor from mod-K(X, Y) which
preserves and reflects indecomposability and isomorphism, and which is of the form -
®K(XY)M, where M is a (K(X,Y), R)-bimodule which is finitely generated and free as a left
K(X,Y)-module. Thus, if R is wild one may consider that the category of finite-dimensional
R-modules is at least as complex as that of finite-dimensional K(X, Y)-modules. There are good
reasons for believing that the latter category is "unclassifiable" (but also see [C-B871): in
particular, a classification of it would probably yield a classification of mod-R for every
finite-dimensional algebra R (compare with the situation in [Mek8l]).

The algebra R is said to be tame if R is not of finite representation type and if, for each
integer d_>1, there exist f1(X), ..., fn(d)(X) E K[X] and there exist (K[X], R)-bimodules
Qi for i=1,...,n(d), which are free as K[X]-modules, such that the union of the images of the
tensor functors Fi = -OK[X]Qi' from mod-K[X, fi(X)-'] to mod-R includes all but
finitely many d-dimensional indecomposable R-modules. See [DS86] for variants on the
definition. (If K is a finite field then the definition is vacuous, so tensor up with the algebraic
closure of K in order to see the representation type of R.)

It is a theorem that every algebra which is finite-dimensional over an algebraically closed
field and is of infinite representation type is either tame or wild but not both [Dro79]. Thus
one has, in increasing order of complexity, a trichotomy for finite-dimensional algebras: finite
type; tame; wild. It appears that this correlates with an increase in model-theoretic
complexity.
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There is an analogue to 13.A - see [DF73], [DR76], also [Naz73].

Theorem 13.B Let r be a connected quiver and let K be a algebraically closed
field. Then K(t) is of tame representation type iff r, when the orientations of
its arrows are forgotten, is one of the extended Dynkin diagrams (also called
Euclidean diagrams). These are:

A n \,_/
(n+1 points)

j N n

1 (n+1 points)

E8

E7

It follows that the four-subspace problem is a tame one but that the five-subspace problem
is wild - thus one cannot expect to classify even the finite-dimensional vectorspaces with five
specified subspaces.

Over an algebraically closed field, any hereditary finite-dimensional algebra is Morita
equivalent to the path algebra of a quiver without relations. But if the field is not algebraically
closed then there are other possibilities for hereditary algebras (see [DR76]).

It should be emphasised that, whatever the field K, if T is a connected quiver which is not
Dynkin or extended Dynkin then K(t) is of wild representation type (and the Dynkin (extended
Dynkin) diagrams are still of finite (tame) type).

Let me now say something about the Auslander-Reiten quiver, t(R), of a K-algebra
R. This quiver has, for its vertices, the isomorphism types of finite-dimensional
indecomposables. There is an arrow from (the vertex corresponding to) M to (that
corresponding to) N iff there is an irreducible morphism from M to N. In fact, one puts in
as many arrows as the dimension over K of the space of irreducible morphisms (which is
naturally identified with the radical, modulo the radical squared, of the functor (M,-) applied
to h) but, in the examples I discuss, the multiplicity of each directed edge is always 1.

Unless the algebra is of finite representation type, this will be an infinite quiver; but it is
locally finite, in the sense that every vertex is incident with only finitely many edges. This
graph contains a good deal of information: for example the modules occurring in the almost split
sequences can be read off from it. I refer the reader to the articles mentioned at the beginning of
§1 for more detail.

I now say a little about the shape of the Auslander-Reiten quivers of the (tame) path
algebras of the extended Dynkin diagrams. Let t be one of the extended Dynkin diagrams of
13.B. Then the Auslander-Reiten quiver of K(t) falls into the following infinite components:
a component which contains all the projective indecomposables - the preprojective
com ponent;
a component which contains all the injective indecomposables - the preinjective component;
infinitely many regular components. The set of regular components is parametrised by the
projective line over K, with finitely many points having finite multiplicity (if K is not
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algebraically closed, interpret the projective line to mean the projectivisation of the space of
maximal ideals of K[X]).
Indecomposable modules are named according to the type of component to which they belong.

All components, except those corresponding to the singularities on the parametrising curve,
are planar (the singular ones may be drawn on cylinders), with the non-singular regular
components being essentially semi-infinite lines (the regular components are termed "tubes").

regular The preprojective and preinjective components

components are one-way infinite bands of bounded "width".
They are arranged as shown, where all non-

_ zero morphisms go from left to right and
I where there is the strong factorisation

---) I--- property that any morphism from aD

preprojective preinjective preprojective to a pre-injective may be
component component factored through any chosen regular component

- see [Ri84; §3.2].
(I have had to leave a great deal unsaid: see [Ri79], [Ri84]).

With regard to the definition of tame: a single functor from mod-K[X, X-1, (1-X)-1] to
mod-R is enough to cover almost all indecomposables in each dimension (in fact, the definition
below of band modules gives the functor on objects). The exceptions, in each dimension, are
some regular modules on the singular tube plus all the preprojectives and preinjectives of that
dimension (there is nothing over K[X] corresponding to the latter modules).

I will next describe the finite-dimensional indecomposables over the path algebra of A5.
The finite-dimensional indecomposables over the path algebras of the other extended Dynkin
quivers are, in some sense, essentially the same as over A5: for their descriptions, see
[0P72], [DF73], [DR76] (one may also consult [Bau80] and [Pr85a] for D4).

e65 We take A5 to have the orientation shown: so a K(A5)-E-6 module is given by specifying a vectorspace at each vertex
and a morphism for each arrow.
The finite-dimensional indecomposables over R=K(A5)
come in two forms: the sn-raller1 strinns and hanris ("tvne

A5 1 I and type II" in the terminology of [0P68]).

e21_
2

e2 3

The easiest way to describe a string module is not to give the six vectorspaces and
morphisms all at once, but to build them up gradually: in fact we specify a basis. Choose any
"starting point" i E {1,..., 6}. Put a basis vector vo into Vi: this will be one end of the string
we construct. There are two possibilities. If i is a sink (1, 3 or 5) then we choose one of the
two arrows coming into i and give vo a pre-image under the corresponding morphism by
putting a basis vector v, into Ui,1 (as appropriate): at no point do we give vo a pre-image
under the other morphism (since it is to end the string). Now v, is at a source vertex: we have
made vo its image under one arrow; let v2 be its image under the other. Repeat the process
with v2: it is at a sink, and we have a pre-image (v,) under one arrow, so we add a pre-image,
v, for it under the other, etc.. We continue in this way: one may think of the basis vectors and
the morphisms connecting them as lying on a string which is wound round A5. We specified a
starting point and a direction: since the result is to be finite-dimensional we must specify
another end for the string. The string may be terminated at any point, either by sending the last
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basis vector to zero (e.g. replacing u2 by 0) or by omitting to add a pre-image (e.g. stopping
the construction at vo), as appropriate. In this way we have specified a representation of A5
since, by the end, we have given a basis for each 1/i and have described the actions of the
morphisms on these basis vectors. The other possibility was that i was a source, in which case
we choose one of the morphisms at i to be the zero morphism, and then proceed essentially as
before.

It may be shown that these string modules are all indecomposable. As to their kinds: a
string with two non-epi (resp. non-mono) ends is a preprojective (resp. preinjective), and a
string with one end of each type is a regular module corresponding to one of the singular points
on the parametrising curve.

The band modules are described as follows: choose a finite-dimensional indecomposable
K[X, X-1, (1-X)-1]-module - that is, a finite-dimensional vectorspace U on which "Y" acts as
an indecomposable linear transformation, f, which has neither 0 nor 1 as an eigenvalue.
Place a copy of U at each vertex of A5: for the morphisms, take all but 861 to be the
"identity" and take e61 to "be" f.

It may be shown that the result is indecomposable - a typical band module. No new module
is got by replacing e61 by some other eij in the above construction since the "twist" may be
considered to be at any of the six morphisms - by re-naming! These are the remaining regular
modules.

It was shown by Donovan and Freislich [DF73] (also see [DR76]) that these are all the
indecomposable finite-dimensional K(A5)-representations. They also gave complete lists over
the other extended Dynkin diagrams (the first case to be treated was that of D4 in [GP70]).
They considered each with a preferred orientation - that is no restriction since, by an operation
on the category of modules (called tilting - see [BGP73], [8880] or [R164]), one converts
"almost all" of it to "almost all" of the category of modules over the same quiver, endowed with
any other specific orientation.

The diagram Al had previously been treated by Weierstrass and especially Kronecker (see
[D146]). For the classification of representations of Al is just the problem of finding a
canonical form for pairs of matrices, where the pair (A, B) is regarded as isomorphic to the
pair (A', B') iff there are invertible matrices P, Q with PAQ=A' and PBQ=B'. (The
analogous problem, where for "isomorphism" we insist that Q=P-1, is none other than the wild
problem of classifying K(X) Y)-modules!) Also see Dieudonne [Di46], especially for the basic
method of analysing the modules so as to obtain a classification.

The quiver D4 was dealt with by Gelfand and Ponomarev [GP70] (also see [Bre74],
[Naz67]) - their paper contains a number of ideas and techniques which were to be developed
into central tools in the representation theory of specific finite-dimensional algebras.

Within the tame case there is a further distinction in complexity which depends on how the
modules are parametrised by K[X]-modules. Let us consider the parametrisation which is
implicit in the above description of the indecomposable A5-representations.

Given iE(1,...,6), define the functor F: mod-K[X]--* mod-K[A5] as follows (cf. the
description of the band modules). A K[X]-module M is simply a K-vectorspace together with a
specified linear transformation "X". Given such a module, define FM to be the A5-
representation which has the vectorspace MK at each vertex and where each morphism is the
identity on M, except that between vertex i and vertex i+1, which is to be the linear
transformation "multiplication by X". Given a morphism f: M) N between K[X]-modules,
the morphism Ff: FM-- FN is that whose component, (FM)eii- (FN)eii, at vertex i
is given by f. It follows from the description of the indecomposable modules that this functor
shows that A5 is tame since, in every dimension, all but finitely many finite-dimensional
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indecomposables lie in the image of F (the functor is given by tensoring with the
(K[X],K(A5))-bimodule which is the A5-representation which has a copy of K[X] at each
vertex and has every connecting morphism an isomorphism). There are some points to be made.

First: one functor suffices in all dimensions (the definition of tame allows for different
functors to be used in different dimensions). Thus A5 is actually of "domestic" representation
type (see below).

Secondly; the definition of F makes perfect sense whether the K[X]-modules are finite-
dimensional or not. So actually, we have a functor from the category of all modules over K[X]
to that of all modules over K(A5). This will be useful to us (in §13.3) because the closure under
direct summands of the image of this functor is finitely axiomatisable (by the requirement that
all morphisms but that between i and i+1 be isomorphisms).

Finally, one may show that if we let i vary, then the resulting six functors suffice to cover
all the regular indecomposable modules (the regular modules which are strings are images of
those indecomposables, K[X]/(X77) and K[X]/((1-X)7), which are lost when X(1-X) is
inverted). Again, this will be useful in §13.3 because we will see there (13.6) that every
infinite-dimensional indecomposable pure-injective is in the closure (in Z(T)) of the regular
indecomposables.

Refer back to the definition of tame above: as given, the parametrising functors may be
different for different values of d. If it happens (as with A5) that functors may be chosen
independently of d, so that in every dimension, d, all but finitely many d-dimensional
indecomposables are in the union of the images of these functors then, following Ringel, one says
that R is of domestic representation type. If R is tame but not domestic then still it may
happen that, as d increases, there is a finite bound on the number of functors which are needed
- if so, then R is said to be of finite growth; otherwise R is of infinite growth
("(un)bounded growth" would be more accurate): this distinction is due to the Kiev school.

Thus domestic/finite growth/infinite growth represents an increase in the algebraic
complexity of the module theory: some evidence will be presented in §13.3 to support the idea
that this is linked to an increase in model-theoretic complexity.

As with A5, the path algebras of the extended Dynkin diagrams are all domestic. Next, I
give an example of an algebra of finite growth and an algebra of infinite growth and briefly
describe their Auslander-Reiten quivers.

Let R be the path algebra (over some algebraically closed field K) of the quiver, with
relations, below

b It is shown in [Ri84] that this canonical algebra is a
1 . _ tame algebra of finite growth and, there, Ringel gives

there a complete description of the finite-dimensional
c (will sa just a little about the sha e ofy indecom osables2 y pp .0

Xt.n cibiai = 0

the Auslander-Reiten quiver of this algebra. Notice that 11
one omits from the quiver either the vertex labelled "0" or
the vertex labelled "oo" then the remaining quiver is
extended Dynkin (f6). The module theory over R reflects
this.

In particular, R has a preprojective component (corresponding to the preprojective
component of the quiver obtained when "oo" is removed) and, dually, a preinjective component.
Then it has a collection of sets, Xr, of tubes of "regular" modules, one for each rEQ+. Each
Xr is a set of tubes indexed by a projective line, with singularities, over K. (The parameter
"r" indicates the relative contributions of the subquiver with "oo" removed and the subquiver
with "0" removed.) The quiver has factorisation properties: if f: M -* N is a morphism
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between regular indecomposables with M lying in a tube in X. and with N lying in a tube in
Xt with r<t then, for any sEIl with r<s<t, there is a factorisation of f through a finite
direct sum of regular modules lying in members of Xs ([Ri84; p276]). It follows
immediately (from 10.6) that if T* is the largest theory of modules over R then m-
dimT* =..

Among algebras of infinite growth, most of those for which the classification of the finite-
dimensional modules is known have indecomposables all of "string" or "band" type ([BD77] for
an exception). The possibilities for the underlying strings and bands are however more complex
than in the (domestic) extended Dynkin case. I illustrate with the path algebra of the butterfly
quiver.

We may form strings and bands as in the case of A5, but now
there is a binary tree of choices. For example, suppose that we are
defining a string module and that we have just put in a vector v at
vertex z where v is (say) the pre-image of a basis vector at y1.

C2
We may decide that vb2 should be non-zero and the next basis
vector: or we may decide to give v a pre-image under a1 (we
cannot do both since b2a1=0). Thus, every time we come to the
vertex z there is a binary choice as to which way to extend the

y1 Y2 string (the same point applies in the construction of the
b2a1 =0=b1a2 underlying "pattern" for a band - so one sees an exponential

growth in the number of functors required to parametrise almost
all indecomposables in a given dimension).

It is shown in [BuRi87] that the modules so constructed are indeed indecomposable and
comprise a complete list of finite-dimensional indecomposables.

Analyses for other algebras of the same type were given in [OP68] for the Gelfand-
Ponomarev algebra - K[x,y : xy=0] - and in [Ri75b] for the dihedral algebra -
K(x,y: x2 =0=y2).

The Auslander-Reiten quiver for the butterfly algebra is described in [BuRi87]. The
"band" modules all lie in tubes. Within each tube, the walk around the quiver, and the
irreducible polynomial (cf. description of the band modules over A5) are constant, and it is the
power of the irreducible which parametrises the modules within the tube. All the other
("string") modules lie in planar sheets which extend infinitely in all directions. (One sheet is
exceptional in that it has a "hole" in the middle.)

13.3 Describing the space of pure-injectiues

In [Bau80] Baur proved decidability of the theory of modules over K(D4) (for K
"sufficiently decidable" ). The result, and especially his proof, suggested that it should be
possible to describe the space Z154. Extending the ideas of his paper, I described the infinite-
dimensional indecomposable pure-injectives over any path algebra R of an extended Dynkin
quiver, as well as the topology of the space ZR. In this section I will outline the proof (for
more detail, see CPr85a]) and I will also say something concerning what is known about ZR
for algebras of non-domestic representation types.

Let us consider the path algebra of A5. It was seen in §2 that a single functor from
mod-K[X,X-1, (1-X)-1] suffices to cover almost all modules in each dimension, but I indicated
that it would be better, from the present point of view, to replace this with a finite number of
functors from mod-K[X], so that every regular indecomposable is covered.
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Theorem 13.6 [Pr85a; §2] If R is the path algebra of an extended Dynkin quiver,
then the closure in ZR of the set of regular finite-dimensional indecomposables
contains every infinite-dimensional point.

Proof Although the proof requires some information about modules over the extended Dynkin
quivers which I have not included in the notes, I think there is, nevertheless, some justification
for putting this here. I refer to [Pr85a] or [R1179] for more background.

Let Al be any infinitely generated indecomposable pure-injective. By 13.2, Al is a factor
of a product of finite-dimensional indecomposables: say N is a direct summand of P®A®E
where P (resp. /1, resp. E) is a direct product of preprojectives (resp. regular modules,
resp. preinjectives).

It may be supposed that P=O. Otherwise, there is a non-zero morphism from Al to a

preprojective module. Therefore, since a submodule of a preprojective is preprojective (see
[Ri79]), there would be an epi from N to a preprojective module. But now, by a
characteristic property of preprojective modules (a kind of relative projectivity), this
preprojective module would have to be a direct summand of N - contradicting
indecomposability of Al.

Thus Al lies in the closure of a subset of ZR consisting only of regular and preinjective
points.

So now let (ip/ p) be any basic open neighbourhood of Al. Suppose that (ip/ii) contains
infinitely many preinjectives. I show that this neighbourhood also contains a regular point.
That will be enough to establish the required result (since, by 13.4, Al is non-isolated and
since the closure of any finite set of finitely generated points is just itself).

Consider the pp formula ip(v): say it is 3w e(v,w), where a is a conjunction of linear
equations. Suppose that M is any module and let aEM satisfy Lp(a); so there is b in M with
M k e(a, b). Let Mo be the submodule of M generated by the entries of b and a. Then
dimKMo <_ (i+Z(w)).dimKR and, of course, MokLp(a).

I emphasise this point (which is valid over any finite-dimensional algebra): given a pp
formula ip, there is nEca such that, whenever M is a module and aEM satisfies ip(a), there
is a submodule of M, of K-dimension no more than n, containing a and in which ip(a) holds.

So let M be an indecomposable preinjective in (ip/V ). Let aEip(M)\ p(M) and let Mo be
as above. Then Mo kip(a)A-nJ(a). Since there were supposed to be infinitely many points in
(ip/i,), we may suppose that M is of large enough K-dimension that M. is a proper submodule
of it.

Now, since M is an indecomposable preinjective, every indecomposable proper submodule
of it is either preprojective or regular (this follows by the relative injectivity of
preinjectives). If each indecomposable direct summand of Mo is regular, then there in nothing
more to do, since some indecomposable summand of Mo lies in the neighbourhood (ip/i,). If
there is a preprojective summand, then we use the fact that any embedding from a preprojective
to M factors through a sum of regular modules. Let M" be Mo with each preprojective
summand replaced thus by a regular module. So we have Mo ' M"-4 M with the
composition being the inclusion. Since Mokip(a), certainly M"kip(a). Since Mknip(a),
certainly t4' -i p(a). Therefore some indecomposable, necessarily regular, summand of M"
lies in the neighbourhood (ip/V), as required. a

Now, it is easy to show that, although the images of these functors are not elementary
subclasses of 7I2R, their closures under direct summands are. So, if Ci is the closure under
direct summands of the image of the functor Fi, then Z(Ci) is a closed subset of ZR. It is an
easy matter to see that FiN is an indecomposable pure-injective K(A5)-module iff Al is an
indecomposable pure-injective K[X]-module. So we obtain certain infinite-dimensional



Chapter 13: Modules over artin algebras 279

indecomposables in zA5. The union of the Ci contains all the regular indecomposables so, by
13.6, we draw the conclusion that we have found all the infinite-dimensional points of zA5 -
they are just the images of the infinite-dimensional points of ZK[X] (the overlaps of the
images of the functors are straightforward to compute). Observe that, since we know the latter
explicitly and since the actions of the functors Fi are quite clear, we obtain a completely
explicit description of the infinite-dimensional indecomposable pure-injectives over K(A5).

Thus we have a list of the points of zA5. But also, the functors behave nicely with respect
to pp formulas, and it is not difficult to infer that they induce homeomorphisms of zK[X] with
its images. From this we deduce the topology of the union of the Ci's: that is not the whole space
of indecomposables over K(A5), but it is easy enough to describe, from this, the topology of the
whole space (the preprojective and preinjective points have to be included). Indeed, if the
topology of ZK[X] is given "explicitly" then so will be that of ZK(AS) (this has implications
for decidability - see §17.3).

What we find, then, is that the picture of zK(AS) is very similar to that of zK[X], but
with two distinctions. The parametrising set for each of the "Prufers" and "p-adics" is not the
space of maximal ideals of K[X] but rather the projective curve with singularities which
comes up in the parametrisation of the regular modules. Also there are the sets of
preprojectives and preinjectives - modules which have no analogues over K[X].

We find in particular that the CB-rank of "K(A,) is 2 (cf. [Ge185]) (this also equals the
elementary Krull dimension of T' for K(A5)), so there are no continuous pure-injectives
(see §10.3, §10.4). Thus we have a classification of the pure-injective K(A5)-modules.

The other extended Dynkin diagrams are treated in an exactly analogous way. The pictures
obtained of the spaces of indecomposables differ only in the number and multiplicities of the
singular points on the parametrising curve.

(I mention here that the original proofs were considerably more complicated and were more
in the line of [Di46]: the key to the simpler proof outlined here is the "density" of the regular
points (13.6) - this vastly eases the task of showing that every infinite-dimensional point is in
the image of one of the functors.)

Lenzing has independently obtained related results on this domestic classification problem.
Also, using the results of [Ri79], Okoh showed in [Ok80] that there are no continuous pure-
injectives, and in [Ok8oa] obtains the broad classification of the indecomposable pure-
injectives (in particular, that the infinite-dimensional ones fall into three classes, called
"priifer", "p-adic" and "rank I torsionfree divisible").

The infinite-dimensional points that we found are actually limits and colimits of certain
natural families of finite-dimensional indecomposables. This is not too surprising since the
PrUfer and p-adic abelian groups are respectively limits of monos and colimits of epis of the
sort 7Lp, ) 71p21 ) ... * ' pn< ) ... and N

P
* p2 -3 p respectively.

This translates to the "PrUfer" and "p-adic" R-modules (R one of the tame path algebras) being
respectively limits of monos and colimits of epis taken along the tubes which comprise the
regular components of the AR-quiver.

But we get more than this. It turns out that the p-adics are pure-injective hulls of limits of
natural series of monos within the preprojective component; and the Prufers are colimits of
natural series of epis within the preinjective component.

In fact we get the following picture, with factorisation properties, extending that described
in §2. The factorisation properties are: that every morphism from an indecomposable
preprojective to an indecomposable regular may be factored through any of the "p-adics" and
that every morphism from an indecomposable regular to an indecomposable preinjective may be
factored through any of the "Prufers". Thus, one may say that the infinite-dimensional pure-
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injectives "glue together" the components of the AR-quiver (also, in some sense, the point of CB-
rank 2 glues together the regular components, cf. [R179] and [R09a]).

regular The factorisation of any morphism

components f:P- M from a preprojective to a
regular module depends on the fact that if
N is any one of the indecomposable "p-

___ ___ adic" modules, then N may beI III I represented as the P ure injective hull of
preprojective preinjective the union of a countable increasing chain
component p-adic prefer component of indecomposable preprojectives.

Then one uses the Auslander-translate 1; which, over these algebras, is a functor, plus the fact
that the regular modules are -r-periodic. Similarly for the dual "prefer" modules.

I turn now to the non-domestic case, where considerably less is known. Consider first the
canonical algebra defined in §2. The fact that there is a set of morphisms which is "densely
ordered" with respect to factorisation means that the lattice P(R) does not have m-dimension,
and so, by 10.22 (for K countable; tensor up for the general case), the space zR is
uncountable and does not have Cantor-Bendixson rank (cf. [0086]). Nevertheless, I would be
surprised if there were any continuous pure-injectives: that is, I conjecture that the theory of
R-modules has width. One may also make some guesses as to where to find the infinite-
dimensional indecomposable pure-injectives: almost certainly there is one at the "top" and one
at the "bottom" of each tube, as for the extended Dynkin quivers. It also seems reasonable to
expect at least one (perhaps more?) family, parametrised by the projective line over K at each
"irrational cut" in the ordered set, U. : rE Q}, of families of tubes.

Turning to the butterfly quiver, the situation seems to be at least as complicated. There
appears to be no way to use functors from mod-K[X] as in the domestic case: for infinitely
many would have to be used and, perhaps more to the point, their images are "interlaced" in an
essential fashion - one which gives rise to infinite points which do not arise from any finite
number of images. Both Point and I have worked on the problem of classifying the pure-
injectives over such algebras.

It seems that the functorial methods, pioneered by Auslander, and used for tame algebras by
Ringel in [Ri75b] (see also [Ri75] and appendix to [Gab75]) should lead to a solution. That
technique (see §12.2) is to look at the category of functors from mod-R to the category of
abelian groups, since the simple functors are in natural bijective correspondence with the
indecomposable finite-dimensional modules. Every simple functor is a quotient of subfunctors
of the forgetful functor: so the problem comes down to understanding the subfunctors of the
forgetful functor (i.e., pp formulas - §12.1). Since we are interested in the infinitely generated
indecomposables, we have to move to a functor category in which indecomposable pure-
injectives correspond naturally to the simple subquotients of the forgetful functor (see 12.9).

It seems more than likely than the approach of [R1175b] can be made to yield a description
of zR for these algebras (a method successful for one will surely apply to them all). Point and
I have taken this line: we believe that we know the list of indecomposables but we have not yet
been able to establish that our list is correct. We can however say the following about the
complexity of zR for these algebras.

The space of indecomposables does not have CB-rank (even if K is countable there are 21o
indecomposables), and the elementary Krull dimension is undefined. Nevertheless, the theory of
R-modules does have width: so (10.9) there are no continuous pure-injectives (and we believe
that the indecomposables are classifiable). The space is not even "To": indeed there are (2xa
sets of) 2'a non-isomorphic indecomposables which are elementarily equivalent (hence
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topologically indistinguishable). There are analogues of the PrUfers and p-adics, and they do sit
nicely in relation to the components of the AR-quiver (they are however far from typical -
indeed there are only of them!).

Finally, I turn to the wild case. The theory of K(X, Y)-modules does not even have width
(and so, 10.14, there are non-zero continuous pure-injective K(X, Y)-modules). To establish
this, we consider "string" modules. We will actually show that the theory of modules over the
finite-dimensional algebra A = K(X, Y )/(y2, X3, YXY, YX2, X2YX) does not have width and
then, since these modules form a (finitely) axiomatisable subclass of I/ZR, it follows that the
theory of K(X) Y)-modules does not have width. (One may note that /1 has, as a factor ring, the
algebra Bop on Ringel's list as given in §17.2(3). Hence A is wild.) The proof that A-modules
do not have finite width is contained in the diagram which follows. Rather than deal directly
with pp formulas, I deal with their realisations. Each diagram below defines a string module:
the vertices are basis elements and the arrows show the actions of X and Y (zero where no
arrow is shown). The triangle depending from one dot indicates that the submodule generated by
the basis element at that vertex is as free as possible (no product is zero unless it is forced to be
so by the relations which hold between X and Y in the ring). Corresponding to the circled
element in a given module, there is the pp-formula which describes that element (the module
has a finite presentation and the circled element is a certain linear combination of generators
for the module).

A
X -action

Y-action

(To prove that the pp-types of the circled elements are strictly increasing,
equivalently that the morphisms are not split, requires some work.)

The essential feature of the diagram is that it shows a situation - a diamond of morphisms
(corresponding to a diamond of pp-definable subgroups) which is "self-reproducing" (cf.
Ex 10.2/1): each side of the diamond contains a diamond of exactly the same sort as the original
one, which in turn .... Thus (see 10.8) the theory of A-modules does not have width.

The idea is as follows: a certain element a (Y times the pre-image under X of the circled
element) is to be annihilated by both X and Y and made divisible by Y. Before making aX=0
we may just make aY=0, make aX divisible by Y and thereafter do quite complicated things,
before finally declaring aX to be zero. We may also do something similar with X and Y
interchanged. These paths meet only when both aX and aY become zero. The "complicated
things" which may be done include repetitions of this whole process, and so a continually
refining diamond is obtained.

Another reflection of the complexity in this case is the fact that even the classification of
the "finite" points of the space of indecomposables is considered to be impossible (although see
[C-B87]).
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As for transferring this complexity: let R be any wild algebra. Then, by definition, there
is a (K(X, Y), R)-bimodule P which is finitely generated and free on the left, such that the
tensor functor -®K(X y)P:mod-K(X,Y)-mod-R preserves and reflects
indecomposability and isomorphism.

Consider the pattern of indecomposables and morphisms between them which was used to
show w(T*K(X y)) = 00. We may apply the tensor functor to this, and we obtain a pattern of
R-modules and morphisms between them. If R is countable then the only possible obstacle to
applying Ziegler's result 10.14, now over R, is that some of the morphisms may be
isomorphisms or zero. The first possibility is excluded by the definition of wild: the second is
also easily dispensed with. For let f:N-' M be any non-zero morphism between K(X,Y)-
modules. Then, since P is free on the left, it must be that f01P : N(&P-- ) M®P also is non-
zero (exercise or see [St75; p.27]) - as required. Thus have the conclusion:

Theorem 13.7 Let R be any wild (finite-dimensional) algebra. Then w(T*R) = oo.
Hence there exists a continuous pure-injective R-module. u
Strictly speaking, the second conclusion is immediate (from 10.14) only if R is countable.

To deal with the general case, one may work over the restriction, R', of R to a countable
subfield, K', of K which is relatively algebraically closed in K, such that every ring element
appearing in one of the pp formulas in the "width oo pattern" lies in this subring. Then there is
an R'-module, N, the lattice of pp-definable subgroups of which has width oo. Consider the R-
module N®K'K: this has isomorphic lattice of pp-definable subgroups so, in particular, this
lattice is countable. Hence 10.13 applies, and we conclude that 13.7 does hold without any
cardinality restriction on R.
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CHAPTER 14 PROJECTIVE AND FLAT MODULES

This chapter is devoted to the model theory of projective and, more generally, flat modules.
As with the dual case of injective and absolutely pure modules (Chapter 15), one obtains
relatively "complete" results. In both cases, the key step is the description of the particular
form taken by the pp-definable subgroups.

If a module M is flat, then every pp-definable subgroup of it has the form ip(M)=M.Lp(RR):
indeed, this property characterises the flat modules. It follows that the model-theoretic
complexity of a flat module can be no greater than that of the ring. We see (§1) that, if the ring
is left coherent, then its pp-definable subgroups are precisely the finitely generated left ideals.
We deduce that the class of flat modules is axiomatisable iff the ring is left coherent.

It follows from the results of §1 that a ring which is left coherent is totally transcendental
as a module over itself iff it is right perfect: but we do not have a general algebraic
characterisation of the totally transcendental rings. We then note that the left coherent, right
perfect rings are precisely those over which the class of projective modules is elementary (over
such a ring, every flat module is projective). The section finishes with a characterisation of
those rings over which the free modules form an elementary class.

14.1 Definable subgroups of flat and projective modules

A major step in understanding the model theory of any particular class of structures is the
characterisation of the definable sets. It is shown below that if M is a flat module and if ip is a
pp formula, then ip(M)=M.ip(R). Therefore finiteness conditions on the lattice of pp-definable
subgroups of the ring immediately carry over to all flat modules. More generally, the model
theory of flat modules is thus somehow reduced to that of the ring. So what are the pp-definable
subgroups of R? For left coherent rings the answer is: precisely the finitely generated left
ideals; and in fact this answer characterises such rings, as does the axiomatisability of the
notion of flatness. Particularly in the first part of this section, I follow [Rot83a].

Some notations will facilitate our progress. Suppose that L is a submodule of the left
module Rn (nEw). For any (right) module M, denote by ML the subgroup of Mn generated
by the set {ar=(ar1....,orn): aEM, r=(r1,...,rn)EL).

Lemma 14.1 Suppose that L is a subgroup of the left module Rn and let M be
any module.
(a) ML is an End(M)-submodule of Mn (via the diagonal action).
(b) If L is left finitely generated then ML is a subgroup of Mn, pp-definable in

M.

Proof (a) Take aEM, rEL, fEEndM. Then:
(f Hence ML is closed under the digonal action of EndM and so (a) is clear.

(b) Supppose that L= Ej=,RrJ where rJ=(r;,...,r'): so ML= 1,T,Mrf. Let
, thenip(u1,..., vn) be the formula 3WI,..., wm At=o, vi= Xi:, wJri. Thus, if (al,..., an) 8 t1 77

holds iff there are b1,...,bm in M with ai= I j:, bJr,' for each i. Any such
tuple, is therefore in the subgroup, ML, generated by the tuples
(barConversely, if rEL, say r=Ej'",sjrJ, and if aEM, then
or= 1,'., as j.rJ (E X j"', MrJ= ML) is a typical generator of ML and it clearly satisfies lp,

with the asj witnessing wJ in ip. Thus ML=ip(M), as required. a

Note that the formula ip(U), appearing in the proof above, is conveniently expressed in
matrix notation as 3w (wH=U) where l(u)=n, l(w)=m, H=m(hji)n with h,i=r,'.

Observe that, although any pp-definable subgroup of Mn - say ip(Mn) - is pp-definable in
M (being ip(M)n), the converse is false: take a field K for R; then the diagonal submodule of
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Kn is pp-definable in K but not in Kn). In particular, ML as above need not be definable in
Mn.

A particular situation of the sort described in 14.1 occurs when L is itself a subgroup of
Rn pp-definable in R - say L=tp(R). Then the question arises of the relation between tp(M)
and M.ip(R). We always have one inclusion.

Lemma 14.2 [Rot83a] Let tp(u) be a pp formula and let M be any module. Then
M.tp(R) tp(M).

Proof Since tp(M) is a group, it is enough to check that the additive generators of M.tp(R) lie
in tp(M). So suppose that m is an element of M and R k tp(r1,...,rn). Also let us suppose that
tp(u,,...,vn) is 3wl,...,w2 n;"', Et", vitij + Gk', wksk> = 0 for suitable til,skj in R.

Then, from tp(r,,...,rn) one deduces the existence of elements, s1',...,sl' of R, with
A 1z ritij + 1k sk'skj =0. Therefore one has A,j m( Eiritij + Eksk'skj) =0: that is,
n,j I:i mri.tiJ+ Ek msk'.skj=0. Hence Mktp(mr,,...,mrn) and so m(r...... rn) lies in
tp(M), as required. a

A point which may be seen in the proof of the result above, but which is somewhat obscured
by its statement, may be seen more readily by using matrix notation. So let tp(u) be of the
form 3w (u w)H=O. Now, "(u w)H=o" defines a subgroup of Mn+l where 77=1(u) and
l= 1(w). For any module M denote by 0M(n+l,n), or even by Ti, the canonical projection
from Mn+l to Mn. Then one has the following.

Lemma 14.3 (see [Rot83a; Prop4]) Suppose that H is a matrix over R and let
tp(u) be the pp formula 3w(Uw)H=0 where l(u)=n and l(w)=l. Let e(u,w)
be the A-atomic formula (u w)H=O. Then:
(a) LP (M)=T1M(n+1,n).e(M);
(b) M.e(R) e(M);
(c) rt(M.e(R))=M.rce(R) and therefore M.ne(R) tte(M) - that is, M.tp(R) tp(M)

(14.2).
Proof Part (a) is obvious and (b) is an easy version of 14.2.

(c) A typical generator on the left-hand side of the equality has the form (mr,,...,mrn)
where there exist rn+1,...,rn+l in R such that O(r1,...,rn+l) holds. A typical generator
on the right-hand side also has this form.

The other statements then follow immediately from (b) and (a). a

In the above notation, one may write "tp=ne".
To continue with this casting into matrix form, there is the following useful description of

ML. Regard (as we have been doing) the elements of L as row vectors (r1...., rn). Then a

typical generator of ML has the form ,...,arn) (matrix multiplication). A
typical member of ML is a sum of such generators, so one has the next result.

Lemma 14.4 [Rot83a] Suppose that L is a left submodule of Rn and let M be
any module. Then ML=E{MtLt: t>_1}, where Mt is the set of lxm matrices with
entries in M, and Lt is the set of mxn matrices over R, the rows of which are
in L.

Thus a typical element of ML has the form aX where the entries of a come from
M and where each row of the matrix X is in L. a
A module M is said to be flat if the tensor functor M®R- from Rm to Ab is exact.

Since this functor necessarily is right exact, it is equivalent to require that M®- preserve
monomorphisms. Every projective module is flat, and a finitely presented flat module
necessarily is projective (see [St75; §1.11]). An element-wise criterion, well-known but
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related to our considerations, is derived next and then is used to give a characterisation of
flatness in terms of the form of the pp-definable subgroups.

I retain the convention that tuples of elements of right (resp. left) modules are written as
rows (resp. as columns), except that the reverse convention is used for free modules acting on
modules.

Lemma 14.5 (see [St75; 1.8.8]) Let MR be a right, and RL a left, R-module.
Suppose that mEMn and ZELn. Then m®l (i.e., I mi®li), as an element of
M®L, is 0 iff there is a matrix H with entries in R and a tuple k from L
such that mH=O and Hk=1; and this (by symmetry) occurs precisely if there is a
matrix H' over R and a tuple m' from M such that m=m'H and H'1=0.
The proof of 14.5 follows directly from the definition of ® (cf. [St75]). It is then an easy

exercise to establish the next result, from which the second corollary follows directly.

Corollary 14.6 [Ch6o; Prop2.3], see [St75; 1.10.7] Let M be any module, Then M
is flat iff whenever mEMn and !E(RR)11 are such that m.l(=1mili) is 0,
then there is m' in M and a matrix H over R with m=m'H and H1=0.
Corollary 14.7 Any pure submodule of a flat module is flat.

Corollary 14.8 Let M be any module. Then M is flat iff whenever e(1) is a
(A-)atomic formula one has e(M)=M.e(R).

Proof Since for A-atomic formulas e' and 8" one has (e'ne")(M)=6'(M)ne"(M), it may
as well be supposed that 8 is an equation - say 8 has the form v.1=0 for some column 1 over
R. From 14.2/14.3, one has the direction M.e(R)se(M).

So suppose that M is flat and take m in e(M); so m.1= 0. By 14.6, there is a matrix H
over R and there is ii' in M with m=iF'H and H1=0. From H1=0 it follows that every
row, r, of H satisifes r.1=0. So, by 14.4, m=rr'H is in M.0(R), as required.

If conversely the second condition is satisfied and if one has mEMn and 1 (RR)n with
m.1=0 then, setting 8(u) to be "7.1=0", one has mEe(M)=M.e(R). So, by 14.4, there is a
matrix H with rows in 6(R) - hence with H1=0 - and there is m' in M, with m=m'H.
So, by 14.6, M is indeed flat. o

So, in a flat module there are no relations between elements, beyond those "imposed by the
ring". This yields the next result.

Theorem 14.9 [Rot83a: Prop 4], [Zim77: 1.3] The following conditions on a module
M are equivalent:
(i) M is flat;
(ii) tp(M)=M.tp(R) for every pp formula tp(u) in one free variable;
(iii) tp(M)=M.tp(R) for every pp formula tp.

Proof The equivalence of (i) and (iii) is immediate from 14.8, on projecting and using 14.3.
Of course (iii)=>(ii). So it remains to show that It is shown that the condition (ii)
has, as a consequence, that whenever 6(v) is atomic then e(M)=M.6(R). Then we will finish
by appealing to 14.8.

Therefore let be atomic. By 14.2/14.3 it need only be shown that
e(M)=M.e(R). If this is not the case, then choose 6 for which this fails, e having the
minimum number, n say, of free variables.

Then, if m=(m,,...,mn) is in e(M)\M.e(R), one has m, E n1.6(M) where ni is
projection to the first coordinate. The assumption (ii) implies that n,e(M)=M.n1e(R)=
n,(M.e(R)) since the formula "Tile" has just one free variable. Therefore, there is m E M and
there is r=(rl,...,rn) in e(R), such that ml=mr,
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Now, it cannot be that m-mr is in M.e(R). For if it were, m itself would be in M.e(R).
Notice that the first coordinate of m-mr is 0. Let e'(v2,...,vn) be e(O,v2,...,vu).

By the minimality hypothesis, it must be that e'(M)=M.e'(R). Now m-mr is in the
submodule 0 e'(M) of Mn, so m-mr lies in 049M.e'(R) -say
m-mr=(0,m's)=(0,m's2,...,m's,) for some (s21 ...,sn) in e'(R). Then 6(O,s2,...Is')
holds. Re-arranging the above equation, one obtains m=mr+m'(0,s) E M.e(R) - contrary to
assumption, as required. a

Exercise 1 Deduce from 14.9 the following:
(a) flat modules are torsionfree in the sense that, if M is flat then, for every mEM and left

regular element, c, of the ring, me=0 implies m=0;
(b) the class of flat modules is closed under direct sums.

It follows from 14.9 that theories of flat modules can be no more complex than that of Rio.
For example, if R is commutative and with Krull dimension a then every flat module has
elementary Krull dimension 5a. Of course, for projective modules this is just a consequence of
the fact that any projective module is a direct summand of some direct sum of copies of R.

Considering what happens in the injective case, one might ask whether there is some direct
connection between flat and projective modules analogous to that between absolutely pure and
injective modules (Exercise 4.2/1; via. that the latter are the pure-injective hulls of the
former), from which this connection between RR and flat modules would follow. The fact that
Q is a flat non-projective 2-module (exercise) shows that this naive analogy is invalid. A more
reasonable question to ask is whether there is some duality (as opposed to direct analogy)
involved; and, indeed, this is the case.

An exact sequence 0-->K-->N-*M-) 0 is pure-exact if the embedding of K
into N is pure. Dually to "pure-injective" say that M is pure-projective if every such
pure-exact sequence ending in M is split. It was noted earlier (proof of 2.23(a)) that in a
pure-exact sequence as above, if ip is pp then tp(M)=Lp(N)/[Kntp(N) (=ip(K))]. In

particular, the lattice of pp-definable subgroups of M is a quotient of that of N (and so has no
greater complexity than that of N).

Exercise 2 Show that every finitely presented module is pure-projective.

The next result shows that flatness dualises absolute purity.

Lemma 14.10 (see [St75; 1.11.1]) The module M is flat iff every exact sequence
0----) K->N--+M-) O is pure-exact. a
In particular, applying this to a projective presentation of the flat module M, one sees

again, by the proof of 2.23(a), that the complexity of the lattice of pp-definable subgroups of M
is no more than that of R.

Corollary 14.11 [Sab7o: Prop2] A module is projective iff it is flat and pure-
projective. a
This last corollary exactly dualises the fact that injective =_ absolutely pure + pure-

injective and generalises the fact that flat + finitely presented implies projective ([Laz64;
Thm 1]).

What, if anything, is the dualisation of the existence of pure-injective hulls and the fact
that every module is an elementary substructure of its pure-injective hull?.

From 14.9 one may deduce the following corollaries.
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Corollary 14.12 [Rot83a: Prop15] If RR is totally transcendental (of pp-rank
a) then every flat, in particular every projective, module is totally transcendental
(of pp-rank o:). o

Corollary 14.13 If R is left artinian of length n then every flat right module

has Morley rank -<n. o
Corollary 14.14 If R has elementary Krull dimension Sa (in particular if RR
has Krull dimension <o) then every flat R-module has elementary Krull dimension
<- a o

Corollary 14.15 If the Krull dimension of RR is defined then, for every flat
module M, the pure-injective hull, M, has a decomposition as the pure-injective
hull of a direct sum of indecomposable direct summands. o

The corollaries 14.14 and 14.15 (the latter follows by 10.10 plus comments after 10.27)
improve on a result of Garavaglia [Gar80a; Example(h)]. One has similar results for m-
dimension, width (see §10.2), or any other reasonable measure of complexity defined in terms of
the lattice of pp-definable subgroups.

The first corollary, 14.12, raises the question of which rings are, as modules over
themselves, totally transcendental. That problem is addressed in the next section.

Next we consider those rings whose pp-definable subgroups are precisely the finitely
generated left ideals; for then 14.9 becomes particularly informative. The ring R is said to be
left coherent if it satisfies the equivalent conditions of the next theorem, for a proof of which
I refer the reader to [St75; 1.13.3]. A module is said to be coherent if all its finitely generated
submodules are finitely presented.

Theorem 14.A [Ch60; Thm2.13,Thm2.2] The following conditions on the ring R are
equivalent:
(i) RR is a coherent left module: that is, every finitely generated left ideal is

finitely presented;
(ii) every finitely presented left module is coherent;
(iii) every element of R has finitely generated left annihilator, and the intersection

of any two finitely generated left ideals is again finitely generated
(iv) as (iii) but with (RR)n replacing RR and submodules replacing left ideals;
(v) every direct product of copies of the right module RR is flat;
(vi) every direct product of flat right modules is flat. a
The next result both characterises the class of left coherent rings and describes the right

pp-definable subgroups of such rings (Garavaglia proved this [Garaoa; Lemma22] with the
additional assumption that R is right perfect - cf. 14.19 below).

Theorem 14.16 [Rot83a: Prop7], [Zim77: 1.3] The following conditions on the ring
R are equivalent:
(i) R is left coherent;

(ii) the pp-definable subgroups of RR are precisely the finitely generated left
ideals;

(iii) the subgroups of Rn which are pp-definable in RR are precisely the finitely
generated submodules of (RR)n.

Proof (i)==>(iii) Let ip(v,,...,vn) be pp: say it is 3w,,...,w1Aj"_',1ivirij+Xkwkskj=0.
Let (RR)n+l --t- (RR)m be the morphism defined by sending to the m-
tuple with j-th component 1i ririj + 1k sksk j. By 14.A, ken f is left finitely generated.
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Hence ip(R), being the image of kerf under projection to the first n coordinates, also is
finitely generated, as required.

(iii)==>(ii) This is trivial.
Left annihilators and finitely generated left ideals of R are right pp-definable

(and hence, also, are their finite intersections). So this follows by 14.A(iii)z'(i). o

Corollary 14.17 [Rot83a; Props4,7] The ring R is left coherent iff, whenever
MR is a flat module, every pp-definable subgroup of M has the form ML for
some finitely generated left ideal L of R. This condition will be satisfied exactly
if, for every flat module MR, every subgroup of M77 pp-definable in M has the
form ML where L is a finitely generated submodule of (RR)n.

Proof = This is immediate by 14.16 and 14.9.
= This is immediate by 14.16, on taking M=R. o

From this one quickly derives (as is noted in [Rot83a]) some earlier results of Eklof and
Sabbagh which were obtained without this explicit description of the pp-definable subgroups.

Theorem 14.18 [SE71; Thm4] The following conditions on a ring R are equivalent:
(i) R is left coherent;
(ii) the class of flat modules is elementarily closed;
(iii) the class of flat modules is axiomatisable.

Proof [Rot83a: Prop8] That (iii) implies (ii) is immediate (a class C is elementarily
closed if MEC and M'-=M implies M'EC: for example the class of finite structures is
elementarily closed, though not elementary).

Since R(K)=RK for any K (by 2.24) it follows, by 14.A(v)==> (i) and the fact that every
direct sum of flat modules is flat, that (ii) implies (i).

Now, for (iii), let ip(u) be any pp formula with one free variable. By 14.16, ip(R)
has the form I:J',Rs1 for suitable s1....,sm in R. Let VLp(v) be the formula
3w,,...,wm (v= I j w jsj ), and note that ip(R)= .p (R). But, more than this, for any module
M one has M.T(R)=y,T(M).

By 14.9, the module M is flat iff, for every pp formula ip(v), one has
Lp(M)=M.Lp(R)=iyip(M). That i s, M is flat iff MkT - i for every pp ip. Thus the class of
flat modules is axiomatised by the set (Vu (ip(v) H ipLp(v)) : ip(v) is pp and yiip(u) is
constructed as above). Hence this class is elementary. o

Exercise/Problem 3 Explain the following:
(i) R is left coherent iff the class of flat right modules is elementary (14.18);
(ii) R is right coherent iff the class of absolutely pure right modules is elementary

(15.35 + 15.27).

Baudisch [Bd84] considers the extent to which tensor product preserves elementary
equivalence between abelian groups. His work overlaps to some extent with some earlier
unpublished work of Jackson [Ja73] Baudisch characterises those abelian groups A such that,
whenever A'= A, one has R®8 =_ A'®8 for all B, and also those abelian groups A such that
B=8' implies 408 = A®8'. He also shows that if R is semisimple artinian then, for every
module A, if BeB' then A®8 = A®8' (as abelian groups). In contrast, he gives an example of
elementary equivalence not being preserved by tensor product, using modules over a boolean ring.

Sabbagh [Sab84] has shown that if P is a pure-projective module, then M=_Al implies
P®M = P®N (as abelian groups): thus over any ring of finite representation type, tensor
product preserves elementary equivalence. More generally, he shows that if the module P
satisfies the condition: for all modules (Mi)i, the natural morphism
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P®TT i Mi -> TT i P®Mi is monic ( ), then P®- preserves elementary equivalence. He
shows that a module P satisfies condition (-) iff every countably generated submodule of P is
contained in a countably generated pure submodule of P which is pure-projective (and so a
countable module P satisfies (*) iff it is pure-projective).

14.2 Projective modules and totally transcendental rings

It has been seen (14.18) that the class of flat modules is elementary iff the ring R is left
coherent. This suggests the question: under what conditions on R is the class of projective
modules elementary? In the light of the discussion at the end of the previous section, this is to
ask what completes the equation (or duality) concerning right modules:
right coherent : right noetherian = left coherent : ??
Another question, suggested by 14.12, is: describe the totally transcendental rings
algebraically. It turns out that these problems have the related solutions.

A ring R is said to be right perfect if it satisfies the equivalent conditions of the
following theorem which is mainly due to Bass [Bas60] (see [Fai76; 22.29,22.31A], for
example).

Theorem 14.B The following conditions on the ring R are equivalent:
(i) every right R-module has a projective cover;
(ii) R is left semi-artinian and R/J is semisimple artinian (where J is the

Jacobson radical of R);
(ii') J is right T-nilpotent and R/J is semisimple artinian;
(iii) R is left semi-artinian and R has no infinite set of orthogonal idempotents;
(iv) R has the dcc on finitely generated left ideals;
(v) every left R-module has the dcc on finitely generated submodules;
(vi) every flat right R-module is projective. a
A projective cover of the module M is an epimorphism P--+>M from a projective

module P, through which factors each epimorphism from a projective module to M (unlike the
dual object of injective hull, projective covers do not exist in general). The ring R is said to be
(right) semi-artinian if every non-zero module has a simple submodule. Also, J is T-
nilpotent if, given any sequence 0l,a2,...,an,... of elements of J, there is kEca with
akak-1...a1= 0.

Exercise 1 [Pr84; 3.17,3.18] Suppose that R is right perfect. Show that R is actually left
artinian iff there are no non-isolated irreducible types in the theory of RR (cf. 11.38).

By 3.1, if R is totally transcendental then R has the dcc on finitely generated left ideals
and so is right perfect ([Sab75a; Prop 8] for the countable case); in fact, by 14.23 below, it is
even semi-primary - i.e., R/J is semisimple artinian and J is nilpotent. That the converse
is false is shown by the next example.

Example 1 This is an example of a ring which is right artinian (so is semi-primary - in
particular is right and left perfect - and is left totally transcendental) but which is not totally
transcendental as a right module over itself. It is due to Zimmermann. I describe the example
but, for more detail, the reader should see [Zim82].

Let T be a ring which is right artinian, has a derivation has a ring endomorphism t
with (-cT)'=0, and is such that T(L)>T(t+1) where T(') denotes the i-th derivative of T
(so T(0)=T and T(L+1)=(T(i))'). An example of such a ring is T=K(xi : iEw) - the field
of rational functions in the indeterminates xi over a field of characteristic 0: for the
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derivation take the partial derivative s/sxo: for the endomorphism take that defined by
sending xi to xi+1.

Let N be the right T-module freely generated by x and y (say). Define a left T-module
structure on N by setting t(xt1+yt2)=xttl+y(t'tl+tt2) (t,t1,t2 ET).

Let the ring R be the trivial extension of T by the (exercise) bimodule N:

t n

R=( 0 t : tET, nEN). Then (exercise) R is right artinian.

Let MR be the cyclic module R/xR (where x has been identified with
0 x
0 0 ). As a T-

module, M is the direct sum of 1T and yT (where bar denotes image modulo xR). There is a

left R-module structure on M given by
t n
0 t (1t, + yt2)-1z(t)t, + yC(t)t2 making M

an (R,R)-bimodule (exercise: use W)'=O).
Then MR is not totally transcendental (exercise: find an infinite descending chain of pp-

definable subgroups), in fact MR is not even pure-injective.
It follows (see [Zim82]) that the trivial extension S of R by M is not even right pure-

injective. On the other hand S is right artinian (and so is left totally transcendental).

Zimmermann's paper [Zim82] contains a number of results on rings which are pure-
injective or totally transcendental as modules over themselves (use of pp-definable subgroups is
an essential tool in the proofs). The next result (see [Rot83a; p976] for references) shows
that, in the presence of left coherence, a right artinian (and so, by 14.B(ii), right perfect) ring
is necessarily right totally transcendental.

Theorem 14.19 Suppose that R is left coherent. Then RR is totally
transcendental iff R is right perfect

Proof If R is left coherent then every pp-definable subgroup of RR is a finitely generated
left ideal (14.16). So, by 3.1, R is t.t. iff it has the dcc on finitely generated left ideals - that
is, iff (14.B) R is right perfect. o

Corollary 14.20 If the ring R is left noetherian then RR is totally
transcendental iff R is left artinian.

Proof This is clear, since left noetherian plus right perfect is equivalent (from the
definitions) to left artinian. a

A related result is the following one.

Corollary 14.21 [Pr84; 3.16] If R is any ring then the following conditions are
equivalent:
(i) RR is totally transcendental and the pp-rank of RR is finite;
(ii) R is left artinian.

Proof That (i) implies (ii) is clear by 5.13 and 5.18 (since finite pp-rank certainly implies
that R is left noetherian). The converse follows by 14.16 and 14.20, since (ii) implies that
the lattice of finitely generated left ideals has finite length. a

Corollary 14.22 ([Garoo; Remark5 after Lemma4], [Sab75a; Propa] for the
countable case, also see [SE71; Prop4] and [Sab70; Thm3]) If R is right perfect and
left coherent then every flat (= projective) module is totally transcendental.

Proof This is immediate by 14.19 and 3.7. a
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The fact that every projective module over a right perfect and left coherent ring is pure-
injective (which follows from 14.22) was already obtained by Sabbagh [Sab70: Thm3]. In
fact, he then deduced the following result, which was later obtained also by Jensen, Zimmermann
and Lenzing (see introduction to [Z-HZ78]). Zimmermann-Huisgen and Zimmermann give an
example [Z-HZ78; Examplel4] to show that a semiprimary (even commutative) ring with the
acc on right annihilators need not be U. as a module over itself.

Theorem 14.23 [Sab7o; Thm 3, Cor 1], [Lan76; §§2, 3] If the ring R is totally
transcendental as a module over itself then it is semi-primary, with acc on right
annihilators. In particular, every right perfect and left coherent ring is left perfect.

Proof First, dcc on left annihilators is established: equivalently it is shown that if
1-ann(A)=(rER : rA=0) is any left annihilator of a subset A of R, then 1-ann(A)=
l-ann(A0) for some finite subset, Ao, of A. But this is clear: choose a, EA; if l-ann(a,)=
l-ann(A) then we are finished; otherwise 1-ann(a1)Dl-ann(A) so choose a2EA with
l-ann(a1)=) l-ann(a1ia2); and so on. Observe that 1-ann(al,...,a,) is right pp-definable by
the formula A vai=0. So 3.1 yields that the descending chain l-ann(al)=,
must stop at some point; and it stops at l-ann(A).

Clearly dcc on left annihilators is equivalent to acc on right annihilators.
As remarked after 14.B, we have that R is right perfect, so R/J is semisimple artinian.

Therefore it remains to show that J is nilpotent.
Now, J is right T-nilpotent. To see that this is so, take a sequence 01, a2,... of elements

of J and consider the right pp-definable subgroups defined by the formulas "anon-1...aiI V".
These form a descending chain which, by 3.1, must stop. So, for some nEw there is cER with
an...a1=can+lan...aj. Re-arrange this to get (1-con +1)an...a, =0. Since can+1 is in the
radical J, 1-can+1 is invertible. Hence an...o1=0, as required.

By acc on right annihilators there is nEw with r-ann(J77)=r-ann(Jn+1), where
r-ann(-) denotes right annihilator. Suppose that J were not nilpotent. Then J77+1 would be
non-zero; so there would be a1EJ with Jna,x0, hence with Jn+101#0. So there would be
02 EJ with Jno2a1x 0; and soon. This would contradict right T-nilpotence, as required.

The second part follows by 14.19 and 14.B. o

Corollary 14.24 [Sab70; Cor2 to Thm3] If R is right perfect and left coherent,
and if the module RR is absolutely pure, then R is quasi-Frobenius.

Proof Since RR is absolutely pure and, by 14.22, pure-injective, R is therefore right
self-injective (i.e., RR is injective). Moreover, by 14.23, R has acc on right annihilators.
It follows by, for example, [St75; XIV.3.5] that R is quasi-Frobenius. o

Theorem 14.25 [Ch60], [SE71; Thm 5] The following conditions on the ring R are
equivalent:
(i) R is right perfect and left coherent;
(ii) the class of projective modules is elementarily closed;
(iii) the class of projective modules is elementary;
(iv) every product of projective modules is projective;
(v) RK is projective for every cardinal K.

Proof The equivalence of (i), (iv) and (v) is a result of Chase (e.g., see [Fai76; 22.31B]).
That (i) implies (iii) follows from 14.18 and the fact that right perfect implies that

flatness coincides with projectivity (14.B). Certainly (iii)==> (ii). Finally, (ii) implies (iv),
since RK is elementarily equivalent to R(K), which is projective. a
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So suppose that R is right perfect and left coherent (note that left artinian rings are
included among such rings). Then, by 14.25, there is a largest complete theory of projective
modules: Tproj =Th(${PT : T is a complete theory of projectives and PT is a chosen model
of T}). By 14.22, this theory is totally transcendental. So, by 3.14, every projective is a
direct sum of indecomposable projectives. How many indecomposable projectives are there? (in
the dual, injective, case there may well be infinitely many).

In fact, it is well-known (see [SE71; Prop 2] or, say, [Fai76; 22.23]) that if P is an
indecomposable projective over a right perfect ring, then P is the projective cover of a simple
module and has the form eR where e is a primitive idempotent of R (so the simple module
corresponding to P is eR/eJ). Therefore, if R is also left coherent, Tproj is a totally
transcendental theory which is finite-dimensional (there are only finitely many simple
modules, since R/J is artinian).

I leave as an exercise, descriptions of categoricity, saturated models, and so on, but I do
record the basic descriptions of projectives and a peculiar corollary. The following corollary is
actually true without the assumption that the ring is coherent (see [SE71; Th1]) but (14.22) it
is only over such rings that the projectives all are totally transcendental.

Corollary 14.26 Suppose that R is right perfect and left coherent. Then every
projective module has an essentially unique decomposition ®t=,Pi(KJ for suitable
cardinals Ki, where R= ®,:, Piny for certain niEw, ni>,1, where each Pi is
indecomposable and where Pi t P j if i m j. a

Corollary 14.27 Suppose that R is right perfect and left coherent. Then the
lattice of finitely generated left ideals of R (a sublattice of the lattice of all left
ideals, since R is left coherent) has foundation rank <wn, where n is the number
of non-isomorphic indecomposable projectives.

Proof Since R is right perfect, this lattice has the dcc, so it makes sense to talk about its
length. By 5.13 this foundation rank is just the U-rank of Tproj. This theory is n-dimensional
so the result follows by (say) 10.19 and 10.42. a

Exercise 2
(a) If R is right perfect and left coherent then R(io) is t0-saturated.
(b) If R is right perfect and left coherent and T=Tproj as above, then every irreducible

type in S, T(0) is isolated (compare 11.38).
Also, if all invariants of R are 1 or 00 then EndMo, where Mo is the prime model of
Tproj =Th(R), is the basic ring (i.e., modulo the radical, it is a product of division rings)
Morita equivalent to R.

From the above, it is not difficult to characterise those rings over which the class of free
modules is elementary.

Theorem 14.28 [SE71; Thm 6] The following conditions on the ring R are
equivalent:
U) the class of free modules is elementary;
(ii) the class of free modules is elementarily closed;
(iii) R is left artinian and either is local (in the sense that R/J is a division ring)

or is finite with R/J a simple ring.
Proof. (iii)==>(i) In case (iii), R certainly is right perfect and left coherent. Moreover, in
the first case R is the unique indecomposable projective, and in the second case R is a finite
sum of copies of the unique indecomposable projective (so in either case we have
unidimensionality of Tproj).
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If R is infinite then, clearly, Th(R) is the theory of the free modules. If R is finite then
choose a minimal pair Lpo/'v in R with Inv(R,ipo, yo)=k say. Then an axiomatisation for
the free modules is given by {Inv(-,tp,ty)=1 : Inv(R,'.p,V)=1) u
{"Inv(-,tpo,iyo)>nk -, Inv(-,ipo,tpo)>(n+1)k" : 77E w) - for this axiomatises the members of

which are either infinite or are direct sums of an exact (finite) number of copies
of R.

Clearly (i)ce (ii). So we suppose that (ii) holds and deduce (iii). First, it is claimed that
the class of projective modules is elementarily closed. Suppose that P is projective and that M
is elementarily equivalent to P; choose Q such that PeQ is free. Then MeQ=PeQ. By
(ii), M (D Q is free and hence its direct summand, M, is projective. So by 14.25, R is right
perfect and left coherent.

Next we see that, up to isomorphism, there is just one indecomposable projective. Suppose
that P1,...,P77 n>2 were the distinct indecomposable projectives. Then R('A-)c ®; PiUk),
and this is elementarily equivalent to e";'P1(ko) e Pn('+). By (ii), this last module would
be free, so isomorphic to R(K) for some K. Since each Pi occurs only finitely many times in
the decomposition of R and since the direct-sum decomposition of P is unique, we would have a
contradiction. Hence n=1 and R/J is a simple ring-

If R is finite then we have the desired conclusion.
Suppose then that R is infinite. We have just seen that for some indecomposable

projective P. Since the class of free modules is elementarily closed, in order to show that n=1
(i.e., that R is local) it will be enough to show that R and P are elementarily equivalent. One
may show directly that each invariant of P is 1 or oo. Alternatively, one may argue that since
R is infinite, so must be P. So there is a, necessarily projective, proper elementary extension
of P. This extension must be of the form p(K) (by unidimensionality of Tproj) for some

2. Hence P=P2 and so R=Pn=P, as required.
Finally, it must be shown that R is left artinian. If R is finite then this is so. Otherwise,

let L be a minimal left ideal of R (we have seen already that R is right perfect). Then L
R(R/J), by what has just been shown. Since R is left coherent, it follows (14.A) that J is
left finitely generated. But then (by 14.23, J is nilpotent) RR has a finite composition
series with finitely generated factors, so R is left artinian. o

The proof above shows the following.

Corollary 14.29 If the class of free modules is elementary then it is
unidimensional. o
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CHAPTER 15 TORSION AND TORSIONFREE CLASSES

As in Chapter 14, we deal here with not necessarily complete theories. In that chapter, our
interest was in the flat and projective modules: here, we consider modules which are absolutely
pure or injective within a certain class of modules.

A lot of what we do can be set within the context of "non-hereditary localisation"; so the
first section sets out the basic notions of preradicals and torsion and torsionfree classes.

In the second section the axiomatisable torsion and torsionfree classes are characterised.
Let X be a universal Horn class of modules. We ask, in the third section, when X has a

model-companion. This and related questions, for the case X=7RR, were the main topic of Eklof
and Sabbagh's seminal paper [ES71]. They showed that the theory of modules has a model-
companion iff the ring is right coherent and, in that case, the existentially complete modules are
just the "fat" absolutely pure modules. We see that there is an analogous result for any
universal Horn class of modules which has amalgamation. I don't assume the amalgamation
property from the outset and I first derive a criterion for existence of a model-companion, in
terms of the space of indecomposable pure-injectives in X. We see that every universal Horn
class of abelian groups has a model-companion.

Then, under the additional hypothesis that X has amalgamation, it is shown that X has a
model-companion iff it is "coherent" in an appropriate sense: in particular, if the ring is right
coherent, then every universal Horn class with amalgamation has a model-completion.

Throughout the section, we deal with the notions of absolute purity and injectivity relative
to X and, when the class has amalgamation, with notions of "closed" submodules of free modules
(cf. §1).

Universal Horn classes which are cogenerated by an injective module are particularly well-
behaved. They are considered briefly in the last section. The class of localised modules is
elementary iff the universal Horn class satisfies a coherence-like condition. This allows one to
characterise locally finitely presented Grothendieck abelian categories as the "elementary"
localisations of Module categories (the latter being the functor categories of the form (s°p,Ab),
where S is a small additive category).

15.1 Torsion, torsionfree classes and radicals

This section introduces the basic concepts of torsion theory and describes the connections
between them (most proofs, being elementary, are omitted; they may be found in [St75;
ChptVI], for example).

A preradical on MR is simply a subfunctor of the identity functor on MR. Thus, 't is a
preradical on MR if, for each module M, 'tM is a submodule of M and if, whenever M-L--> Al

is a morphism in MR, one has f('tM) S vV.
Given a preradical t, one defines the classes:

Vti = ( MEMR : 'tM=o} - a typical pretorsion class;
V.t = (M EmR : 'tM = o } - a typical pretorsionfree class.
Note that (t.t, 7.t) = 0: if M E V t and Al E V t, then the only morphism from M to N is the
zero morphism.

Examples 1

(i) Suppose that R is a commutative domain. Define 't by 'tM = (mEM : mr=0 for some
non-zero element r of R). This yields the usual notion of torsion and torsionfree (for
abelian groups in particular).

(ii) For any ring R, define 'C by 'tM = (mEM: me=0 for some right regular cER), where
cER is said to be right regular if, for every rE R, cr=0 implies r=0. This is the
direct generalisation of (i).
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(iii) For any ring R, define tM = socM - the sum of the simple submodules of M. Then tt
consists of the semisimple modules, and MEVt iff M has no simple submodule.

(iv) Let R be any ring. Define tM to be the sum of all submodules of M which have finite
length. Then ME t1 iff every finitely generated submodule of M has finite length
("locally finite" in the terminology of [Aus74a]); 7t consists of those modules with no
non-zero artinian (equivalently, no simple) submodule. In particular, the torsionfree
classes in (iii) and (iv) coincide, although the torsion classes need not (take R to be any
artinian non-semisimple ring). The torsion class in (iv) is the closure of that in (iii)
under arbitrary extensions (cf. 15.3(b) below).

(v) Let R be any ring, E any module. Define t by tM = 0 (kerf : fE(M,E)). Thus MEtit
iff (M,E) = 0, and MEVt iff M embeds in some power of E. The argument for this
latter point is often used and proceeds as follows. Define M-____) M(M,E) by

m H (fm)fE(M,E). Since tM=O, this is an embedding. The converse is obvious, on
considering the projections.

(vi) Let R be commutative and suppose that p is a 1-type. Then Fp (cf. §12.1) may be
regarded as a functor from 1I2R to 77ZR and, as such, it is a preradical. One has MEtFp
iff p(M)=M; and MEVFp iff p(M)=0.

(vii) Let R be a commutative domain. Define tM to be the divisible part of M:
tM={mEM:VrER(rmo-3m'EM(m'r=m))}. This defines a preradical t, with 1t
consisting of the divisible modules and Vt being the class of "reduced" modules.

These examples should give some idea of the diversity encompassed by the notion of a
preradical. The reader may well have observed that in some of these examples the preradical
satisfies notable properties beyond the defining one. Two important such properties are the
following. The preradical t is a radical if, for every module M, one has t(M/tM) = 0
(thus, if one removes the t-torsion part of a module by factoring it out, then one obtains a t-
torsionfree module). The preradical t is idempotent if, for every module M, one has
t(tM)=tM (so, being torsion is independent of context) - for instance, if ip is A-atomic then
tFLp is idempotent. An important strengthening of the latter condition is introduced in the next
section, after 15.9.

Exercise 1 Referring to the examples above, show that (i) and (ii) describe radicals but that
(iii) does not; show that (i) and (ii) are idempotent but that (vi) need not be, nor need be (v)
unless, say, E is injective.
Exercise/Problem 2 What conditions on a pp formula tp (say, over a commutative ring)
ensures that is idempotent, respectively, a radical?

Next, I state a series of results. As remarked already, their proofs are straightforward and
so are omitted (refer to [St75]). The symbol C will always refer to a subclass of the class,
7718, of R-modules.

Lemma 15.1 (see [St75; VI.1.4])
(a) The following are equivalent conditions on C:

(i) C is closed under quotients and coproducts;
(ii) C is a pretorsion class;
(iii) there is a unique idempotent preradical t with (3 =tt.

(b) The following conditions on e are equivalent:
(i) C is closed under subobjects and products;

(ii) C is a pretorsionfree class;
(iii) there is a unique radical t with C=7t. a
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Given preradicals t and a on 7InR, write 't S a if tM S aM for every module M. From
this relation one deduces Vt `- Va and 7t=_ 7a.

Given a preradical t, the idempotent preradical which defines the same torsion class (see
15.1) is denoted e. Thus e is the largest idempotent preradical below t. Analogously, denote
by 1; the radical which defines the same torsionfree class as t. Then is the smallest radical
above t. In particular, one has 1?St5 C. The next result follows easily.

Lemma 15.2 Suppose that t and a are preradicals on MR.
(a) If t and a are idempotent, then t5a iff Vt=_Va.
(b) If t and a are radicals, then t5a iff 7t=7a. a
The next lemma complements 15.1.

Lemma 15.3 (see [St75; VI.2.1,2.2])
(a) A radical t is idempotent ifft is closed under extensions.
(b) An idempotent preradical is a radical iff Vt is closed under extensions.
(c) A class CE-MR has the form Vt for some idempotent radical t iff C is

closed under quotients, coproducts and extensions.
(d) A class C`-MR has the form ,C for some idempotent radical t iff C is

closed under subobjects, products and extensions. n

A class C is said to be closed under extensions if, whenever
0-) A-* B--) C- ) 0 is an exact sequence, with A and C in C, then B is in C.

A class as in 15.3(c), respectively 15.3(d), is termed a torsion class, respectively a
torsionfree class; Given an idempotent radical t, the pair (fit, ?t) is called a torsion
theory.

Lemma 15.4 (see [St75; §Vl.2])
(a) If t is an idempotent radical, then (with the obvious notation)

Vt=(M:(M,7t)=0) and Vt=(M: (Z7t,M)=0).
(b) If (Z7, V) is a pair of subclasses of 77ZR such that (tv, )=0 and 2,7 are

maximal with respect to this property , then (tI, 7) is a torsion theory.
(c) The correspondence between idempotent radicals and torsion theories is bijective

(and note that each of t, V or 7 determines everything else). n
Every class, C, of modules cogenerates a torsion theory in the following sense: one sets

VC(M:(M,(3)=0) (and so 7(3 =(M: VC=0)).
Also, given a class C, set cog(3 = (M : M embeds in a product of modules from C ); if

C = {//) then write cog// for cog(//). Clearly cogC is a pretorsionfree class, but it need not
be a torsionfree class, so may be smaller than "C" in the last paragraph (for an example, take C
to be the class of simple modules). It is this latter notion of cogeneration which fits in well with
the concerns of this chapter.

At least if e is a proper class, 70 need not be of the form C for any single module C:
one may take for C the class of cotorsion-free abelian groups. See Dugas and Gobel [DuG685]
for references and more on this theme. Also see [DFS87], where it is shown that the
torsionfree classes cogenerated by a single element are precisely those cogenerated by a pure-
injective (cf. the next result). (Analogous results for torsion classes are in [DH83].)

Say that a subclass, 0, of MR, which is closed under submodules, has rank S K if, for
any module M, one has ME 0 iff every <K - generated submodule of M lies in £ . The

example above shows that a torsionfree class need not have a rank.

Lemma 15.5 Suppose that C is closed under submodules, products and pure-
injective hulls. Then cogC has a cogenerator and, in fact, rank (3 <, (IRI+'la,,)+
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Proof For every module, D, in cogC with no more than IRI+'k. generators, choose some
pure-injective C' in TT C into which D embeds. Let C be the product of all the C' thus
obtained.

Suppose that M is such that every submodule with no more than IRS+ k, generators is in
cogC. Let aEM. Then there is M', pure in M, containing a and SIRS+)k,-generated. By
assumption, there is an embedding of M' into C. Since M' is pure in M and C is pure-
injective, this embedding extends to a morphism M-1 > C: note that fa*0. Therefore, by the
usual argument (cf. Ex1(iv) above), M embeds in C(M,C) and so MEcogC. Thus the rank of
cogC is as claimed, Also, the argument has shown that cogC =cogC. a

An example which shows that one may not replace I(RI+'i,)+ by JRI+?Z, in the above is
given by taking C to be the class cogenerated by the abelian group 2(2). Then every finitely
generated submodule of Q, being free, is in (3, but I is not in C.

Say that the class iFJ, closed under submodules, is locally defined if rank kJ _< k.. So,
in particular, a universal Horn class (see §2) of modules is locally defined.

I now digress briefly to indicate how a locally defined class of modules may be described by
specifying a class of submodules of R(' o). This may enable some of the material in §2 for
universal Horn classes to be carried through for more general classes. It could also give an
alternative approach to "localisation at pure-injectives" (see §12.3).

Define a closed system, K, on R to be a set of the form K = Uk, Kn, where Kn is a
set of submodules of R77, subject to the following conditions:
(i) Rn E Kn for each n,>1;
(ii) if I E Kn and r,,...,rm E Rn, then (I: (ri,...,rm)) E Km, where

(I: (rl,...,rm))= risi E I).
Say that the members of K are closed.

Let 0 be a non-empty class, closed under submodules. Define K(0) by
K(0)=(I<R77 :n31 and R77/IE0). Given a closed system k, define a class D(K)=(M:for
all n 1 and for all 15 Rn, if Rn/I embeds in M then I E K ).

Lemma 15.6 With notation as above:
(a) tJ = D(K) is a locally defined class closed under submodules, and KD(K) = K;
(b) K=K(0) is a closed system, and DK(0)= 0.

Proof (a) That D(K) is closed under submodules will follow if it is shown that for every
I E Kn, every finitely generated submodule of Rn/I has the form Rm/J for some m and
some JEKm.

So let ri,...,rm ( Rn: I claim that Rm/(1:(ri,...,rm)) is isomorphic to
I,',riR=(Xi',riR+1)/I. To see this, define f:Rm )Rn/1 by sending (sl,...,sm) to
(I risi + I) / I. This induces a morphism Rm / (1: (ri,..., rm)) ) Rn/I since each
element of (1:(ri,...,rm)) is sent into 1. Furthermore, by definition of (1:(r1,...,rm)),
this induced morphism is monic. Clearly the morphism is epi. Thus the claim is established.

The remainder of the proof is trivial. n

Corollary 15.7 There is an inclusion-preserving bijection between locally defined

classes, closed under submodules, and closed systems. G

One may go on, and note that this establishes a bijection between locally defined
pretorsionfree classes and closed systems which are closed under arbitrary intersections. If
such a pretorsionfree class is axiomatisable (I do not know whether it is worthwhile putting this
in terms of the corresponding closed system ), then it is a universal Horn class. Such classes are
considered in the next section.
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15.2 Universal Horn classes, varieties and torsion classes

A class is said to be universal if it may be axiomatised by a set of universal sentences. A
class is universal iff it is closed under submodules and ultraproducts. We will be concerned
with classes which are also closed under products. For these, one has the following
characterisation, where one says that a class is universal Horn (or a quasivariety) if it
may be axiomatised by sentences of the form dv e(v) and dv (tp(U) - 8(v)) where a is
atomic and ip is A-atomic.

Lemma 15.8 (see e.g. [Co81; 2.8, 4.41) The following conditions on a class C (of
modules) are equivalent:
(i) C is a universal Horn class;

(ii) C is a universal class closed under products;
(iii) C is closed under submodules, products and ultraproducts;
(iv) C is an elementary pretorsionfree class.

Proof For the equivalence of (i), (ii) and (iii), see the references given. The equivalence of
(iii) and (iv) is obvious from 15.1(b), o

It is a consequence of 15.8 and 15.1 that, if C is a universal Horn class of modules, then
there is a unique radical t on 7728 with C=Vt. This radical is given explicitly by:
tM = fl (M': M'-<M and M/M' E (3). Such radicals - i.e., those for which 7t is an elementary
class - are characterised in the next result. A preradical t is of finite type if t commutes
with filtered col im its: that is, if t 11m MX = 1 a tMX

Proposition 15.9 [Ek75; 1.2], [Pr79; Thm7], [Kom80; Thm 1] If t is a radical on
77ZR then the following conditions are equivalent:
(i) 7t is a universal Horn class;
(ii) Vt is closed under filtered colimits;
(iii) t is of finite type.

Proof The equivalence of (i) and (ii) is essentially [Ek75; 1.2]. I repeat the proof here.
Suppose then that Vt is a universal Horn class, so is closed under subobjects and reduced
products [CK73; 6.2.2]. The standard construction of the filtered colimit of a filtered family
(M,X)-A, produces the colimit as a subobject of the reduced product TT - M-, / 5D, where £ is
the filter on A generated by the sets of the form (j E A : p_> -A ) for 'AE A. Thus (i) implies (ii).

For the converse, suppose that Vt is closed under filtered colimits. Then, since any
ultraproduct may be obtained as the colimit of a filtered family of products of its components,
one sees, from 15.8, that (ii) implies (i).

The implication (iii)==> (ii) is easy (see proof of 15.10 below), so the proof is finished by
showing that (iii) holds if °t is closed under filtered colimits. Therefore, let {M X)a be a
filtered family of modules, and consider the correspondingly filtered family, (tM_)^A, of
torsion submodules. Let M=1y Ma and set N= 1-iln tM-, _< M. It must be shown that tM=N.

Now, the universal property of colimits certainly gives the inclusion NStM. Also, for
each ), E A, one has the short exact sequence 0) t/1 MA 0 with
M1,/tM, in Vt, since t is a radical. Consider the colimit of this filtered family of short
exact sequences: 0 )

1im tMIA ) 1im M') 11m 0 - this sequence is exact
since 7728 is Grothendieck [Pop73; 2.8.6]. By hypothesis, 1-1m ( lies in Vt: that
is, M/N lies in 7t: hence tMSN. Therefore tM=N, as required. o
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If t is a left exact radical, then by U one denotes the set of right ideals I such that
R/I E Vt - the set of right ideals 1:-dense in RR. From 2lt one may recover t (see [St75;
§VI.4]). The radical t is said to be left exact if it is so as a functor: that is, iff Vt is closed
under submodules; equivalently, iff `3t is closed under injective hulls. Then one says that the
torsion theory (Vt, fit) is hereditary. Another equivalent is that t is hereditary iff, for
every inclusion M<#, one has t(M)=Mnt(N).

In the case that we are dealing with a hereditary torsion theory, an equivalent condition to
those in 15.9 is that the filter V of t-dense right ideals be "cofinally finitely generated", in
the sense that every member of U contains a finitely generated member of 2l ([00175],
[St75]).
Example 1 Let R be any domain, and define the idempotent radical t by
tM = (mEM : mr=O for some non-zero rER}. If R is uniform (for example, if R is
commutative) then t yields the Goldie torsion theory. In any case, t is an elementary class,
being axiomatised by (f/v(vr=0-* v=0): rER, rm0). Hence t is of finite type.

Corollary 15.10 [Pr79; Cor8] If the preradical t is of finite type, then so is the
smallest radical above it.

Proof By 15.1, `fit=7;E, so it will be enough to deduce, from the assumption that t is of
finite type, that this class is closed under filtered colimits. So let M = Tim M-, be a filtered
colimit of modules, MX, in fit. Then tM = t iB MX = 'In. tM x (by hypothesis), and this
equals in 0 = 0. Hence M E `fit = ` ; , as required. a

Corollary 15.11 [Pr79; Cor9] If t is a radical, then there is a largest radical,
2, of finite type below t.

Proof Let X be the intersection of all univeral Horn classes containing `fit. Then J is itself
a universal Horn class so, by 15.9, has the form 7j for some radical, i, of finite type. Since
` j=_7t, 15.2 gives i<-,t and, clearly, from the choice of X, is the largest such radical. o

Now, I consider varieties: those classes defined by sentences of the form Vu e(u), where
e is (A )-atomic. One has the following well-known characterisation of varieties.

Lemma 15.12 (see [Co81; 3.1]) A class C (of modules) is a variety iff it is closed
under subobjects, products and quotients. o

In particular, by 15.8 and 15.1, every variety of modules has the form 7t for some unique
radical t which, by 15.9, must be of finite type. Those first two results also give the following.

Proposition 15.13 [Pr79; Prop 10] Let C be a pretorsionfree class. Then C is a
variety iff C=Vt, for some (idempotent) preradical t'. o
The subclass C of 7/MR is a TTF (torsion, torsionfree) class if there are idempotent

radicals t and t' on MR such that C=`It=Vt,. The triple (fit, C, `1t') is then termed a
TTF-theory. The following results describe the TTF-classes. The first characterises the
hereditary torsion classes which are elementary.

Proposition 15.14 [Pr78; 4.4] Let t' be a left exact radical on 771R. Then the
following conditions are equivalent:
(i) Vt- is closed under products;
(ii) Vt, is an elementary class;
( i i i ) U.=(ISRR: A<I) for some idempotent ideal, A, of R.
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Proof (i)=(ii) Since t1.r' is closed under quotients it is, since closed under products, also
closed under ultraproducts. Since t' is left exact, fit, is closed under (elementary)
submodules. Hence fit, is indeed an elementary class.

00 =:> (iii) I show that Zit- is closed under arbitrary intersections: from that it follows
easily (e.g., see [St75; VI.6.12]) that 2lt, is as described. So assume inductively that 4lt, is
closed under intersections of sets of cardinality <K, where one may suppose [St75; p.144] that
K i'11,.

Let z= { 7« : U <K) be a set of right ideals in itt', and set 1= fl2. If there is a subset
z'= Z, of cardinality strictly less than K, such that fl Z' = I, then the induction hypothesis
gives I E 2tt'. So suppose that there is no such subset.

For a<K, set Ja = fl Up : p<u). Let 5D be any uniform ultrafilter on K. Set
M = TT (R/J, : Q <K) / £. Then, by (ii) and the induction hypothesis, M E Y. '. So, in
particular, there is some KE2tt' with 1.K=0, where 1=(1+Ja)a/ 1. This implies that for
each kEK and U <K, there is a'<K with u<o:' and kEJ«' (that is, the set of a' with
kEJa' must be cofinal in K since, by uniformity of 0, this set has cardinality K). But
a<o:' implies J«'<J«, and so Ks fl (J«: a<K)=I. Then KE2lt' implies IE4lt,, as
required.

(iii)==>(i) Let {Mi:iE1}s J.,-. It must be shown that /1= fT /4 is in Vt-. Let A be
as i n (iii). Then, for each i E 1 and at E Mi, aiA = 0. So, for any 57= (ai)i E M, one has

a4=0. Thus MEJt', as required. a

Proposition 15.15 [Pr79; Thm12] The following are equivalent for a subclass e

Of MR:
(i) C is a variety closed under extensions;

(ii) C is a universal class, closed under quotients, coproducts and extensions;
(iii) C is a TTF-class;
(iv) (3 is an axiomatisable hereditary torsion class.

Proof (i)==>(ii) This is immediate from the definitions.
Suppose that (ii) holds, so, by 15.1, there is an idempotent preradical t' with C=.,.

Since C is closed under submodules, t' is left exact and also, by 15.3, t' is a radical. Since
C is elementary, and since direct sums are elementarily equivalent to direct products (2.24),
C is closed under products so, by 15.1, C=7t for some (idempotent) radical t. Hence C is a
TTF class.

That (iii) implies (iv) follows by 15.14.
Finally, is immediate by 15.1, 15.3 and 15.12. a

One has the following corollary.

Corollary 15.16 [Pr79; Cor13] Let (7, C, 7) be a TTF-theory. Then (Y, C) is a
torsion theory of finite type.

Proof This is immediate by 15.9 and 15.15. a

Exercise 1 It is a rather strong condition to impose on a torsion class that it be axiomatisable.
It may be shown that, under quite wide circumstances, if V is an axiomatisable class and
contains all the simple modules then it is all of MR. Specifically, one has the following.
(i) [Pr79; Prop 14] If every two-sided idempotent ideal of R is finitely generated on one

side and if (l, 7) is a hereditary torsion theory on IIZR such that every simple module is
in ', then 1 is an axiomatisable class iff 7=MR.
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(ii) [Pr79; Prop 151 If (:, V) is a stable (i.e., 7 is closed under injective hulls)
hereditary torsion theory on mR such that every simple R-module lies in V, then 2 is
an axiomatisable class iff 1=l?ZR.

Exercise 2 Let (g, 7g) be the Goldie torsion theory (see [St75; §V1.6]).
(i) [Pr78; 4.2] Vq is an axiomatisable torsion class iff R/tgR has finite uniform

dimension.
(ii) [Pr79; Prop16] The Goldie torsion class g is axiomatisable iff the socle of R, socR, is

Da-dense in R (that is, iff R/socR ( g).

15.3 Model-companions and model-completions of universal Horn
classes

Throughout this section, X will be a universal Horn class of modules - that is, an
axiomatisable class of modules which is closed under submodules and products. Then (9.37) X
has the form Mod(TV) for some complete theory T of modules, which is, in general, by no
means unique. (TV is the set of all universal sentences in (the deductive closure of) T.) For
example, the abelian groups 7l4 and 7l2 ®7l4 cogenerate, in the sense of 9.37(a), the same
universal Horn class. Recall (§1) that I put X = cogC if X = (M E7TZR : M embeds in some power
of C) and then say that C cogenerates X.

This section deals with the problem of determining when X has a model-companion (or
model-completion) and describing the models. So, we will be concerned with questions
concerning "complete" or "injective" members of X. It was with such questions, with X being
the entire class of R-modules, that Eklof and Sabbagh [ES71] initiated the recent model-
theoretic study of modules. My own investigations began with the replacement of the class MR
by a hereditary torsionfree class ([Pr78]-[Pr80]). It should be noted that this still is a
"quantifier-free" case, and pp-elimination of quantifiers does not come into play.

The approach that I take in this section is that of [Pr8la].

Let X be a universal Horn class (of modules). I recall some definitions and results - but
beware that they have been specialised (for the general ones, see [Mac77] for instance). A
structure M in X is existentially complete (e.c.) in X if every embedding of M into a
member of X is an existential one: an embedding M°--) M' is existential if every finite
system of equations and inequations with parameters from M and a solution in M' already has a
solution in M. If M is thus embedded in M' then one says that M is existentially closed in
W. Every member of X embeds in an e.c. member of X (because X is an V3-class). It may
be the case that the class, ECX, of e.c. members of X is an axiomatisable one. I n that case it
follows that the theory of ECX is complete (since modules have the joint embedding property):
it is called the model-companion of (the theory of) X. If X does have a model-companion T,
then T has elimination of quantifiers iff X has the amalgamation property, and then one says
that X has model-completion T.

A class c3 has the amalgamation property, AP, if any diagram of
embeddings as shown, with A, 8 and C in C, has a completion as
shown, with D in C.
In the case of modules one has, because of pp-elimination of
quantifiers, the following property, stronger than usual.

Lemma 15.17 If M and N are existentially complete in X and if M is embedded
in N, then this embedding is an elementary one.
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Proof Since M is e.c., its embedding into N is existential so, in particular, is pure. By,
say, [Che76; 111.13], 2.15 and 2.26, every two e.c. modules are elementarily equivalent. So,
by 2.26, the result follows. n

Eventually, I will have to make the additional assumption that X has the amalgamation
property, but it is possible to avoid this for a while. Let me begin with an example of a
universal Horn class of abelian groups which fails to have amalgamation.

Example 1 [Fis77] Take X to be the universal Horn class of abelian groups cogenerated by
22 (D Q, and consider the diagram shown, where j is the natural inclusion, and f takes 2E2Z
to (2,1) E 71®712. Then there is no monic completion of the square in X.

For, if g, h were as shown then, since 2 divides gj(22), it
2 271 2 would have to be that h(2, t) = h(2, 0) + h(o,1) were also

It
i divisible by 2. So h(0,1) would be divisible by 2 and an

9 element of order 2. But X has no element of order 4 -t contradiction.
(2,1) 7l®7l C ?2

There are two points involved in investigating the e.c. structures of X: what are the e.c.
structures? (in terms of some structural description); do they form an elementary class? Let
us begin by dealing with the first question.

Let A be any e.c. member of X; then every embedding A B is existential so is, in
particular, pure. If A is actually pure-injective, then every such embedding splits. Thus one
is lead to consider notions of absolute purity and injectivity, relative to X (unfortunately, this
means that we have "relatively absolutely pure" modules). (cf. [BH61], [Sk178],
[St67,68]).

Say that AEX is absolutely pure in X if every embedding Ac--* 8, with BEX, is
pure: write A EAbs(X). Say that AEX is injective in X if every embedding A'--'B, with
BEX, is split: write AElnj(X).

Proposition 15.18 [Pr8la; 2.2] Let X be a universal Horn class of modules, and
let A be a member of X.
(a) Inj(X) sAbs(X).
(b) AEAbs(X) iff AElnj(X).
(c) Inj(X) consists exactly of the pure-injective members of Abs(X).

Proof Part (a) is immediate from the definitions. For part suppose that AEAbs(X)
and let A- ) 8 EX be an embedding. Since the induced embedding of A into 8 is pure, so is
strictly pp-type preserving, it follows by 4.14 that the embedding of A into B is pure, so is
split, as required. Part (c) now follows. For the following lemma is needed (if X has
AP then is easy).

Lemma 15.19 Suppose that j: A- ' M is an embedding. Then there is an
elementary extension, M', of M and an embedding of the pure-injective hull A of
A into M', extending j.

Proof Let a^b be an enumeration of A^(A\A). Let p(u,w) be the pp-type of 5-
q(U) be the type of jb in M. Consider T(i.U)=p(j5,w)uq(j5)u{wix0}, where

w=(wi)i. I claim that this set is finitely satisfied in M.
Otherwise, there is Lp(u,w) E p, e(U) E q and bi E A\A, such that

Al k bw (tp(ja,w) A6(ja) -* wi=o). By 4.10, we may assume that i.p includes a formula
linking bi to q; so A k ip(a,w) -* wis 0. Now, Ai ip(a,b) so, since A is pure in A, there
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is d in A with Ak ip(a,d). By choice of ip, d1*0, where di is the element corresponding
to bi.

Then, since j is monic, M k ip(jo, jd) A e(ja) A dim0 - contradiction, as required.
So let c in M' )-M realise T(UT). Since ppM(ja^T) = ppA(a^b), there is an extension

of j to a morphism from R to W. Since ci * 0 for each i, this extension is monic, as
required. o

So, returning to 15.18(b), suppose that 4r inj(X) and let j: A-- M E X bean
embedding. By the lemma, there is an extension to an embedding f: A-' M', where
M<M' E X. Since A is injective in X, f is pure and so the composition fj is pure. Certainly
then, the co-restriction of fj to M is pure, as required. o

Note that Inj X is closed under direct products and direct summands.

Lemma 15.20 Let X be a universal Horn class and let C be existentially complete
in X. Then Cko is existentially complete in X.

Proof Let be an embedding, and let a_3U(e(U,c)AA n'Xi(v,c)) be
satisfied in A, where c is in C'&, e is A-atomic and the 'xi are atomic. It will be enough
to show that this is satisfied in Ck°, since a typical existential sentence is a disjunction of
such sentences. It may be assumed that e(u,0) > 'Xi(u,0) for each i.

Suppose that Cko did not satisfy s: then, since all indices in C'& are "1" or "oo", it
follows by Neumann's Lemma that, in Co,k8(u,0) is equivalent to one of the Xi(u,0) - say
to 'X j(U,0). Therefore the same is true in C. But then we have the suituation that C is embedded
(via C ko) in A, where the latter satisfies the existential sentence 3u (e(u, 0) A
which is not satisfied in C. This contradicts C being existentially complete. o

Corollary 15.21 Let X be a universal Horn class, and let C be existentially
complete in X. Then C=Cko and C is absolutely pure in X.

Proof Consider the embedding of C into Cko. By 15.20, Cko is e.c. so, by 15.17, this is an
elementary embedding. o

It follows that the existentially complete members of X are the "fat" members of Abs(X)
in the sense of [Sab71]. This may be put in topological terms as follows. Define the following
subset of Z(X) (the space of indecomposables in X): 2((Inj(X))=(#EZ(X)://EInj(X)) -
the subset of injective-in-X points of Z(X). For any member A of X, V(A) denotes the set
of indecomposable summands of A. Note that if A is a discrete pure-injective then
cl 2l(A) = z(A) = Z(A), where "cl" denotes topological closure.

Lemma 15.22 Let X be a universal Horn class of modules, and let C be in X.
Then C is existentially complete in X iff C is existentially complete in X.

Proof Suppose first that C is e.c. Let C be embedded in AE X, and suppose that the latter
satisfies the formula 3u'X(u,d) where 'X is quantifier-free and d is in C. Let p(w) be the
pp-type in C ofd over C. Consider any tp(W,T) in p: one has that A satisfies
3w (tp(w,T) A 317 'X(u,9)) so, since C is e.c., this formula is satisfied also in C. Therefore
the set of formulas p(1) A3u X(u,i) is finitely satisfied in C. By 4.5, 3u X(u,w) is in
p(w). Therefore C satisfies 3u'x(v,d), as required.

For the converse, suppose that C is e.c., and let C be embedded in AEX. By 15.19, the
embedding of C into A extends to an embedding of C into an elementary extension, A', of A.
If 6 is an existential sentence with parameters from C which is satisfied in A, then it is
satisfied in A' and so in C. But C is an elementary substructure of C (2.27), and so the
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result follows. Alternatively, we may use that fact that an existential substructure of an e.c.
structure is e.c. (see [Che76; §111.3] or [Mac77]). a

Lemma 15.23 Let X be a universal Horn class of modules and let C be
existentially complete in it Suppose that N is injective in It Then CeN is
existentially complete in X.

Proof By 15.22 it may be supposed that C is pure-injective. Let CeN be embedded in
/1 EX Since, by 15.21, CeN is injective in X, A may be decomposed as CeNeB. Suppose
that A satisfies the existential statement 3U(e(U,c,n)AA1where e is /-
atomic and the -xi are atomic, c is in C and n is in N. Let 5 in A be such that
e(5,c,n)AA-ixi(5,c,n) holds: decompose a as (c',m,b)ECeNeB.

Projecting to CeN, one deduces C e N f e((c',m), c, n) (abusing notation a little):
projecting to B, one obtains 8 k e(b,0,0). For each i, let cxi(U) be xi(U,0,0) or

according as x1(b,o,o) holds or not. So B satisfies the existential parameter-
free sentence 3U(e(U,0,0) AA i Therefore A, and so C, satisfies it also: let d
witness U in C. Since (15.21) C=Cko and by Neumann's Lemma, d maybe chosen so that,
for each i such that holds, does not lie in the same coset of xi(U,w,O)
as (c', c).

We have e((c'+d,m), c, n): we want also to have c,n), for each i. If
holds, then since must hold, so does and hence we

do have i t((c'+d, m), c, n). If, on the other hand, c,n) holds then, although
we do not know whether or not xi(d,0,0) holds, we did choose d so that does not lie
in the same coset of xi(U,w,O) as (c ,c): therefore ixi(e +d,c,0), and hence

holds.
Thus we have shown that the original sentence holds in CeN, and so this module is indeed

existentially complete. o

Lemma 15.24 Let X be a universal Horn class of modules and let A=A"& be
absolutely pure in X. If c121(A) 2 21(Inj(X)) then A is existentially complete in
X. The converse holds if A is discrete.

Proof Suppose that A is not e.c. in X. Then there is an embedding A-)B E X and an
existential formula 3U(e(U,a) A At=, lii(U,a)) where 5 is in A, a is A-atomic and the
7i are atomic, such that this formula is satisfied in B but not in A. Since any member of X
embeds in an e.c. member of X, B may be taken to be existentially complete. It may be
supposed that for each i. By Neumann's Lemma and since A=_Ako, the
only way in which this formula can fail in A is to have e(U,0) equivalent in A to some

Therefore the neighbourhood (e(U,0)/7i(U,o}) does not intersect cl U(A).
For each b E8, let Pb be a type (in Th(Bko)) maximal with respect to extending

pp8(b) and not increasing the A-atomic type (i.e., omitting all "vr=0" where brm0). By
4.33, Pb is irreducible. Let cb realise Pb: then N(cb) is injective in X. For, any
embedding N(cb) -_ HEX does not increase the annihilator of eb so, by maximality of pb
and 4.14, it is pure.

Since pp(cb) 3 pp(b), there is a morphism B - N(cb) taking b to cb. Let
B ) TT B N(cb) be the morphism induced by all of these. By construction, this is an
embedding; since B is e.c. in X, it is pure. So, for some bE8, the component N(cb) lies in
(e(U,0)/7But then the injective N(cb) does not lie in cl'1(A), and the first
statement follows.

For the second, suppose that A is existentially complete in X and that A is discrete.
Suppose that there is N E 21(Inj(X))\cl' 1(A). Then there would be some neighbourhood
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(ip/ip) of N, isolating N from cl 21(A) = Z(A). Now, by 15.23, the module A e N is
existentially complete in X, and so the canonical embedding of A into it should be an
elementary one (15.17). But A e N satisfies 3v(lp(v) A -iw(v) ), whereas A does not satisfy
this - contradiction, as required. o

Corollary 15.25 Let X be a universal Horn class of modules and let A be in X.
If A=Ako, A is absolutely pure in X and cl21(A) 2 2t(Inj(X)), then A is
existentially complete in It The converse holds if R is discrete. o
Theorem 15.26 Let X be a universal Horn class of modules. Then X has a
model-companion iff 2L(Inj(9)) is a closed subset of Z(X).

Proof Let C be e.c. in it Suppose that N E cl 21(Inj(X)): by 15.23, C e N is e.c. in X.
By 15.21, C e N is absolutely pure in X, so N must be injective in X, as required.

Let T=Tk0 be the complete theory such that Z(T) = 21(Inj(X)) (4.67). Let C be
any e.c. member of It By the proof of 15.24, C purely embeds in a product of members of
21(Inj(X)): by 15.17, this is an elementary embedding. So, by hypothesis, C is a model of T.
Conversely, if A is a model of T then A satisfies the conditions of 15.25 and so A is e.c., as
required. a

In this case, 16.7 gives a strong restriction on the members of T(Inj(X)) = 21(Inj(X)).

Corollary 15.27 [ES71; 4.8], [Wh76], [Pr8la] Let X be a universal Horn class
of modules. Then X has a model-companion iff Abs(X) is axiomatisable.

Proof By 15.26, 2L(Inj(X)) is a closed subset of Z(X), so the set of axioms
{Inv(-,ip,ip)=1: (ip/4J)nZ(Inj)=.g) serves to define Abs(X).

The axioms for Abs(X) define, in Z(X), exactly the subset 2L(Inj(X)), so the result
follows by 15.26. a

This may be regarded in terms of cogeneration. By 15.21, in order to determine the e.c.
members of X, it will be essentially enough to describe the members of Inj(X) which are
existentially complete. Therefore we consider some notions of the "extent" of ME Inj(X) in X.
We have already met one in §9.4: N elementarily cogenerates X if every AEX purely embeds
in some power of N. The other notion is: N (algebraically) cogenerates X if every AEX
embeds in some power of N. We know already (9.37) that X has an elementary cogenerator:
the proof of the first part of 15.24 shows that X has an algebraic cogenerator which is
injective i n X. Set E= TT NLEZ(Inj)).

Lemma 15.28 Let X be a universal Horn class, and let E be as defined above.
Then E is an algebraic cogenerator which is injective in X. Furthermore, any
algebraic cogenerator C which also is injective in X satisfies Cko=E.

Proof By the proof of 15.24, E is an algebraic cogenerator which is injective in X. (Of
course, E is injective in X, since it is a product of injectives in X.)

Now let C and D be any two algebraic cogenerators which are injective in X. Then one
has embeddings Cc ) DK. ) (Cp)K , for suitable powers of C and D. These embeddings are
pure, since C and D are injective in X, so by 2.25, Cko=_Dko, as required. a

Theorem 15.29 [Prela; 2.4], cf. [Pr79a; Propt] Let X be a universal Horn class
of modules, and let E be defined as above. Then X has a model-companion iff E
is an elementary cogenerator.

Proof t- By 15.26, it is enough to show that 2L(Inj(X)) is closed. So let No be in
cl(21(Inj(X))) = cl 2l(E). Since E is an elementary cogenerator, it follows that No is a
factor of some power of E. Such a module must be injective since E is, as required.
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If X has a model-companion then, by 15.27, Abs(X) is axiomatisable. Therefore if
N = N I M =_ E then N is in I nj (X), and hence is a factor of some power of E, as required. a

As an application of these ideas, I show that every universal Horn class of abelian groups
has a model-companion (in fact, any inductive class of abelian groups with the joint embedding
property has a model companion [Sab7l; Cor6]).

Let X be a universal Horn class of abelian groups and consider the set U(Inj(X)) of
indecomposables which are injective in X.
(a) Let p be a prime and suppose that some member of X contains an element of order p.

Since the pp-types extending this A-atomic type are linearly ordered, there is exactly one
of 71 p, 7lp2, ..., 7Lpoo in Inj(X).

(b) If some member of X contains an element of infinite order, then Q is in Inj(X) and no
2(p) is in Inj(X) (X is an elementary class, so if 2(p) is in X then so is Q}).

(c) So 2((Inj(X)) consists of, for each prime p, either nothing, 7lp or 2poo, possibly
together with Qd (and if there are infinitely many points, Q must occur).

(d) What are the possible cluster points for such a set X? There can be no finite cluster
point, since such points are isolated. There can be no cluster point of the form 7l(p) -
for consider the neighbourhood (v=v/ plv) of 2(p). This neighbourhood can contain at
most one point of X, necessarily of the form 71pfl: then the open set (pniv/ pn+1lv)
isolates 7l(p) from X. So any cluster point already is in X.

Therefore, by 15.26, one has the following result.

Proposition 15.30 [Sab7l; Cor6] Let X be any universal Horn class of abelian
groups. Then X has a model-companion. a
For instance, if X is as in Fisher's example (before 15.18), then the model-companion of

X is the theory of Qd ®7l2 °.

Problem 1 Investigate the situation for arbitrary universal classes of abelian groups.

Of course, a universal Horn class of abelian groups need not have a model-completion, since
it need not have the amalgamation property. The example of Fisher quoted at the beginning of
this section shows that the universal theory of 0 ®7L2k- does not have a model-completion.

There follows an example of a universal Horn class of modules with no model-companion.
The ring involved is quite "large" from the point of view of finiteness conditions (cf. 15.38).

Example 2 Let K be a field, and let R be the ring K[xi (iEw) : xix j=0 (i,) E w)]
(Ex2.1/6(vii)). Consider the universal Horn class, X, cogenerated by the (models of the)
theory of RR. Now (since J-(R/J)(' -)), Z(X) consists of the two indecomposables: RR
and R/J. Observe that R/J embeds in R, so 2l(Inj(X)) = (R). On the other hand, (R) is
not a closed subset of Z(X), for the types of the xi (iEw) cluster to a type which says
"vJ=0" and "xit v" for all i - that is, the type of 1+J in R/J. So, by 15.26, X does not
have a model-companion.

One may note that X does not have amalgamation: one may embed R/J into R by taking
1+J to xo or to x and then there is no way of amalgamating these embeddings in X, since
the theory of R says that the only element divisible by xo and x, is the zero element. One
may also observe that every module in X is totally transcendental.

For contrast, consider the next example which, although not having amalgamation, does have
a model-companion.

Example 3 Take K to be an infinite field and consider the ring
R = K[x1,x2 : xix j=0 (i,j E (1, 2))] (Ex2.1/6(vi)). Let X be the universal Horn class
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cogenerated by the theory of R"o. As in the previous example, the space of indecomposables
consists of R and R/J but now there are no non-isolated irreducible types in Th(R'a) (note
that the Morley rank is 3), so the model-companion is just this theory. As in the previous
example, amalgamation fails.

We have a criterion (15.26) for existence of a model-companion, in terms of the space
Z(X). The criterion given in 15.27 is that the class of absolutely pure modules be
axiomatisable. In the case originally treated ([ES71]), it was this second result that was used,
and a criterion in terms of the lattice of right ideals of the ring was found. In this original case,
where X is the class of all R-modules, Eklof and Sabbagh showed that there is a model-
companion (iff there is a model-completion) iff the ring R is right coherent.

Now, MR has the amalgamation property. It has been seen that not every universal Horn
class has this property, and it appears that a nice criterion for companionability, in terms of
the lattice of right ideals (or a non-trivial one in terms of the lattice of pp-types) is not
available (in [Praia; Erratta] I tried to obtain such a criterion, but it is not now clear to me
whether the alleged criterion is useful or even correct). For that reason, when I develop a
criterion for companionability in terms of the right ideal lattice of the ring, I will eventually
need to impose the condition that X has amalgamation. The main point is, of course, to discover
under what conditions the property of being absolutely pure in X is an elementary one.

I>R Lemma 15.31 (see [ES71; §3]) Let X be a universal Horn
class and let /I EX.Then AEAbs(X) iff for every diagram as
shown, where I is a finitely generated submodule of Rn and
BEX, there is a factorisation as shown.

3

Proof Consider a diagram as shown.
Let a generate I, and let e be canonical generators for Rn. Then there

I =) Rn is a matrix equation (A-atomic formula) 5= eH for some matrix, H,
over R. Therefore one has jfa = gF.H, and so 8 satisfies the pp

f G, g formula 3w (jfa =WH). Therefore, if A is absolutely pure in X, then
this is also satisfied in A: suppose that c in A witnesses w. Then one

A - ) 8 E X may define a morphism Rn-' A by sending e to c, and this is a
factorisation of the required form.

For the converse, let A, ) BEX be an inclusion. Suppose that 8 satisfies the A-atomic
formula e(a,b) where a is in A and b is in B. Since A is a submodule, it may be
supposed that e(a,b) has the form A j t j(b) = a j, where the t j are terms. A morphism is
defined from R" to 8 by sending canonical generators, e, of Rn to b (n is the length of
b). Then t j(e) is sent to a j. Let I be the submodule of Rn generated by the t /F). Thus
we obtain the outer square of a diagram as in the statment of the lemma. Let h be the morphism
from R" to A as shown. Then, for each j, one has t1(he) = a j and so A satisfies 8(5,he).
Therefore At ) 8 is pure, as required. o

This is the key to axiomatising the property of being absolutely pure in X,I - R n but one problem has yet to be disposed of: how does one tell whether a

f I diagram such as that opposite may be completed by a member of X? At
Eli last, amalgamation has to be brought into the picture.

A E X
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Following §1, we say that a submodule M of the module M' is X-closed in M' if M'/M
is a member of X. We particularly have in mind submodules of the free modules R. Since X
is closed under products, there is an associated notion of X-closure: c1X(M,M') is the least
submodule of M' which contains M and is X-closed in M'. So M'/c1X(M,M') is the "largest"
quotient of M'/M which is in X.

Let I be a (finitely generated) submodule of Rn: denote by OX the X-closure of the zero
submodule in Rn, and consider pkI = InOX. ("pk" for pushout kernel).

Note that pkl need not coincide with the X -closure of 0 in I (that may be strictly
smaller): consider the case where X is the class of abelian groups of exponent 2, and take I to
be 22Z - so pk 27l = 22 > cl3(0, 27l) = 42E (the point is that the radical corresponding to X
need not be left exact). Of course, pkI is X-closed in I since I/pkI embeds in R"/OX.

Observe that if a diagram of the sort above is completable in X, then kerf > pkl. The
converse is true if X has the amalgamation property and A is absolutely pure in X.

II). Rn
fI

Proposition 15.32 [Pr8la; 2.5] Let X be a universal Horn
class of modules with the amalgamation property. Let
A EAbs(X). Consider the diagram opposite, where I is
finitely generated. The diagram may be completed in X as
shown iff kerf -> pkI.

Proof The direction always holds.
For the converse, suppose that ker f >- pk I. One has a

1 30 R
n factorisation as shown opposite.

Since R E Abs(X), R E Inj (X) (15.18). Choose an
embedding, j, of I/pkl into some N E Inj(X). Considerj G Jf

I/pkI,>R 1/0X

Q, f) , I9

N®R c__ SEX

N®R®8'

the diagram below where f is the composition of f' and
an embedding of A into its pure-injective hull R.

The morphisms are embeddings so, by the amalgamation
property, there is a completion in X as shown. Since (by
15.18) N ®R is injective in X, there is a decomposition
8 = #4D Ao B' for some 8'. Let e be the image of canonical
generators of Rn in R771 OX. Then there is a matrix H, such
that a = eH generates I / pk 1.
One has ge.H=g.eH=(j,f).a=(ja,fa,0)ENeAeB'. Set
ge=(f,a',b)EN®R®8': so o'H=fa. Therefore, if
h:Rn/OX R is defined by taking e to o', then one has
he.H= fo.

Composing this with the canonical projections in the first diagram, a diagram of the required
sort is obtained. a

As in §8.3 and §14.1, we think of the elements of free modules being written as column
vectors when appropriate.

How then, can we say that the kernel of a morphism contains pk I? For in order to
axiomatise Abs(X), it will be enough to be able to say that every such morphism has an
extension to Rn. (The point is to make existence of a square as in the diagram a "local"
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property, at least for the modules which are absolutely pure in X: without amalgamation, it is
not clear that this can be done.)

Let X be a universal Horn class of modules: say that X is coherent if, for every finitely
generated submodule 1 of any Rn, I/ pk I is X-finitely presented in the sense that if
K'-- Rm-*I/pkI is a presentation of I/pk1, then K is X-finitely generated in Rm
in the sense that, for some finite set, b, of elements of K, one has K = clH(bR,Rm) (note
that it is not required that K be the X-closure in K of some finite set).

So, for example, the class of all R-modules is coherent iff the ring R is right coherent in
the usual sense.

Theorem 15.33 Let X be a universal Horn class of modules with amalgamation.
If X is coherent then Abs(X) is an axiomatisable subclass of X.

Proof By 15.31 and 15.32, in order to say that a module A is absolutely pure in X, it is
sufficient to say that, given any n>1, any finitely generated submodule I of Rn and any
morphism f :I - A with ker f > pk I, then there is an extension of this morphism to one
from Rn to A.

Let Rm-»I be epi and set a= (aJ,...,am) to be the image of the canonical generators
e' of Rm. Let a = eH, where a is a canonical set of generators for R. Since X is
coherent, if K' R m-» I /pkI is exact, where Rm-> 1/pkI is induced from
Rm-*1, then there are c1,...,ck in K such that K =clX(Ei ciR, Rm). Therefore, a
morphism f from I to A(EX) with kerf > pk 1 is just an m-tuple of elements of A which
annihilates the matrix C, where C has for its j-th column the element c j, written as an
mxl vector. So our axiom corresponding to this choice of I and f should begin:
"VU(UC =0 4 ...)".

Then one must express that there is a lifting of f to some g:Rn- A with 907=f5 -
that is, with fa = g(eH) = ge.H. In other words, it must be said that fa ("U") is "divisible"
by H. Therefore the required axiom is: "VU(UC =0 4 307(U= wH))".

The set of all these (take any n>1, any nxm matrix H, and let C be a matrix whose
columns X-generate, in Rm, the left-hand term in the presentation of that submodule of Rn
which is generated by the columns of H) axiomatises Abs(X). a

In fact the converse also holds, and so one obtains the following criterion.

Theorem 15.34 cf. [Wh76] Let X be a universal Horn class of modules with
amalgamation. Then X has a model-companion iff X is a coherent class.

Proof [ES71; 3.12] By 15.27 and 15.33, it remains to show that if X is not coherent then
Abs(X) is not an elementary class. So suppose that X is not coherent. Then there is some
finitely generated 1<Rn and exact sequence K°--.> Rm-4>111 nOX, with K not X-finitely
generated in Rm. Suppose that K is the X-closure in Rm of the (module generated by the) set
b = (bo)a ( K: K = clX(b, Rm), where the cardinality, K, of the "generating set" has been
minimised. Our assumption is that K>'k..

For each «<K set K« = clH((bp)p<,Rm). The definitions plus minimality of K imply
K« < K and also that the sequence of K«'s is eventually increasing, with limit K. For each «,
choose A/,, E Inj(X) containing Rm/Ka. Let 5) be any uniform ultrafilter on K, and let M
be the ultraproduct TT (M : o; <K)/5D: observe that the kernel of the natural projection
Ti: TT A/ -*>M is 1B a TT (Np: p <o ). If Abs(X) were axiomatisable, then M would be
absolutely pure in X: we shall see that this is not the case.
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Rm I Rn

f'

Z/ _Z
Rm/K=I/pkI >Rn/0X

not
oooG

TTNuDMZ
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Consider the composite of natural morphisms
f:Rm- TT,<K Rm/K, TT«<K NV0
- M. Also, denote by f' the composite of
the first two morphisms: so f=nf'. If
cEK then there is u<K with cEKu, so
is in the kernel of the final projection it,
hence is in kerf. The converse is equally
clear; so kerf = K.

C

In particular, I /pkl Rm/K embeds naturally in M. Since X has amalgamation, if
M E Abs(1F) then there is, by 15.31 and 15.32, a lifting 9: R"/OX -3 M as shown.

of
01

.A_ -4

TT Nu
n

, M

By projectivity of R77, gp lifts to a morphism
h':Rn-TTN« such that gpe=nh'e, where e isa
canonical generator of Rn and p: R"-- Rn/0X is the
canonical projection. Since TT N« E X, there is a factorisation
h'=hp as shown. So nh=g.
Let e' be a canonical generator for Rm, a its image in I/pkl,
d = hpe and suppose that the matrix H is such that 7= pe.H.
Then nd.H = rch.pe.H = nha = 957= T(f'F'. So
dH-f'e' E ker n = lia TT (Np: p <u ). Hence dH-f'e' lies in
TT(Np:p<u) for some u<K. Let 7>-u: then one has
(d H)7 = (fe')7, where the subscript "7" denotes the 7-th
coordinate in TT p <u Np.

Now, b7 =7'X7 for some matrix X7; so 7'7, being the image of 7'X7 in Rm/K, is
zero. Hence eH.X7 = 0. Consider the u-th coordinate of f'b7: (f'b7)u = (f'e'X7)a =
(f'e')uX7 = (dH)uX7 = (hpeH)uX7 = (h.eHX7)u = (ho), = 0. So, for all 73u, the a-th
coordinate of f'b7 is zero - that is, the image of b7 in Rm/Ku is 0. In other words,
b7 E I (bpR : p <u) - contradicting the choice of the b7's. o

Working with more general structures, Wheeler obtains a result very similar to this. His
result does not immediately apply to give 15.34, since his definition of "coherent" is apparently
stronger than mine, but I would find it surprising if his result could not be made to yield 15.34
as a corollary.

The first corollary is the global case, if=llmR, considered by Elkof and Sabbagh [ES71].
The third is the relativisation to torsionfree classes cogenerated by injective modules, as
considered in [Pr78]. The third corollary is immediate since coherence of R guarantees that
X is coherent.

Corollary 15.35 [ES71; 4.1,4.8] Let R be any ring. Then the class of right R-
modules has a model-companion iff it has a model-completion iff R is right
coherent. n

Example 4 The commutative local ring R=K[Xi(iEw)]/(Xi: iEw)2 (cf. Ex2.1/6(vii)) is
not coherent: the sole simple module S=R/J is not finitely presented, yet embeds in R:
indeed R is perfect (has the dcc on finitely generated right ideals) so (14.5) every non-zero
module has a simple submodule - necessarily isomorphic to S. Therefore the only
indecomposable injective is the injective hull, E(S), of S: indeed, every injective module is
the injective hull of a direct sum of copies of E(S).
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Since R is not coherent, 15.33 implies that the class of absolutely pure modules is not
axiomatisable. Let us find a module which is elementarily equivalent to an injective module but
is not absolutely pure.

Let a be a generator for S. Since it is consistent that a is divisible by xi (for
axi = 0), there is an element bi of the injective hull of S such that bixi =a. Since
xix j =0 and R is commutative, it must be that bix j =0 for j* i. Therefore, in E(S), the
chain of pp-definable subgroups ann xo > ann { xo, x1) > ... is strictly descending. Thus the type
which says "vxi = 0 (iEw) and v* 0" is consistent with the theory of E(S) so is realised, by
c say, in some elementary extension of E(S). Now c cannot be divisible by any non-
invertible element of R (since J2=0) and so the hull of c is simply a copy of S - which is
certainly not absolutely pure (so neither is the elementary extension of E(S)), as required.

Corollary 15.36 Let R be right coherent. Then the existentially complete R-
modules are precisely the absolutely pure modules, M, which satisfy M e M 'ko and
which are "fat" in the sense that 4J(M) is a dense subset of 21(Inj) (the closed
subset of rR consisting of all indecomposable injectives). If R is actually right
noetherian, then all these modules are injective. o

Corollary 15.37 [Pr78; 2.13] Let E be any injective R-module such that the
(hereditary) torsionfree class 7E cogenerated by E is axiomatisable (i.e., 15.9, is
of finite type). Then ""E has a model-completion iff R is E-coherent, in the
sense that every finitely generated submodule of a free module has the form Rm/K,
where K has a finitely generated submodule which is E-dense in it. a

Corollary 15.38 Let R be a right coherent ring and let J be any universal Horn
class of R-modules with the amalgamation property. Then 3F has a model-
completion. a

In particular, this applies if R is right noetherian or von Neumann regular.

Corollary 15.39 Let i be a universal Horn class of modules, every member of
which is totally transcendental. Suppose also that 14 has amalgamation. Then i
has a model-completion.

Proof One checks the condition for X to be coherent: so let I_ Rm/K be a finitely generated
submodule of some Rn. If there were an infinite increasing sequence
clHQ(0,Rm) <cljq(a,Rm) <clX((a1,a2), Rm) < ... of X-closed submodules of Rm (contained
in K) then one would obtain, in a suitably large member, M, of 14, a strictly decreasing
sequence of pp-definable subgroups: M > ann, (a,) > and this would
contradict the t.t. condition on M (by 3.1). o

Compare this with the examples after 15.30.
Another possible approach to some of the results above would be to use the fact that the

model-completion, if it exists, has elimination of quantifiers (see 16.2).

There is a direct derivation of the result of Eklof and Sabbagh with the following short proof
(refer to §16.1 for any points which are not obvious).

First, following [Gar80a; Thm 5] and [Zg84; 5.8], we see that, in injective modules, pp
formulas are equivalent to annihilator conditions. Consider a special case.
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Suppose that Lp(v) is the pp formula 3w (vr=ws). Set A= r-
annRs=(tER:st=0). Let E be any injective module. The claim is
that, for any aEE, Ekip(a) iff a.rA=O. The implication "==> " is easy

JI ' since, if ar=bs and tEA, then art=bst=o. For the converse,
W

ar.R-> E assume that ar.A = 0. Then the morphism from sR to ar.R, defined by
sending s to or is well-defined. By injectivity of E, the diagram may
be completed as shown.

Then the image of 1ER is a witness for "w" and so Ekip(a).
The proof just given adapts immediately to the general case, and one obtains the following

result.

Proposition 15.40 [Gar80a; Thm5], [Zg84; 5.8] (also of. [ES71; 3.2]) Let ip(u) be

a pp formula. Then there is a submodule, I, of Rn such that, for any injective
module E and any FEE, one has Ektp(a) iff a1=0.
If ip(U) is written in the form 3w (UU = US), where U is an nxk matrix (so
Z(U)=n) and S is an mxk matrix over R, then the submodule I is U.annS.

Proof Recall our convention of treating tuples of elements of modules as row vectors and
elements of free modules (in their role as "operators") as column vectors. Let A be the right
annihilator of S in R": A = r-annS = (?ERk : Sr=O). The claim is that Ekip(a) iff
a.UA= 0, where UA is (well-)defined to be the set of all Ur with TEA: so UA is a
submodule of R.

The proof is just as in the special case. One replaces "sR" there by the submodule SR of
Rm generated by the (k) columns of S; 0U.R is the submodule of E generated by the (k)
elements 5.K1(U), where K1(U) is the i-th column of U, and the morphism from SR to
FUR is defined by taking the i-th column of S to 0.Ki(U) (this is well-defined if
aU.r-ann S = 0). o

Denote U.r-ann S, as above, by I.

Exercise 1 ([Zg84; 5.8]) Show that ILp is pp-definable in the left module RRn: show that
every pp-definable submodule of RRn is of this form [Hint: the first point is easy and the
second involves only writing pp formulas in an appropriate way].
Exercise 2 ([Zg84; 5.8]) Show that ILpAW = ILp + IW and ILp+W = ILp n I.-

So, in any injective module, every pp formula reduces to a quantifier-free condition. This
does not mean that every injective module has complete elimination of quantifiers (indeed that is
not so) - for there is no reason to suppose that the submodule ILp is finitely generated. In fact,
the pp formula ip is equivalent, in every injective module, to a quantifier-free formula iff the
submodule ILp is finitely generated (to see this, use that there exists an injective module into
which every cyclic module embeds).

Recall that the ring R is right coherent iff, whenever I and J are finitely generated
right ideals then so is I nJ and, also, each right ideal of the form r-anns (sER) is finitely
generated. It is not difficult to see that these conditions are equivalent to: whenever I and J
are finitely generated submodules of Rn (nEw), then so is I n J and, for every n-tuple s of
elements of R, the right annihilator of s is a finitely generated submodule of Rn.

Therefore, if R is right coherent, ILp= U.r-annS is finitely generated. For r-annS is
the (finite) intersection of the r-ann p j(S), where p j(S) is the j-th row of S, and so it is
finitely generated.

Theorem 15.41 [ES71; §§3,4] Suppose that R is right coherent. Then every
injective module has complete elimination of quantifiers (indeed has elim-Q+ - by



Chapter 15: Torsion and torsionfree classes 313

16.5). Hence every module elementarily equivalent to an injective one is absolutely
pure.

Proof The first statement has just been justified. For the second, suppose that M is
elementarily equivalent to an injective module E. Let a be in M. Then M.E(a'R) is
elementarily equivalent to the injective module E e E(d'R), where 5' has been taken so that
07'R-OR. Since a and 5' have the same quantifier-free type and E eE(a'R) has elimination
of quantifiers, they have the same type. Thus a has the maximal pp-type consistent with its
quantifier-free type and so every embedding of M into a module preserves its pp-type. That is,
M is absolutely pure. a

Now suppose, conversely, that R is such that every injective module has complete
elimination of quantifiers. Let E* be an injective module which embeds every cyclic module.
Take sER, and consider the pp formula 3w (v=ws). By 15.40, there is a right ideal 1 of R
such that, for every a E E, one has E k ip(a) iff aI = o: also by 15.40, 1 = r-anns. By
assumption (and 16.5(a)) there is a finitely generated right ideal J such that, for every aEE,
one has El=ip(a) iff aJ=O. Since every cyclic module embeds in E, it follows that
r-ann s = I = J is finitely generated.

Also, take any two finitely generated right ideals I and J. Since these are finitely
generated, "vI=0" and "vJ=0" are pp formulas. In E', the sum of the subgroups that they
define is defined by the pp formula "v(I n J) = 0". By an argument like that in the previous
paragraph, one concludes that I n J is finitely generated. Thus the conditions for R to be
coherent are satisfied, so one has the following.

Theorem 15.42 cf. [ES71; §4] The ring R is right coherent iff every injective
module has complete elimination of quantifiers. a

The result, 15.35, of Eklof and Sabbagh, now follows easily. For, if a module is
existentially complete in MR, it must be absolutely pure: then apply 15.41 and 15.27 (the
latter result, in this special case, may be given a short proof) observing that, if there is an
injective module without elimination of quantifiers, then the class of absolutely pure modules
cannot be axiomatisable.

15.4 Elementary localisation

The main result in this section is the characterisation of when the modules resulting from a
localisation form an elementary subclass of the original category of modules. Throughout the
section, t is a left exact torsion radical, so (V.r, .C) is a hereditary torsion theory (cf. §2).
There is a localisation functor, Qt, which takes a module M first to its largest torsionfree
quotient M/tM, and then takes this to its t-injective hull Et(M/tt1). Given a torsionfree
module F, its t-injective hull, Et(F), is the module defined by the condition
Et(F)/F = t(E(F)/F). A module is t-injective if it is injective over every embedding of a
t-dense right ideal into R, and Et(F) is the smallest t-injective module containing F. One
denotes by ]IlRt the image of this functor: it is the full subcategory of 1RR whose objects are
the t-torsionfree t-injective modules, but it has a further structure. The module Qt(R)
actually has the structure of a ring, and every module of the form Qt(M) has a natural
Qt(R)-module structure, which extends its structure as an R-module. In many "classical"
cases the "localised" category 7Rt is equivalent to the full category of modules over Qt(R):
but this is not invariably so (see the Gabriel-Popescu Theorem below).

The work described in this section has (like the previous one) its origins in the paper
[ES71] of Eklof and Sabbagh. The reader is directed to the references cited for further details
and results.
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Example 1 Let R be a commutative domain, and let t be the usual torsion radical (see
Ex 15.1/1): so the process M H M/tM factors out all torsion elements of M. Given a
torsionfree module M and a non-zero element, e, of its injective hull E(M), one has
eR n M *0: thus there is a non-zero element r of R, such that r annihilates the image of e
in E(M)/M and so, by definition, Et(M)=E(M). The elements of E(M), where M is t-
torsionfree, may be seen to be "fractions" mr-1 (under the usual equivalence relation), where
mEM and r is a non-zero element R. In particular, Et(R) is isomorphic to the usual field
of quotients, K, of R.

It follows that the localised category, 7/ZRt, is equivalent to the category of vectorspaces
over K.

For more on this see [St75] (Chpt.l I for the classical case of modules of fractions).

One may ask, therefore, when TRt is an axiomatisable subclass of 7718. First we see that
if 'MRt is elementary then t is of finite type (equivalently, by 15.9, 7.t is axiomatisable).
For if 7.t is not axiomatisable, then, since it is closed under submodules, there is some
ultraproduct M = TT i Mil D of torsionfree modules, such that M is not torsionfree. Each Mi
may be embedded in a member, Fi, of 711Rt. Consider the corresponding ultraproduct
F = TT i Fi/tJ: this embeds M and so is not itself torsionfree, so certainly is not in 771Rt.
Thus MR: is not an elementary class.

Say that the torsion radical t on MR is elementary if it is of finite type and if every
finitely generated t-dense right ideal I of R is t-finitely presented, in the sense that if
K, ) Rm--1 is a presentation of 1, then K has a t-dense finitely generated submodule
(because t is left exact, the definition is less subtle than that given in §15.3 for a universal
Horn class to be coherent and, indeed, this is strictly weaker than the condition for `fit to be a
coherent class).

Theorem 15.43 [Pr78; 2.20] Let t be a left exact torsion radical on 72R. Then
the category, 771R t, of localised modules is an elementary subclass of MR iff t
is elementary.

Proof I outline the proof (see the comments later). For the direction one notes that if a
t-dense right ideal I, finitely generated by a say, is t-finitely presented, then one may write
down a formula, Vl(U), such that, if M is torsionfree and if c is a sequence matching o,
then there is a morphism taking a to T iff M satisfies WI(c). Then one proceeds as in the
proof of 15.33.

For the converse, one produces an ultraproduct more or less as in the proof of 15.34. O

Corollary 15.44 Suppose that the ring R is right coherent, and let t be any left
exact torsion radical on 77ZR. Then the localised class, 772R t, of modules is an
elementary subclass of 7118. o

Example 2 The class of Q-vectorspaces is an elementary subclass of the class of abelian
groups (2-modules). Thus 15.43 relates to the question, attributed by Poizat to Sabbagh: for
which rings R is the category of R-modules axiomatisable in a finite language?

If one compares 15.34 (for the case SZ=cogE, where E is injective) and 15.43 then it
should come as no surprise that they are corollaries of a more general theorem. I now state that
theorem (I did not give it in the first place since it looks less interesting than its corollaries).
Let t' be a left exact radical on MR: a module M is t')-injective if it is injective over
all embeddings of a finitely generated t'-dense right ideal into R; it is t'-injective if it is
injective over all embeddings of a t'-dense right ideal into R.
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Theorem 15.45 [Pr78; 2.5], also see [Kom80; Thm2] Let t and t' be left exact
radicals on MR. Then the following conditions are equivalent:
(i) the class of ('A&0,t')-injectives in 'Wt is elementary;
(ii) every finitely generated t'-dense right ideal in R is t-finitely presented. n
Actually, this theorem is proved in [Pr78a] in rather more generality: the generating set

{R} for mR may be replaced by, for example, the set of all finitely generated free modules,
and definitions are modified accordingly.

In order to derive 15.34 for the case of a hereditary torsionfree class, take t' to be the
identity functor on 1728 (so every right ideal is t'-dense). One may note that the resulting
notion of ( k., t')-injective is apparently weaker than absolutely pure, but
one may work instead with this weaker concept (alternatively, take the generating set for 77ZR
to be the set of finitely generated free modules: then becomes precisely
"absolutely pure").

In order to derive 15.43, one puts t=t' and notes that, if t is of finite type, then the
in Vt are actually t-injective.

It does not seem unlikely that there is a generalisation of 15.45 which covers the case of an
arbitrary universal Horn class of modules with amalgamation.

I end this section and chapter with a discussion of logic in locally finitely presented
Grothendieck categories and an application of 15.43.

From now on, let C denote a Grothendieck abelian category. An object C of C is finitely
generated if it cannot be expressed as a directed sum of proper subobjects. A finitely generated
object C is finitely presented if, whenever O---K) is an exact sequence
in e with B finitely generated, then K is finitely generated. The category C is locally
finitely presented if it has a generating set, g, of finitely presented objects (so, for
every object C of C, there is an epi from a direct sum of objects of g to C).

Examples of such categories are Module categories: those of the form 72s = (s°P,Ab)
where s is a small pre-additive category, such as a ring.

In such a category, C, one can develop first-order logic in a natural way (see [Pr78a]).
In particular, one may talk about axiomatisable subclasses of such categories. Fix a generating
set g of finitely presented objects. For an object C of C and a "generator" G E g, an
element of C of sort G is a morphism from G to C. For example, an element of a module
M is "really just" a morphism from R to M (the "element" is the image of 1ER).

One key to the development of first-order logic in such a context is the fact that a finitely
generated object is finitely presented iff it is projective over all epis of the form
T Ti Ci -*'TT i Ci/ 0, where 0 is a filter on the index set I and the right-hand side is a
reduced product.

We also need a generalisation of the Gabriel-Popescu Theorem ([St75; X 4.1]), which says
that if C is a Grothendieck abelian category then there is a ring, R, and a left exact radical, t
on 72R, such that C is equivalent to the localised category 771Rt. The generalisation starts
with a Grothendieck abelian category with generating set g: the result (see [PraO; 1.1] ) is
that there is a left exact radical, t on mg = (ry°P,Ab), such that C is equivalent to Mgt.

One may ask what connections exist between finiteness conditions on C and finiteness
conditions on t, where t is such that C = 7/lgt. One would expect a more natural relationship
than that one obtains by representing C as llZRt', unless C happens to be a module category.

It turns out that C is locally finitely presented iff C is an "elementary" localisation of a
Module category (the definition of "elementary" in this context is the natural generalisation of
that given above). The exact statement is below: it is independent of the generating set chosen



Chapter 15: Torsion and torsionfree classes 316

for e, so long as one confines oneself to generating sets of finitely presented objects. A "Giraud
subcategory" of a Grothendieck abelian category, C, is one which has the form Ct for some left
exact radical t on C: there are various characterisations of such subcategories [St75;
ChptX].

Theorem 15.46 [Pr60; 2.3] Let C be a Grothendieck abelian category. Then the
following conditions are equivalent:
(i) C is locally finitely presented;
(ii) C =7I1gt for some generating set , q, of finitely presented objects and some

elementary left exact radical, t, on 771q;
(iii) C is an axiomatisable Giraud subcategory of a Module category. a
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CHAPTER 16 ELIMINATION OF QUANTIFIERS

A complete theory of modules has (complete) elimination of quantifiers if every definable
subset of a model may be defined without the use of quantifiers. Thus, in a module with
elimination of quantifiers, the (pp-)type of every element is determined by its annihilator - so
our study comes close to being "purely algebraic".

A good deal of initial work in the model theory of modules was done in a context where one
has elimination of quantifiers, and that comparatively "algebraic" case has proved to be quite a
reliable guide as to what to expect when we do have to take account of quantifiers. The first
section begins by delineating some of the consequences of elimination of quantifiers. One soon
discovers that elimination of quantifiers is just a little weaker than one would like: so we
introduce and work with the stronger condition (denoted elim-Q+) that every pp formula is
actually a conjunction of atomic formulas (elimination of quantifiers guarantees only that it is a
boolean combination of atomic formulas). In any theory with elim-Q+ the indecomposable pure-
injectives are "small" in the sense that they are uniform (any two non-zero submodules
intersect non-trivially).

A ring is regular iff all of its modules have complete elimination of quantifiers. That is
proved in the second section, and the consequences are pursued. The usual spectrum of algebraic
finiteness conditions is much shortened for regular rings: we see that the same goes for our
model-theoretic finiteness conditions. All our work on regular rings is aided by the fact that
there is a simple canonical form for the invariants of §2.4.

In the latter part of the section, attention is restricted to commutative regular rings. It is
shown that the largest complete theory of modules has m-dimension iff it has width iff its
boolean algebra of idempotents is superatomic. It is also seen that this largest theory has a
prime model iff the boolean algebra of idempotents is atomic.

In a final section, I briefly discuss continuous pure-injectives.

16.1 Complete elimination of quantifiers and its consequences

The complete theory T is said to have (complete) elimination of quantifiers, or
elim-Q for short, if every formula is equivalent, modulo T, to a boolean combination of atomic
formulas: that is, if for every formula x(v) there is a boolean combination, e(v), of atomic
formulas such that the sentence b'u (x(v) H e(U)) is in T. One may say that if a theory has
complete elimination of quantifiers then the study of its models becomes relatively algebraic,
since every definable set may be defined without using quantifiers. The following are two useful
criteria for a complete theory to have elim-Q.

Theorem 16.1 (see [Poi85; §5.c]) Let T be a complete theory. Each of the
following conditions is necessary and sufficient for T to have complete elimination
of quantifiers.
(a) If R is a substructure of a model of T and if f:A-M and g:A'M

are two embeddings of A into a IAI+-saturated model, M, of T, then there is
an automorphism of M taking fA isomorphically to gA.

(b) If a and b are (finite) tuples of elements in a model of T such that a and
b have the same quantifier-free type, then a and b have the some type. a

It follows from (b) that every type p is equivalent to the set, p', of quantifier-free
formulas in it. Therefore, the map which takes a pp-type p to the set po of atomic formulas
in it, is 1-1 (for p may be recovered from po A -ipo-). So we obtain the following.
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Lemma 16.2 Suppose that T is a complete theory of modules which has elim-Q.
Then the map rc:PT --) Latt(R), which takes a pp-type p to its "intersection" with
the ring, is one-one. o
As in Chapter 15, we say that a right ideal I is T-closed if there is an element of a model

of T with annihilator equal to I. So, 16.2 says that, if T has Elim-Q, then the map
p F p n R defines an isomorphism from the poset of pp-types for T to the poset of T-closed
right ideals of R (if closed under intersection, these are lattices). We say that the T-closed
right ideal I is T-finitely generated if there is a finitely generated right ideal I.
contained in it such that there is no T-closed right ideal I' with Io <I'<1.

Then the map p H p n R takes T-finitely generated pp-types to T-finitely generated right
ideals. For, suppose p E PT and ip is pp with Ti- p H ip. By elimination of quantifiers, LP is
equivalent to a formula of the sort Vk(tpk AA 118ik) (*), where the pk and eik are A-
atom ic and where we may suppose that eik - Wk for all i,k. If Wk is Ai vrj=O, let Ik be

the right ideal l jr1R: so, if aEMkT, then Mk1,k(a) iff alk=o. Similarly, define Jik
corresponding to eik.

Now. let a be an element with pp-type p in some model of T. Then ip(a) holds, so we
have, for some k, alk=0 and aJikx0 (for all 1). Let I=anna="p"nR. Let I' beaT-
closed right ideal with Ik < I'-< I and let b be an element with annihilator I' in some model
of T. Then bIk=0: also, since aJikxO, certainly bJikm0. Therefore, by (*), b satisfies
ip, equivalently, p. Therefore, since aI=O we have bI =o and so I'=I. Thus I is T-
finitely generated, as claimed.

Examples 1 I now give some examples of theories of modules with elim-Q.
(i) Suppose that R is a right noetherian ring, let E be an injective module over R and let

T be its theory. Then the criterion of 16.1 is satisfied since every model of T is
injective (recall that E is t.t.), so partial isomorphisms extend. A case of particular
interest is obtained when E is an existentially complete model of the theory of R-modules.
This example was considered in detail by Eklof and Sabbagh [ES71]: some of their results
were relativised and extended to 1-injective modules in [Pr78, 79a, 82]. In [Bou79],
Bouscaren considered forking and ranks (for right coherent rings) in terms of the right
ideals corresponding to pp-types. Most of what she proved in that special case is a
consequence of 16.2, so holds for any theory T=T' " with elim-Q (and provides a model
for what happens in the non-elim-Q case, since P(R) generalises Latt(R)).

(ii) Let R be a (von Neumann) regular ring. Then every theory of modules over R has elim-
0: indeed this property characterises these rings. This follows easily from the results of
§15.3 (see especially 15.38), and is given another proof below (16.16).
In consequence, model theory and algebra over such rings "coincide": see §2 for more on
this case.

(iii) Let T be a complete theory of abelian groups. By 16.1(b), T has elim-Q iff whenever
two elements of a model have the same order then they have the same type (and so, in
particular) must be divisible by precisely the same prime powers). First note that Qd is
in the closure of each 71p00 and each 2Z(p)_. If 0 occurs, then no 7l(p) does so

(otherwise we have two torsionfree elements with different divisibilities); also, if there
is a torsion element, then (take its sum with an element of Qd) it must be completely
divisible. Therefore one obtains the following.

Theorem 16.3 [Fee?] The complete theories T of abelian groups which have
elimination of quantifiers are precisely those which satisfy the condition that z(T)
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is either a subset of {II}u(71poo: p prime) or is a finite set of the form
{2lp "I, ..., 7lpknk} where the primes p1,..., Pk are distinct. o
This result has been generalised to Dedekind domains by Ruyer [Ru84; Thm] and

Weispfenning [Wei85; Thm 4] (see comments in [We1185]). One may prove it by the same
kind of argument after localising (cf. §2.71, especially 2.7111). Weispfenning [Wei85; Thm 4*]
delineates conditions necessary and sufficient for the elimination of quantifiers to be
(primitive) recursive.

Theorem 16.4 Let R be a Dedekind domain. The complete theories, T, of R-
modules with elimination of quantifiers are exactly those which satisfy the condition
that Z(T) is a subset of {K}u(E(R/P):P prime) or is of the form
(R/P,n+,...,R/Pknk) where the Pi are distinct primes. Here, K is the field of
quotients of R. a

Exercise 1 [Wei85; Thm 3] Let R be a commutative domain and suppose that M has
elimination of quantifiers. Show that M either is divisible or is annihilated by a non-zero
element of R (note that M being torsion is insufficient).

If a complete theory of modules has elim-Q, then every formula is equivalent to a boolean
combination of atomic formulas. Does it follow that every pp formula is equivalent to a positive
boolean combination, or even to a conjuction, of atomic formulas? The answer, at least to the
second question, is in general "no" (Ex2 below). That is unfortunate, since this seems to be a
more useful property than straight elim-Q. Let us say that a theory has elim-Q+ if every pp
formula is equivalent to a conjunction of atomic formulas (that is, the condition on a tuple that it
be the initial segment of a solution vector for a given system of linear equations is equivalent to
the condition that it be a solution vector for a certain other system of linear equations). I show
first that i f T =T' o has elim-Q then it has elim-Q+.

Proposition 16.5 [Gar80; Lemma8], [Pr8la; 3.2] Let T be a complete theory of
modules with elimination of quantifiers.
(a) If T=Tk then T has elim-Q+.

(b) If T has elim-Q+ then T'k has elim-Q+ (indeed, T"*o has the "same"
elimination of quantifiers as T).

(c) If T has elim-Q+
has elim-Q+.

and if T' is a component theory (cf. §2.6) of T then T'

Proof (a) Suppose that the pp formula ip is equivalent to V k (Wk A A i neik) where Wk is
A-atomic and the eik are atomic. Fix k: then _Wk A Ainaik implies ip; so Wk ipu Uieik.
By Neumann's Lemma and the fact that T=To, either Wk<qP or Wk eik for some i. In the
latter case, the k-th conjunct is vacuous and so may be dropped.

Therefore, i t may be assumed that T>, Wk for each k. So LP= U k W. Again by Neumann's
Lemma, it follows that ip=Wk for some k. That is, ip is equivalent to a A -atomic formula, as
required.

(b) Let M be any model of T; so M'a is a model of T'o and has the "same" lattice of
pp-definable subgroups as M. Let ip be pp. Then there exists a A-atomic formula W such that
ip(M) = ,(M). It follows by 2.10 that Lp(M' o) = ip(M o), as required.

(c) Let M' be a model of V. Then there exists a module M" such that M' ® M" is a model

of T. Let W be pp; so there exists a A-atomic formula iv with ip(M) = yi(M). It follows that
ip(M') = 4(M'), as required. G

As a consequence, the question of whether elim-Q implies elim-Q+ reduces to that of
whether or not T having elim-Q implies that Two has elim-Q. The following example shows
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that elim-Q+ is genuinely stronger than elim-Q. This example has elim-Q, but there is a pp
formula which, although equivalent to a disjunction of atomic formulas, is not equivalent to a
conjunction of atomic formulas. I do not know (whether there is) an example where negations
are necessary.

Example 2 Let R be the ring 712[x, y : x2 = y2 =0]. The Jacobson radical, xR + yR, is
defined by the pp-formula 3u, w (v = ux + wy). It is also defined by the quantifier-free
formula vx=0 v u(x+y)=o v vy=0 (the disjuncts separately define xR, (x+y)R and
yR). One sees that every ideal of R may be defined by a quantifier-free formula. Therefore R
has elim-Q. But it is easy to check that xR + yR cannot be defined by a conjunction of atomic
formulas. So R does not have elim-Q+. If one feels happier with an infinite example, then it is
only necessary to consider R ® (R/J)ko.

Now I describe some consequences of elim-Q+. Let us suppose that T has elim-Q+. Recall
that elements a and b are said to be linked if there is a pp formula ip such that
tp(a,b) A itp(07,0) holds. Elim-Q+ means that ip may be taken to be a conjunction of atomic
formulas. On considering what this means, one obtains the following.

Proposition 16.6 [Pr8la; 3.1] Suppose that the complete theory T has elim-Q+.
Let a, b be in a model of T. Then a is linked to b if f aR n bR x 0 (aR denotes
the submodule generated by 5). a
It follows that pp-essential embeddings (see §4.1) are just essential embeddings. Recall that

a module M is said to be uniform if each pair of non-zero submodules has non-empty
intersection. For example, an injective module is uniform iff it is indecomposable. The next
corollary partly generalises this; only partly because, although every injective "locally" has
elim-Q(+), the theory of an injective need not have elim-Q (see 15.42).

Corollary 16.7 [Pr8la; 3.5] also [Gar80; Lemma9] Suppose that T is a complete
theory of modules with elim-Q+ (for example, suppose that T has elim-Q and that
T=0Zo). Then every indecomposable pure-injective direct summand of a model of T
is a uniform module. a

Note that 16.7 implies that elimination of quantifiers has both a local and a global aspect, in
that only certain indecomposable pure-injectives can possibly occur but, even then, only
certain combinations of them have elim-Q.

Garavaglia asked whether, if T is a U. theory with elim-Q, the indecomposable summands
of models of T must be "small" in the sense of being uniform. He established this for
commutative noetherian rings (see below) and conjectured that it was true for any theory with
elim-Q over a right noetherian ring (such a theory necessarily being U. by 16.2). The above
result shows that the t.t/noetherian assumption is irrelevant, except perhaps in the case that T
has elim-Q without having elim-Q+. I give his rather pretty proof for this possibility not
covered by 16.7.

Proposition 16.8 [Gar80; Lemma9] Suppose that R is a commutative ring and
that N is an indecomposable module over it with Elim-Q. Then N is uniform.

Proof First, choose non-zero elements, a and b, which lie in minimal non-zero pp-
definable subgroups, ip(N) and ip'(N), of N: we will see that aR n bR x 0.

Suppose otherwise: then oR n (a+b)R = 0. For if or = os+bs then a(r-s)=bs and so,
by assumption, bs=0. But, by 4.59, tp(N) and ip'(N) are isomorphic as R-modules and, by
minimality, all non-zero elements in each have the same annihilator. So os=0. Hence
or=as+bs=0.
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It follows that (a,b) and (a,a+b) have the same quantifier-free type (for
(a, b) H (a, a + b) defines a module isomorphism from aR®bR to oR(D (a+b)R). So, by
elimination of quantifiers, they have the same type. Now, by 4.11, there is a pp formula e
linking a and b: 6(a, b) A -18(a, 0). It may be assumed that 3ve(v,w) defines ip'(N) and
hence a(0, w) defines the zero subgroup. By what has just been shown, 6(a,a+b) holds. This
gives e(O,a): so a=o - contradiction.

Now, let c be any non-zero element of N. Choose a non-zero multiple cr of c whose
pp-type, generated by ip"(v) say, has minimum pp-rank among such multiples. Let b be as
above and take v such that ip(cr,b) A -itp(cr, 0) holds and such that ip(v,w) proves
ip"(v)Aip'(w). By 9.7, (sER: crsExp(N,0))=(tp(N,0):cr)=(ip(O,N):b)=annb.
Therefore, if s E R is such that bs = o then crs = 0, and conversely.

Thus cr and b have the same annihilator so, by Elim-Q, have the same pp-type. Thus
every non-zero element has a non-zero multiple with critical type so, by the first part, every
two non-zero elements of N have a common non-zero multiple, as required.

Note that, since R is commutative (so the pp-definable subgroups are submodules), it
follows that there is unique minimal non-zero pp-definable subgroup. a

I finish this section by describing forking and ranks in the case of a complete theory
T=T o with elim-Q. Such descriptions were given by Bouscaren in her thesis [Bou79] (for a
summary see [Boueo]) for the special case of the model-completion of the theory of modules
over a right coherent ring and, in more detail, for modules over commutative regular rings. In
fact, her proofs apply almost word-for-word to the general case. I just state the results, since
the proofs are straightforward from 16.2 and the results of §5.2. It should be said that the shape
of many results in Chapter 5 was suggested by Bouscaren's work.

Suppose for the remainder of this section that T= T'& is a complete theory of modules
with elim-Q. Let Ti be the canonical projection from P(R) to Latt(R) - the image is the set
of right ideals which are T-closed in the sense of Chapter 15 (namely, I is T-closed if R/I
embeds in a model of T). Since the image is fl-complete, every right ideal I has a T-closure
c1T1 which is the smallest T-closed right ideal containing I.

Following [Bou79], one associates to any type p(v) E S1(A) the triple (Kp, I p, fp)
where Kp=(rER:"vr=o"Ep), Ip=(rER:"vr=y" is represented in p) and where fp
is the morphism from Ip to A which associates to rElp the (unique) element aEA such
that "vr=a" is in p. One sees that from (Kp, Ip,fp) (and A) one may recover p. Notice
that Kp is just Rnp+.

As for which triples may occur in this way: every T-closed right ideal I may occur as
Kp, and may occur with any right ideal JAI as Ip (let c realise the type of an element
with annihilator I and take A=cJ). Moreover, given pES1(A) and J >,1 p there is q
extending p with Ig =J (use 5.11). The proof of the next result follows [Bou79; 1.2,1.4]
using 5.3 (cf. [Bou79; 1.3]).

Theorem 16.9 (cf. [Bou79; 1.21.4]) Suppose that T=T"*o has elimination of
quantifiers. Let pES(A) and gES(8), where AsB, be types. Then q is an
extension of p iff Kp=Kq, Ip=_Iq and fgrlp=fp. Furthermore, q is a non-
forking extension of p iff clT(Iq)=clT(Ip). a
One may check that the fundamental order is isomorphic to the poset with elements the set of

pairs (K, I) where K and I are T-closed and KSI, where the ordering is given by
(K, I) S (K', 1') iff K=K' and I<I' (e.g., [Kuc87; 2.4]) The next result follows from
16.9 and 5.13.
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Theorem 16.10 (cf. [Bou79; §1.3]) Suppose that T=Tk& has elimination of
quantifiers. Let p be any type. Then p has U-rank iff the ring R has the
ascending chain condition on T-closed right ideals containing I I. In particular, T

is superstable (iff it is t.t.) iff R has acc on T-closed right ideals. o
Theorem 16.11 (cf. [Bou79; Prop 4]) Suppose that T=T'o has elimination of
quantifiers. Let p be any type. Then p has Morley rank iff R has acc on T-
closed right ideals above Ip and Ip is T-finitely generated (i.e. is the T-closure
of a finite set of elements). o
For the proof of 16.11 one should use 5.15.

Example 3 Let R be commutative regular. Then (15.42 or 16.15) the theory T* has elim-
Q+. Suppose that R has an infinitely generated maximal ideal I and let p be the type of the
image of 1ER in R/1. Then Ip=I so by, 16.10, p has U-rank 1. On the other hand (by
16.11) p does not have Morley rank.

It is rather remarkable that a significant amount of the above goes through for "modules"
over a semigroup S ("S-systems"). There appears to be no analogue of the pp-elimination of
quantifiers for such structures; moreover there is the added complication that not every right
congruence on the underlying semigroup S is generated by a right ideal of S. Nevertheless,
Gould has carried over to S-systems a significant part of Bouscaren's work on modules
[Gou87], [Gou87a]. There are, however, some notable differences.

For instance, in place of (Kp, Ip,fp) as above, one has (pp,lp,fp), where pp is a
right congrunce, I p a right ideal which is a union of pp-classes and f p is a morphism from
Ip to fl (with notation as before). Knowing the kernel of fp(= Ppn(Ipxlp)) instead of pp
is not enough to determine p.

Gould shows that if S is a right coherent monoid then the theory of S-systems has a model-
companion TS. She shows that TS is superstable iff S has the acc on right ideals ("weakly
noetherian"). But, in contrast with the modules case, this is not equivalent to TS being totally
transcendental: for that, one requires a certain further condition on congruences. She shows
that TS is totally transcendental with MR(p) = UR(p) for all types p iff S has the acc on
right congrunces (noetherian") and satisfies a still stronger condition (which, under many
circumstances, forces S to be finite; for example, if S is a group satisfying these equivalent
conditions then it must be finite).

Proposition 16.12 [Gar8o; Lemma7] Suppose that R is right noetherian and that
T has elim-Q. Then T is totally transcendental.

Proof This is immediate from 16.2 and 3.1. o

Other results of this sort may be proved by the same kind of argument.

Theorem 16.13 (cf. 10.30) Suppose that T has elim-Q. Then:
(a) If R has Krull dimension (in the sense of [RG67]) then T has m-dimension

and, in particular, T has continuous part zero. Indeed, the m-dimension of T
is the m-dimension of the lattice of T-finitely generated T-closed right ideals
of R.

(b) If the lattice of finitely generated right ideals of R has width (in the sense of
§10.2) then T has width and so has no continuous pure-injectives.

Proof This follows by 16.2 and the discussion which follows it, together with 10.9. o
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At least if T is closed under products (so every right ideal has a T-closure), if the lattice
generated by the finitely generated right ideals has a given finiteness condition then so does the
lattice of T-finitely generated T-closed right ideals.

It is enough, in the above, to look at the finitely generated right ideals, since elementary
Krull dimension and width are defined in terms of pp formulas rather than pp-types and, by
elimination of quantifiers (and the discussion after 16.2 when we do not have Elim-Q+), pp
formulas correspond to finitely generated right ideals. Observe that there is a difference: if R
is regular, but not semisimple artinian, then the Krull dimension of Latt(R) is "0", but that of
Lattf(R) may be strictly less than "oo" (cf. 16.26 below).

16.2 Modules over regular rings

A ring R is said to be (yon Neumann) regular if every finitely generated right ideal
may be generated by an idempotent element (and hence is a direct summand of R). There are
many characterisations of these rings.

Theorem 16.A ([00079; Chptl]) The following are equivalent conditions on a ring R:

(i) R is regular;
(ii) every finitely generated left ideal is generated by an idempotent;
(iii) for every rER there exists xER such that r=rxr;
(iv) every (right or left) module is absolutely pure;
(v) every (right or left) module is flat. o
In particular, regularity is a two-sided property. It also follows that a regular ring is

(right and left) coherent. Condition (iv) says that every embedding between modules is pure, so
the following are some of the many corollaries that may be deduced.

Corollary 16.14 Suppose that R is a regular ring.
(a) An inclusion, M S N, is an elementary embedding i f f M =_ N.
(b) Every pure-injective module is injective; so the hull of an element or set, a,

is the injective hull of the module it generates. o

Corollary 16.15 Suppose that R is a regular ring.
(a) Every theory of R-modules has elim-Q+.
(b) The morphism n:P-) Latt(R), which takes a pp-type p to the right ideal

Kp=(rER: "vr=0"Ep), is an isomorphism of lattices which takes Pf onto
Lattf(R). o

In 16.15, part (b) follows from (a) which, in turn, is an immediate consequence of 16.1,
16.A(iv) and 2.17. Actually, property (a) characterises regular rings (also cf. §15.3).

The next result has been discovered by a number of people: as well as the references to
16.17, there is an unpublished note by Hodges; also see [ES71; 3.25] and [Sab7l; Cor4].

Theorem 16.16 The ring R is regular iff T* has complete elimination of
quantifiers.

Proof One direction is 16.15. Suppose, for the converse, that T* has elim -Q+. Let M S N
be any inclusion of modules and let M* be any model of T*. Then M* e M and M* eN both
are models of T* so, by the hypothesis, the embedding M* e M _< M* e Al is an elementary one.
In particular, the embedding MSN is pure. So regularity of R follows by 16.A(iv). a
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Exercise 1 [Wei85] Show that R is regular iff every 2-generated module has complete
elimination of quantifiers. Show that every singly generated module having elimination of
quantifiers is not enough.

What of groups of n-tuples are pp-definable in a module M over a regular ring R? If
ip=ip(v1,...,un) is pp then, by 14.9 and 16.A(v), one has ip(M)=Mip(R). Applying 14.16, we
see that ip(R) is a typical finitely generated submodule of R. Now, it is not difficult to show
that every finitely generated submodule of Rn is a direct summand [Goo79; 1.11] - that is, is
generated by an idempotent in the endomorphism ring of Rn. Thinking of such an endomorphism
as an nxn matrix, we deduce the following (there are two ways of expressing the result, since
such a matrix determines both a kernel and an image - so we can define a subgroup by an
annihilator condition or by a divisibility condition).

Proposition 16.17 [Rot83a; Prop ii], [Zim77; 1.3], [Wei85; Thm1] (also see [Gar79;
Lemmas] for the commutative case, and [GJ81; 2.3]) Let R be any ring. Then R is
regular iff the following equivalent conditions are satisfied:
(i) if ip is a pp formula in n free variables then there is an nxn idempotent

matrix H, with entries from R, such that, for any module M, one has that
ip(M) is the solution set to the matrix equation UH=O;

(ii) if ip is a pp formula in n free variables then there is an nxn idempotent
matrix H with entries from R such that, for any module M, the subgroup
ip(M) is the solution set to the matrix equation UH=U. o

Considering the special case of formulas in one free variable, one obtains that, for any
module M, every pp-definable subgroup of M has the form Me for some idempotent e of R;
alternatively, has the form annMe' for some idempotent e' of R.

Corollary 16.18 [Rot83a; Lemma 20] Suppose that R is regular. Then every
invariant Inv(-,ip,-W, is equivalent to one of the form Inv(-,"v=ve","v=0");
alternatively, to one of the form Inv(-,where e is an idempotent
in R.

Proof By 16.17 every invariant is equivalent to one of the form Inv(-,"v=ve","v=uf") for
some idempotents e, f of R, and it may be supposed that Re 3Rf. Now, Re = Rf ® Re(i-f)
and e(1-f) is idempotent (since R is non-commutative (= not necessarily commutative!)
these points are not absolutely trivial: use the fact that fERe implies f=fe). Thus, if M is
any module then Me/Mf Me(1-f). Thus the first form follows. The second form is obtained
on noting that Me= annM (1-e). o

Weispfenning [Wei85] considers the extent to which the replacement of a pp formula by an
equivalent quantifier-free formula is effective. He shows [Wei85; Thm 1*] that if R is a
(primitive) recursive regular ring, then the assignment is (primitive) recursive. Moreover,
if M is an R-module, then the following are equivalent: the complete theory of M is
(primitive recursively) decidable; the complete theory of M allows (primitive) recursive
elimination of quantifiers (in the above sense); the set of pairs, (e,n), with e an idempotent
of R and nEw and is such that JMel>n, is (primitive) recursive.

As a consequence of the above, one has that T* is just the theory of R xo.

Corollary 16.19 Suppose that R is regular. Then T* = Th(R''a ). o

Another consequence is the characterisation of those rings over which the theory of non-
zero modules is model-complete (that is, those rings over which every embedding between non-
zero modules is an elementary one); of course the zero module must be excluded since it cannot
be elementarily equivalent to a non-zero module. The result was proved by Tyukavkin. Both
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Rothmaler [Rot84; Thm 19] and Weispfenning [Wei85; Thm 2] gave simpler proofs (similar to
that below), using the elimination of quantifiers.

Corollary 16.20 [Tyu82; Thm i] The following conditions on the ring R are
equivalent.
(i) The theory of R-modules is model-complete.
(ii) R is an infinite simple regular ring.
(iii) The theory of left R-modules is model-complete.

Proof Since every embedding between non-zero R-modules is elementary and hence
pure, regularity follows by 16.A(iv).

That R must be infinite is clear, since otherwise R would not be elementarily equivalent
to R2.

Finally, R must be simple since, if I is a non-zero ideal of R, then the module R11
satisfies the sentence Vu (vr = 0), where r is some chosen non-zero element of 1. Since R
does not satisfy this sentence it follows that I=R, as required.

(ii)= (i) Let R be simple regular. Take any non-zero module M; then annM = 0. Hence
R embeds in a suitable power of M (take elements, m-A, in M such that 0 = (1 A ann(m-A) and
map 1ER to (mX),XE MA). Hence Rte. embeds in some power of M. Since R is regular,
this embedding is a pure one and we conclude, by 16.19, that M'1*o is a model of T*: we must
show that M is a model of T* (this shows completeness; then 2.25 shows model-completeness).

If not, then, by 16.18, there is a non-zero idempotent e of R with Me finite. Since R
is simple, M is faithful, so this implies that Re is finite. But then the socle of R would be a
non-zero ideal, hence equal to R: therefore (1ER!) R would be finite. So, if R is infinite,
M=-M and so every non-zero module is a model of the (complete!) theory T*.

The proof is completed by the observation that condition (ii) is right/left symmetric. a

It is not known whether the theory of non-zero R-modules being complete is enough to
imply that R is an infinite simple regular ring (and hence that the theory of modules is model-
complete). Rothmaler in [Rot84] notes that, in the presence of coherence on either side, the
condition is indeed enough (by 16.A and 14.18 (left coherent) and 15.41 (right coherent)).

Therefore the infinite simple regular non-artinian rings are quite pathological, in the sense
that every indecomposable pure-injective is elementarily equivalent to every other, yet there
may be 2'o of them.

Example 1 Let U be an (`t,-dimensional vector space over the countable field K. Let R be
the endomorphism ring of UK modulo its socle (the socle consists of those endomorphisms with
finite-dimensional image). Then R is a simple regular ring which is injective as a module over
itself [00079; 9.12] and is clearly not semisimple artinian. Indeed, since its socle is zero, it
has no indecomposable summands (it is actually isomorphic to each of its finitely generated non-
zero right ideals) and hence is a continuous pure-injective.

Therefore, by 10.9, T* has width oo. By the result above, all indecomposble pure-
injectives are elementarily equivalent, yet there are 2ko of them. To see the last point, it will
be enough to show that R has 2a non-isomorphic simple modules.

It is left as an exercise to show that R has 2 o maximal right ideals. Now, if I and I'
are maximal ideals, then R/1 = R/1' iff there is an element s E R such that
1= { rE R : srE I') (exercise; see [LM73]). Now use a counting argument (this is the only
reason for my assuming that K is countable).

In this section I tend to confine attention to T*, or at least to theories T with
Z(T) = Z(T*). This is justified because if M is a faithful module over a regular ring then, by
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16.18, Th(M A.) = T*. If M is not faithful then R may be replaced by R/annRM, which is
still regular (by 16.A(iii)).

By 16.15, P(R) "is" the lattice of right ideals of R, so consideration of finiteness
conditions is simplified. It turns out that just about any decent finiteness condition on a regular
ring forces it to be artinian (rather, the finiteness conditions which are appropriate to regular
rings are very different from those seen in other parts of ring theory).

Theorem 16.B Let R be a regular ring. Then the following conditions on R are
equivalent:
(i) R is semisimple artinian;
(ii) R has the dcc on finitely generated right (or left) ideals;
(iii) R is (right or left) noetherian;
(iv) R has Krull dimension;
(v) R has no infinite set of pairwise orthogonal idempotents. a
The equivalences may be found in [Go079] (for (iv)==) (v) one may use that a module which

contains an infinite direct sum of submodules cannot have Krull dimension: see [GR73; 1.4]).

Proposition 16.21 [Zim77; 4.3], [Pa77; 3.2.10], [Rot83a; Thm23] ([Gar79; Thm4]
for the commutative case) Let M be a module over the regular ring R. Then M is
totally transcendental iff R/annRM is semisimple artinian

Proof If M is U. then, by 3.1 and 16.15(b), R=R/annRM has dcc on finitely generated right
ideals and so, by 16.B, is artinian. The converse is clear. a

The next result follows from 16.15 and 16.18. An example of a superstable non totally
transcendental module over a regular ring is the subring of TT {7lp : p prime) consisting of the
eventually constant" sequences - see Ex 16.2/2 below.

Proposition 16.22 [Rot83a; Thm 24] ([Gar79; Thm 5] for the commutative case) Let
M be a module over the regular ring R. Then M is superstable iff for every
descending chain Meo>_Me,>_..., with the ei idempotents of R, the indices
[Mei:Mei+1] eventually are finite; this happens iff, for every orthogonal set
{eo,e1,...Ien,...) of idempotents of R, there are only finitely many ei for which
Mei is infinite. a
A succinct way of expressing the conditions of 16.22 is to say that R/finM is semisimple

artinian, where finM is the finitiser of M (§7.2).

Proposition 16.23 Suppose that R is a regular ring. Then T* has elementary
Krull dimension, equivalently, m-dimension, iff the lattice of finitely generated
right ideals of R has Krull dimension. a
The result above is immediate from 16.15(b). It should be noted that the conditions of

16.23 may be satisfied without R itself having Krull dimension. If R is as in Ex16.2/2 then,
by 16.B, R does not have Krull dimension but, since it has only countably many indecomposable
injectives, T* does have m-dimension (by 10.15). In fact it has m-dimension 1 (by 16.25).

Throughout the remainder of this section R is a commutative regular rino.
The assumption is to make life simple: the non-commutative case presents many

complications and new features (see [Goo79]). It would be interesting to know more about that
case, but I don't propose to make such a study here.

For any regular ring R one denotes by B(R) the set of all central idempotents of R. B(R)
is given the structure of a boolean algebra by setting e <f iff eR <fR. It is an elementary
exercise to check that this does make B(R) into a complemented distributive lattice with the
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boolean operations being eAf=ef and evf=e+f-ef (on the level of elements; on the level
of the corresponding ideals these are just intersection and sum).

Exercise 2

(i) Show that if R is commutative regular with no minimal ideals then every maximal ideal
is infinitely generated.

(ii) Show that if R is commutative regular and if I,J are ideals of R then I=J iff
InB(R)=Jn5(R).

One sees that if R is commutative regular then Latt(R) is just the space of ideals B(R),
with Lattf(R) being naturally identified with B(R) itself (the principal ideals). Hence, by
16.15(b), B(R) "is" the lattice Pf(R). The set of maximal ideals of R is denoted Spec(R).
This set carries the Pierce topology which has, as a basis of clopen sets, the sets
(5e=(I ESpec(R) : e(I ) as e ranges over B(R). With this topology, Spec(R) is naturally
homeomorphic to the Stone space (space of maximal ideals) of B(R) (the correspondence is
given by Ii--> I nB(R)). This space is compact and totally disconnected (since for each
idempotent a#0,1, the space is disconnected by the pair of clopen sets 6e, (51-e). If the
definition of (5e seems a little perverse, note that I ECe iff the image of e in the factor field
R/I is non-zero (hence is 1+I).

If I ESpec(R) and if M is any module, then M/MI is naturally a vectorspace over the
field R/I. In fact, the category of R-modules is equivalent to the category of sheaves over
Spec(R) where the stalk over I ESpec(R) is an R/I-vectorspace (the ring is itself a sheaf of
fields: see [Pie67]). I do not exploit this approach in these notes.

Exercise 3 Show that the Pierce topology on Spec(R) coincides with the Zariski topology.

If R is any regular ring, then the indecomposable injectives are just the hulls of the
simple modules. For, if I is a proper non-maximal right ideal, take e2=eE R\I, em1: then
(eR+1) n ((1-e)R+I) = I, so the cyclic module R/1 is not uniform and hence its injective
hull is not indecomposable.

It is easy to see (exercise) that if R is a commutative regular ring then the
indecomposable injectives are precisely the modules R/1 for IESpec(R). It has already been
shown in §4.7 that the space Z(R) of indecomposable (pure-)injectives is in fact
homeomorphic to Spec(R) (with R/I corresponding to I). I now consider Cantor-Bendixson
rank on this space.

A boolean algebra is atomic if every non-zero element contains an atom (that is, an
element with nothing strictly between itself and zero). A boolean algebra is atom less if it
contains no atoms (equivalently, since a boolean algebra is complemented, if there is no finitely
generated maximal ideal). A boolean algebra B is superatomic if, regarded as a lattice, it has
m-dimension in the sense of §10.2: an equivalent requirement is that its Stone space, Spec(s),
have Cantor-Bendixson rank (exercise). An example of a superatomic boolean algebra is the
algebra of all finite and cofinite subsets of a set. An example of an atomless boolean algebra is
the boolean algebra of all subsets of an infinite set, factored by the ideal of all finite subsets.

The proof of the next result is left as an exercise.

Proposition 16.24 see [Bou79; §11.1] Let R be a commutative regular ring.
Suppose that the neighbourhood (ve=0/v=0) is a minimal non-empty open set in
Z(R). Then e generates a maximal ideal, and this neighbourhood isolates the single
point R/eR. o
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Thus if R is a commutative regular ring then T* satisfies condition (A) of §10.4 (by
16.24, since Z(R) "is" Spec(R) and P(R) "is" B(R)). The example after 16.20 shows that
the result above may fail spectacularly if R is not commutative.

Theorem 16.25 [Oar80a; Thm 4] Suppose that R is a commutative regular ring.
Then the following conditions are equivalent:
(i) m-dim T*=x<oo;
(ii) CB-rk(SpecR)= of <oo;
(iii) B(R) is superatomic with m-dim B(R) = a.
If R is countable then these conditions are satisfied for some a iff SpecR is
countable.

Proof The easiest way to show that (i) and (ii) are equivalent is to use condition (A) and
10.19. The fact that the Cantor-Bendixson analysis of Spec(R) coincides with the analysis of
B(R) using m-dimension also follows from 10.19, since B(R) "is" just Pf(R). The last
statement follows from 10.15 (for example). (Exercise - show all these points directly.) n

It should also be observed that m-dimension and elementary Krull dimension coincide,
essentially because the fact that B(R) is complemented means that EKdim grows no faster than
dim (an interval has the dcc iff it is of finite length).

Example 2 Let R be the subring of the product TT (7lp : p prime) of all the finite prime
fields, consisting of all "eventually constant" sequences. By that I mean
R = {(ap)p: 3rEll 377Ew dp->n (ap=r)) - this does make sense, since each rational
expression ab-1 (a,bE7l, bm0) may be interpreted in all but finitely many of the fields 71p.
Then R is a commutative regular ring.

For each prime p, R has an isolated maximal ideal - that consisting of all sequences
a=(aq)q with ap=0 (and the corresponding factor ring is the field 7lp). It has one more
maximal ideal: that consisting of all elements which are eventually zero. The corresponding
factor ring is the rational field Q.

Thus, SpecR consists of 'k. isolated points, together with one cluster point. So CB-
rkSpecR = 1 and, by 16.22, Th(R) is superstable but not totally transcendental.
Example 3 A non-commutative analogue of the above example is the following (see [Goo79;
Example6.19]). Let T be the endomorphism ring of an ('t,-dimensional vectorspace over a field
K. Define R to be the subring of T generated by the socle together with the scalar multiples of
the identity morphism: R= socT + 1.K. Then R is regular and has just two simple modules:
any simple right ideal and R/J (both are injective; the latter is 1-injective). Thus
IZ(T*)I=2. Since R is countable, 10.15 gives m-dim T* < oo. One may see directly (or, for
example, use 10.19) that just one of these points is isolated. So m-dim T* = 1.

The next result shows that a commutative regular ring has width iff it has dim.

Theorem 16.26 ([Fis75; 7.31] for boolean rings) Let R be a commutative regular
ring. Then the following conditions are equivalent.
(i) There are no continuous injective R-modules.
(ii) R is seminoetherian (that is, the category of R-modules has Gabriel dimension

- see [Pop73; §5.5]).
(iii) T* has width.
(iv) B(R) is superatomic (equivalently, any of the conditions of 16.25).

Proof By 16.25 and 10.7, By 10.9, (iii)==>(i).
To see that (i) implies (iv), note first that if R is commutative regular with no finitely

generated maximal ideal, then the injective hull of R is continuous. For if E = E(S), with S
simple, were an indecomposable factor of it, then SnR would be non-zero (since R is
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essential in E(R) 01.2)) - so R would have S as a simple submodule: say S=eR. Then
(1-OR would be a finitely generated maximal right ideal - contradiction. Now, if B(R) is not
superatomic then (keep factoring out the socle) R has a factor ring R' with B(R') atomless.
By the argument just given, there is a continuous injective R'-module: hence there is a
continuous injective R-module, as required.

The equivalence of (i) and (ii) for commutative regular rings is [Pop73;
p.366 Ex.6(a)= (b)] ((ii)=4>(i) is true for any ring, and the key point which makes the converse
work for a commutative regular ring is that if B(R) is superatomic then every ideal of R is an
irreducible intersection of the finitely generated maximal ideals which contain it). a

16.24 identifies the isolated points of Z(R), so I go on to discuss the existence of a prime
model for T*. Bouscaren points out [Bouoo; p42] that her results below go through for
strongly regular (=abelian regular) rings. Indeed, most of the results of this section should go
through in that context: in those rings all idempotents are central and they have a nice spectrum
(see [Goo79; 3.12]).

If R is countable then there is a prime model iff the isolated points of each space of types,
Sn(o) (nEw), are dense (1.6). By 16.17, every non-empty basic open neighbourhood of S,(0)
is defined by a formula of the form ve=0 A Al vfi#0 (**), where e and the f1 are
idempotents and it may be assumed that fiR> eR for each i.

Suppose first that the finitely generated maximal ideals are dense. Given any neighbourhood
(**), if it is non-empty, then eR is strictly contained in the intersection of the fiR so, by
density, there is a finitely generated maximal ideal, e'R say, containing eR but not
containing any of the fiR. Then the type given by ve'=0 n vm 0 is an isolated point of the
neighbourhood.

Conversely, if every non-empty neighbourhood contains an isolated point, take an
idempotent e'#1. Then the neighbourhood (ve'=0/v=0) contains an isolated point: isolated,
say, by (* * ). Note that e'R S eR. Since every idem potent strictly above a contains at least
one of the f1 (by isolation), it follows (by 16.6) that R/eR is semisimple artinian. So, every
maximal ideal above eR is finitely generated: hence there is a finitely generated maximal ideal
above e'R.

Theorem 16.27 [Bou79; 11.1.2] Let R be a commutative regular ring. Then the
following conditions are equivalent:
(i) T* has a prime model;
(ii) B(R) is atomic;
(iii) T* has a prime (pure-)injective model.
If these conditions are satisfied then the prime model is ED (R/e"R)(K(a))
where a XR runs over the finitely generated maximal ideals of R and K('X) is 1

or 'tA. according as R/erR is infinite or finite. The prime injective model is the
injective hull of this (and is strictly larger, unless R is semisimple artinian).

Proof Suppose first that R is countable. Then the discussion above has established the
equivalence of (i) and (ii). The equivalence of (ii) and (iii) follows from 4.73(a) (without any
restriction on the cardinality of the ring). To establish the equivalence of (i) and (ii) in the
general case, one may show directly that the module described is the prime model, as is done in
[Bou79; §2.2] (I leave the details to the reader).

In particular, if T* has any of the dimensions of 16.26 then there is a prime model.
Since B(R) need not be atomic, Bouscaren's result above answered the question, left open

in [ES71] and explicitly raised in [Pr78a], of whether, as in the noetherian case, the model-
completion of the theory of modules over a (countable) coherent ring R has a prime model. For
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a specific example with B(R) non-atomic, take a topological space X which is totally
disconnected, compact, without isolated points and with a countable basis of clopen sets. Let R
be the ring of continuous functions from X to the field 7l2 equipped with the discrete topology.
Then the elements of R may be identified with the characteristic functions of clopen subsets of
X; in particular R is countable. The ring R is commutative regular and, since X is without
isolated points, B(R) is atomless. In particular, by 16.27, T* does not have a prime model.

Exercise 4 Show that T* has a minimal (and necessarily prime) model iff B(R) is atomic
and each factor field of R is infinite.

For extensions of 16.27 to models prime over arbitrary sets of parameters, the reader is
referred to [Bou79; §2.2,§2.3].

Exercise 5 Let R be commutative regular. Describe the RK order and orthogonality in terms
of the ideals (Kp) corresponding to types.

16.C Continuous Pure-injectiues

Discrete pure-injectives have a perfectly satisfactory decomposition theorem. So what of
the countinuous pure-injectives? Are we simply to write them off as impossible to deal with?
The (von-Neumann-style) structure theory for injective modules over regular rings (see
[0876]) suggests that to do so would be premature.

Once one knows that there are functors which convert pure-injectives into injectives, one
may note (Facchini does this in [Fac85]) that the structure theory of Goodearl and Boyle
[6B76] (also see [Goo79; Chptio]) can be made to apply to pure-injectives: for any spectral
category is equivalent to the category of non-singular injective modules over a suitable regular
ring [0066]. But that does not seem to mesh particularly well, either with the context in
which we work (elementary classes), or with the kind of result we might aim for (decomposition
in terms of orthogonality classes). So let us see what can be said.

Let us first make the observation that every pure-injective module is the pure-injective
hull of a direct sum of hulls of single elements: so, even for continuous pure-injectives, the
possibilities are not unlimited.

We already know what an RK-minimal continuous pure-injective looks like (6.17): it is a
pure-injective module N which has a decomposition as N=N1®N2 with N, and N2 non-
zero and, moreover, in every such decomposition, each of N N2 is isomorphic to N. To any
such RK-minimal pure-injective (or corresponding pp-type or RK-minimality class), we
associate the cardinal is=u(N) which is defined to be least such that p.i.(N(u)) t N (cf.
[Goo76: §6.C]): if we want to classify pure-injectives up to isomorphism, then we need to
know P(A). Since N is supposed to be decomposable, we have p > X. and, indeed, p >'A,
(exercise: see (Goo76: Exercise 6.C.3]). We have to define y in this slightly awkward way
because there is no guarantee that there is a largest cardinal K with p.i.(N(K)) = N (in fact,
there is no largest such K iff 1,(N) is weakly inaccessible [Goo76: Exercise 6.C.11]).

Examples of such RK-minimal continuous pure-injectives are: any existentially complete
prime ring [Pr83a; Thm 4]; EndU/soc(EndU), where U is 'A.-dimensional vectorspace
over a field.

So now let N be any continuous pure-injective. What kind of decomposition can be
obtained for N? First we may split off the RK-minimal chunks. Let p be an RK-minimal type
realised in N (if th r@ is such). By Zorn's Lemma, there is a maximal factor of N which has
the form for some K. Write N as p.i.(N(p)(K)) ® N' where N' contains no
realisation of p. By the descriptions of orthogonality and RK-minimality (§§6.2,6.3), we have
removed precisely that portion of N which corresponds to the RK-class of p. Then we may
work on N' in the same way.

It may be that we thus obtain a complete decomposition of N into (continuous) RK-minimal
pieces: that is surely a satisfactory outcome. But it may be that we are left with a non-zero
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continuous pure-injective N" which realises no RK-minimal type. For examples of this, look
at "Type [If factors".

Suppose that we are in that situation. If we look at the types realised in N", then we obtain
an "ideal" in the A-semilattice of RK-classes of 1-types: given orthogonal N1=N(a1) and
N2-N(a2), there may be no single element b such that N(b) N, ®N2; so I mean that the
set of RK-classes of 1-types realised in N is upwards-directed insofar as it can be. One would
like to split this into orthogonal pieces, but at least two problems present themselves: there
may not be maximal elements in this "ideal"; if we insist on the pieces being orthogonal but
maximal, there may be problems with uniqueness.

I do rather doubt that there is a simple decomposition theorem here. Probably one should
look at the existing results concerning decomposition into "factors", subtract from that what is
unnatural from our point of view, then add orthogonality.
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CHAPTER 17 DECIDABILITY AND UNDECIDABILITY

This chapter is concerned with the question: for which rings R is the theory of R-modules
decidable? That is, for which rings is there an effective way of deciding whether or not a given
sentence is true in every module?

The first section begins with some definitions and discussion, for the benefit of those
unfamiliar with decidability questions. Then it is noted that since, for instance, the word
problem of a ring is interpretable within the theory of its modules, we should impose some
minimum conditions on the ring before the question: "is the theory of modules decidable?"
becomes a reasonable one. I suggest such a condition: one should be able to tell effectively
whether certain systems of linear equations have solutions in the ring. It is noted that a ring of
finite representation type has decidable theory of modules (assuming it satisfies this condition).
It is also shown that decidability of the theory of modules is preserved by "effective Morita
equivalence".

If the word problem for groups is interpretable within the theory of R-modules, then that
theory is undecidable. In §2 we use this fact to establish undecidability of the theory of modules
over a variety of rings. It is conjectured that any ring of wild representation type has
undecidable theory of modules.

In the third section, we turn to decidability. Although the first decidability results were
proved "with bare hands", all present results may be achieved by giving an explicit description
of the topology on the space of indecomposable pure-injectives. By a result of Ziegler, that is
enough to establish decidability of the theory of R-modules. I do not give proofs in this section,
because the results tend to be considerably more difficult and deep than the undecidability
results of section 2. This is not surprising: in order to show undecidability one interprets a
problem which is already known to be undecidable - this often requires some ingenuity, but
experience suggests that persistence will be rewarded; on the other hand, to show decidability
one has, in effect, to prove a classification theorem for the pure-injective modules, so a
different kind of understanding of the modules is required.

The fourth section simply brings together the results of the second and third. We see that
what is known supports the conjecture that decidability of the theory of modules is equivalent to
the ring being of finite or tame representation type. The conjecture is valid for path algebras of
quivers without relations. But, especially since there are no such algebras of tame, non-
domestic, representation type, there remains a lot of work to be done here.

17.1 Introduction

To say that the theory of R-modules is decidable is to say that there is an algorithm (or
Turing machine) which, when input with any sentence in the language of R-modules will
eventually output "yes" or "no", according as the sentence is true in every R-module or not.
Lest the requirement that every module satisfy the sentence seem overly restrictive, it should
be pointed out that a sentence may be of the form 6-* t where 6 and z are themselves
sentences ( "conditions" ).

For example, the word problem for the ring R is "interpretable" in the theory of R-
modules: two algebraic combinations, ti and t2, of elements of R define the same element of
R iff the sentence VVu (utl = ut2) is true in every R-module, hence iff this sentence is in the
theory of R-modules. It follows that if there is an algorithm for deciding sentences of the theory
of R-modules, then there is an algorithm for the word problem of R. That is, if the theory of
R-modules is decidable then R has solvable (i.e. decidable) word problem.

It follows that it is rather pointless to ask whether the theory of R-modules is decidable if
R does not have solvable word problem. On the other hand, the following shows that having
solvable word problem is not a sufficient condition on R to make the question a sensible one.

Let a and b be elements of the ring R. Whether or not a is in the right ideal bR is
decided in the theory of R-modules. For one may check that the sentence VU (ub = 0 -* ua = 0)
is in Th(T/ZR) iff aEbR (",# " is clear; for " = " consider the module R/bR).
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Below, I discuss the problem of what are appropriate requirements to put on R before
asking about decidability of the theory of modules.

In general, if T is a theory, one says that T is decidable if there is an algorithm which,
when input with any sentence in the language of T-structures, eventually comes up with "yes"
or "no" according as the sentence is true in every model of T or not.

If T is a recursively axiomatised complete theory, then T is decidable. That is: if there
is a Turing machine which will list a (possibly infinite) set of axioms for T, then one may set
off a machine to generate all proofs from axioms of T (using a "diagonal" pattern, temporarily
breaking off tasks to begin new ones) - thus all consequences of the axioms may be generated.
Since T is complete, for any sentence a either a or -ia is in T and so one or the other
eventually will be deduced as a consequence of the axioms. Thus T is decidable. The reader will
appreciate that a decidable theory may be a long way from being practically computable: in
many cases, however, the decision procedure is primitive recursive or better and so provides a
more realistic computability.

There is a very useful result due to Feferman and Vaught which simplifies matters. I

illustrate the use of their result by showing that if R is a finite ring which is of finite
representation type then the theory of R-modules is decidable (this is "folklore"). The special
case of the three subspace problem was dealt with in [Bau75a; Thm 3]: of course, most of
Baur's proof is, essentially, devoted to showing finite representation type.

So let R be a finite ring of finite representation type: assume that R is given
"explicitly". Then every R-module is isomorphic to a product N1(K1) ® ... ® M(K) and hence
is elementarily equivalent to #1K1 ® ... ®NkKk, where //,, ... Nk is a complete list of the
indecomposable R-modules. The Feferman-Vaught theorem ([FV59; 5.4]) allows us to conclude
that the theory of R-modules is decidable iff, for each i, the theory of powers of Ni is
decidable. By [FV59; 5.5] the theory of powers of Ni is decidable iff that of Ni is decidable.
But Ni, being finitely generated (11.10), is finite and so (exercise) has decidable theory. One
concludes that the theory of R-modules is decidable.

It should be remarked that it is not necessary to assume that R is finite, just that R is
"sufficiently recursive" (see below).

Let us now address the problem: over which rings is the question "is the theory of modules
decidable?" a reasonable one? The point is this: we want to identify when the theory of modules
is undecidable on account of the compexity of the modules, rather than on account of the
compexity of the ring itself. The problem is not a precisely formulated one: nevertheless, I do
offer a tentative solution below.

The following seems to be essential: the ring should be recursively presented and the
operations should be recursive. That is, there is an algorithm for listing all the elements of the
ring (so, in particular, the ring should be countable) and there is an algorithm which, given two
elements in this list, produces their sum and their product as elements on the list. A common
way of listing the elements of the ring is by giving generators, so that the elements are (certain)
words in the generators. It also seems essential that the word problem for the ring should be
decidable: in other words there is an algorithm which, given two terms obtained using plus and
times, from elements of our listing of the ring, tells us whether or not these terms define equal
elements of the ring. Observe that if this is assumed, then the listing may be cut down to one
which is a 1-1 listing, and also the operation of finding -a from a is an effective one (we know
that -a occurs somewhere on the list, so just go through the elements b of the listing, testing
whether a+b equals 0 (0 itself is similarly identifiable)). These basic assumptions will be
made, so we will assume that we "know" the ring at least to this extent.

We must assume more: it was observed above that, since questions such as "aE bR?" are
effectively "encoded" in the theory of the modules, unless they are effectively answerable, the
theory of R-modules cannot be decidable.

What is the maximum assumption? Surely that the entire first-order theory of the ring, in
the language for rings augmented by constants for its elements, is decidable. Let us test the
reasonableness of this by taking the ring to be a field K. It is a classical result that if K is
finite, or is an "explicitly given" countable algebraically closed field, then the theory of K,
with constants for its elements, is decidable. On the other hand, the theory of the rational field
IQ is undecidable (since it interprets that of the ring of integers 2 [Ro49]), yet the theory of
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Q-vectorspaces is decidable (directly, or since ID is of finite representation type) and, come to
that, the theory of 2-modules is decidable. So it certainly may be that the theory of R as a ring
is undecidable, yet the theory of R-modules is decidable.

It seems, then, that we must require some restricted part of the theory of the ring to be
decidable. By the observations above, this restricted part must include the quantifier-free part
of the theory, together with at least some existential sentences (3w (a =bw) ).

I make the following suggestion.

Whenever the question of the decidability of the theory of R-modules is raised, it will be
(implicitly) assumed that the largest complete theory of R-modules. T*. is decidable ... M.

At first sight, this may not look like a condition on the theory of the ring R: let us see why
it is so. Since T* is complete, decidability of T* is equivalent to T* having a recursive
axiomatisation. An axiomatisation of T* is provided by all the sentences in T* of the form
Inv(-, tp, y,) > 1 or I nv(-, ip, y,) = 1, where Lp and W are pp formulas in one free variable. How
do we decide whether or not Inv(T*,ip,xp)= 1? By 8.14 Inv(T*,ip,ip)= 1 iff the free
realisation of ip satisfies W: by 8.13, this occurs iff, in the notation of §8.3, H, E (HLI)),
where Lp(v) has the form Vw (v 0, and similarly for y,.

Now, 8.10 provides a criterion for this: namely H, E (HLp) iff there are matrices G, X with
1

entries in R, such that G HXV = H(qX...(**). Since the sizes of HLp and HW are fixed
0

by tp and p, so are the sizes of G and X.
Thus the truth of Inv(T*, Lp,y,) = 1 is equivalent to solvability of the system of linear equations
given by the above matrix equation (treat the entries of G and X as unknowns; the entries of
HLp and HW are constants given by ip and V). Solvability of this system is expressed as an
existential sentence (of a rather simple sort) in the theory of the ring with constants for its
elements.

Thus the condition above is indeed a requirement that a certain part of the theory of the ring
be decidable. It should also be pointed out that it is the exact generalisation to pp-types of the
condition that all questions "aE bR?" be effectively answerable.

Observe that if the theory of R-modules is decidable then condition (D) must be satisfied
(since T* can be then be recursively axiomatised).

Let us now list some examples of rings which do satisfy condition (D).
(i) Any recursively presented field with decidable word problem satisfies (D) - Gaussian

elimination gives a decision procedure!
(ii) Let us say that the algebra A, finite-dimensional over a field K, is recursively

presented over K if there is given a K-basis {a1,...,an} of A over K, together with
the multiplication constants ci jk which say how the basis elements multiply together:
aiaj = Ek", ci,kak. If one identifies an element a = E,", dial of A with the
corresponding (d1....,dn) E K', then one sees that the theory of A is effectively
interpretable in the theory of K. Therefore, if K is recursively presented with decidable
word problem then so is A (cf. [Rs80; §1]): does A further satisfy condition (D)?
Indeed it does: since the ai form a K-basis, the system of A-linear equations obtained
from a matrix equation such as (**) above may be teased apart to obtain an equivalent
system of K-linear equations which, by (i), is effectively solvable.

(iii) Let the ring R be 2 or K[X] where K is a field as in (i). Then solvability of (and a
solution to) any system of R-linear equations may be effectively determined (see, for
example, [HH70] or [Jac74]: the method depends only on the Euclidean algorithm; the
latter reference also deals with PID's). Hence R satisfies condition (D).
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(iv) Let R be any recursively presented finite ring with decidable word problem. Since the
entire theory of R is decidable, one certainly has condition (D) satisfied.

Therefore I assert that, if R is any ring such as described above, it is reasonable to ask
whether or not the theory of R-modules is decidable.

The final point to be made in this section is that decidability of the theory of modules is
invariant under "effective Morita equivalence": this material comes from [POPre?; §1].

The rings R and S are Morita equivalent if their categories of modules are equivalent
as categories. Given a ring R, the rings S which are Morita equivalent to R may be
characterised, up to isomorphism, as those of the form EndPR where PR is a finitely
generated projective generator for 72R. It should be observed, however, that even isomorphism
between rings need not preserve effectivity properties (see [PoPr8?]). Therefore we must be
careful to specify what is meant by "giving" a Morita equivalence.

Fix a ring R satisfying condition (D). A Morita equivalence is specified by "giving" a
finitely generated projective generator. We may do this by specifying a submodule, K, of some
free module Rm, by giving a finite set of elements of Rm which are to be generators for K.
Abstractly, this defines P by the short exact sequence 0-3 K) Rm-3 P-* 0: since P
is projective, this sequence splits, so P may be thought of as a direct summand of Rm. But we
are then faced by the problem: can (generators for) P be found computably from the
generators of K? I do not know whether there is a general algorithm for doing this. Over
certain sorts of rings it may be done: for example if R is right noetherian and satisfies the
strengthened form of condition (D) which says that we may determine recursively whether a
system of linear equations has a non-zero solution, then (exercise), generators for P may be
found recursively from those for K.

Actually, it turns out that generators for K suffice, since it is not actually P that we need
to know; rather we need to know the endomorphism ring, S, of P. This ring may be
characterised as the ring of endomorphisms of Rm (i.e. mxm matrices) which send K to K,
modulo those which send Rm to K. To see this, consider the diagram below.

n Since we have explicit generators for K, the endomorphisms
K P of Rm fixing K are recursively identifiable and, also, the

n If condition "f-g sends Rm to K" is recursive (both by
Id II g i condition (D)). Thus one may find a recursive presentation of

K%kM, P
S, under which S has solvable word problem and also

it (exercise) satisfies condition (D).
This is all that we need, but it is perhaps worth pointing out that it is, perhaps, unlikely

that we would know that K is a direct summand of Rm without being "given" that information
in a computable fashion (for example, by being given generators for a complement, P).

The fact that P is a generator is, in fact, irrelevant to the proof below: even that P is
projective is only needed to give us that every S-module is isomorphic to one of the form
M* = Hom (P,M) for some R-module M. The S-action on M* is defined by setting a.s
(a E M*, s E S = EndP) to be the composition of functions as. This allows us to think of an
element of the S-module M* as being the same as a morphism from P to the corresponding R-
module M. That, in turn, is just a morphism from Rm to M which factors through K.
Suppose that the given generators of K are b ..., bs where bk = E,:, ejtJk, the ej being
canonical generators for Rm. Then a morphism f:Rm-) M with feJ=a,j (say) factors
through R/K iff the images of the bk are all zero - that is, iff E,:, ajtjk = 0 for each
k= 1,..., s. Given an element a* of M*, let a = (a1,..., am) = Mm be the corresponding m-
tuple of elements from M.
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Lemma 17.1 [PoPr8?; 1.1] Let notation be as above. Let tp(v1,..., un) be a formula
in the language of S-modules. Then there is a formula un) in the language
of R-modules such that, for any elements an in any S-module M*, one has
M*ktp(01,...,an) iff Mktp(ai,...,an).
If R satisfies condition (D) and if a finite generating set for K is given
explicitly, then gi may be found effectively from ip.

Proof The proof goes by induction on the complexity of the formula ip.
1. Suppose that Lp is atomic: say it is Et:, visi, where the si are in S.

We are supposing that each si is given as an endomorphism of Rm: that is, as an mxm
matrix (rjli)jl - so, thinking of S acting on the right, we have si(el) _ X j-, ejrjli.
Therefore the equation E aisi = 0 says that the morphism I aisi: PR--* MR is the zero
morphism: that is, A 1 , Substituting for siel, this becomes

1=sl Ii", Ej:, 0.
The formula /

1

., 7-t:1 1J'-1 vi jr jli = 0 is 'T = Vvji,..., v1m, v21, ..., unm,) and it follows
from the discussion above, that M*ktp(ai,..., an) iff MI-q(071) ...,5n)'
2. The other non-trivial case is that Lp has the form 3vo tp(vo, v1,..., vn), where we may
assume by induction that the result holds for V.

Recall that an element of M* = Hom(P,M) is given by an m-tuple (cl,..., cm) of elements
of M, the entries of which satisfy Ak:, I :j'., c jt jk = 0, where the t)i E R are defined above.

Define tp(u1,...,un) to be 3vo (iy(uo,..., un) n Ak;, xj., vo jt jk, = 0 ), where uo is
(vo1) ...1 vom) (and where q has been inductively defined).

If M*kip(ai,...) an), then there exists ao in M such that M*kip(ao) ..., an). By the
induction hypothesis, this implies that M satisfies w(ao,...,an) and hence Mkan)
(since the entries of ao satisfy the required condition). Conversely, if Mki7(a1,..., an) - say
M satisfies q(b, e ,..., for some b - then the condition on the entries of b ensures that
b "is" an element "b" of M*. So, by induction, one has M*ktp(b, a,,..., an), that is,
M* k lp(a1)..., an), as required.
3. Define (lpnyi) _ qiA and (-lip)_ -up: it is immediate that this preserves correctness of
the translation.

The statement regarding effectivity follows since the hypotheses imply that, given ip, we
may write down gyp. a

Theorem 17.2 [PoPr8?; 1.2] Suppose that R is a recursive ring which satisfies
condition (D). Suppose also that a finite set of generators for a submodule K of
Rm is given, and assume that Rm/K is a projective generator for 7718. Let S be
the corresponding ring Morita equivalent to it Then S has a recursive
presentation and satisfies condition (D). If the theory of R-modules is decidable
then so is the theory of S-modules.

Proof Let a be a sentence in the language of S-modules. By 17.1, s is true in some S-
module iff a is true in some R-module, in other words, iff -z is not in the theory of R-
modules. The theorem follows (cf. the discussion at the beginning of §3). n

One may therefore say that "effective Morita equivalence" preserves decidability of the
theory of modules.

The following is a useful perspective on the above. Given any Grothendieck abelian category
with a generating set of finitely presented objects (such as 7128 with (R), 7128 with
{Rn: nEw) or (mod-R,Ab) with ((Al,-): MEmod-R)), one may define a language for that
category, with one sort for each element of the chosen generating set (see [Pr78e]). Given an
object of the category, its "elements" of a given sort are the morphisms from the corresponding
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generator to that object. For example, an element of an R-module is "really just" am or phi sm
from RR to that module: similarly, with R, P and S as before 17.1, an element of an S-
module is "really just" a morphism from the finitely presented generator, P, of MR to a
certain R-module. For any given such category e there is a good deal of choice in generating set
and hence in language (it is not the category of modules which changes under Morita equivalence,
but rather the way in which it is presented). What 17.1 (and its obvious generalisations) say, is
that, so long as we confine ourselves to generating sets (always of finitely presented objects)
which are recursively equivalent, we will have recursively equivalent languages: hence
properties such as decidability are invariant.

An example of this more general situation is provided by tilting functors. It is noted in §3
that the results of §13.3 allow us to conclude that the path algebra of an extended Dynkin diagram
has decidable theory of modules. Use of tilting functors (see [Ri84]) allows us to extend this
result to certain other algebras: indeed their use means that we need prove decidability only for
a single preferred orientation of each quiver. A tilting functor is not a Morita equivalence, but
it is almost so: the projective P is replaced by, say, a preprojective module, and one has that
the two relevant module categories have very large (finitely axiomatisable) equivalent
subcategories, the equivalence being induced by Hom (P,-). Thus (the proof of) 17.1 applies to
these subcategories. The modules excluded from these subcategories are those which have a
summand isomorphic to one of a fixed finite set of finitely presented indecomposables, and they
may be treated separately. This is enough (see [Pra5a] for more detail) to allow decidability to
be transferred, provided the tilting (preprojective) module is given explicitly.

17.2 Undecidability

Our proofs of undecidability depend upon the fact that there is a finitely presented group
with undecidable word problem: there is no algorithm which, given any set of generators

91 and any set of words ti,..., tk, t in the generators, will decide whether or not the
relation t=id is a consequence of the relations ti=id (i = 1,.., k). Since all possible
descriptions of algorithms may be combined to describe a "universal algorithm", there is some
such sequence on tl,..., tk; t) which specifies a group G in which "t = id" cannot be
determined computably from the given defining relations for G.

Baur [Bau75a], [Bau76a] and, independently, Mart'yanov [Mrt75], Slobodskoi and
Fridman [SF75] and Kokorin and Mart'yanov [KM73], showed that various theories of modules
were undecidable. Baur first interpreted G in the theory of abelian groups of order bounded by
(any given) n>, 2, together with two specified endomorphisms: in effect, he showed that, for
p,< n, the theory of 7l p(X, Y)-modules is undecidable, by "encoding" the sentence
V (At', ti(U)=id-4 t(U)=id) in the theory of these modules. Decidability of the theory of
7lp(X,Y)-modules would therefore contradict choice of G. Actually, his argument allows any
field in place of 7lp and since, for his result, it is enough to consider the case of a prime p (if
n= p.m, then a 7Lp(X,Y)-module is just a 2n(X,Y)-module which annihilates m), I present
the argument in that generality.

Theorem 17.3 [Bau75a; Thm1], [KM73] Let K be any field. Then the theory of
K(X,Y)-modules is undecidable.

Proof Let G be a group as above, with undecidable word problem: it is known that G may be
taken to have two generators, g and h. The relators ti are terms in g, h and their inverses.
Let si be the corresponding elements of the ring K(X,Y,X-1,Y-1), where g and h have
been replaced by X and Y. Similarly, let s be the ring element corresponding to t. The
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question of whether t(g,h)=1 is a consequence of A,,., ti(g,h)=1, is equivalent to the
question of whether by (A,,:, vsi=v -- vs=v) is in the theory of K(X,Y,X-1,Y-')-modules
(and so the latter theory is undecidable). Certainly if the relations do imply t=id, then this
sentence will hold in every module. If, on the other hand, t* id, let M be the module with
underlying K-vectorspace that of the group-ring K[G] and with the actions of X and Y being
those induced by the actions of g and h on G. Since the action of G on K[G] is faithful, one
has that s does not have the identity action on M, as required. a

Corollary 17.4 Let K be any field. Then the theory of K(X,Y, X-1, Y-1)-modules
is undecidable.

Proof The proof of 17.3 actually shows this. o

We now enlarge our collection of rings with undecidable theory of modules. Whenever we
have a theory, T, such that there is a finitely axiomatisable subclass of its models which is
equivalent to some class e, already known to be undecidable, it follows that T is undecidable
(if (5 is an undecidable sentence for e and if t axiomatises the equivalent subclass of the
models of T then t - a is, an undecidable sentence for T).

Corollary 17.5 [Bau75a; Thm 2], [SF75; Thm 1] Let K be any field. Then the
theory of K-vectors paces, with five specified subspaces, is undecidable.

Proof This theory interprets that of K(X, Y)-modules. First, let us see how to interpret the
theory of K[X]-modules within the theory of K-vectorspaces with four specified subspaces.

Let M be a K[X]-module. Define U to be the underlying space of M®M. Let Wi
(i=1_.,4) be the K-subspaces M so, O +M, A, GrX, where L is the diagonal
((v, v) : vE U) and Gr X is the graph of X - ((v, vX) : vE U ). The definable recovery of M
from this "quadruple" is left as an exercise for the reader. (Finitely) axiomatising the
quadruples so obtained is also left as an exercise (cf. [Bau80]).

The theory of "quintuples" therefore interprets that of K(X, Y)-modules: take the fifth
subspace to be the graph of the action of Y on "M". o

The next result is a corollary, since the theory of pairs of abelian p-groups interprets the
undecidable (by the above) theory of quintuples of 7Lp-modules. This is proved by Baur
[Bau76a] and also by Mart'yanov [Mrt75] who uses the result of Slobodskoi and Fridman
[SF75]. In fact, Baur shows that pairs of 71p9-modules suffice. Mart'yanov shows that the
theory of pairs of 2p2n+,-modules interprets that of n-tuples of 7lp-modules so, from [SF75],
he obtains the slightly weaker result that pairs of are undecidable. In fact, Butler
and Brenner inform me that pairs of 2P.-modules are wild (and even this may not be optimal) so
they should be undecidable. For the details of the proofs, I refer the reader to the above works.

Theorem 17.6 [Bau76a; Thm 1, Cor4], [Mrt75] for abelian groups Let K be any
field. Then the theory of pairs (M; N) of K[X]-modules with M ->,V, is
undecidable. Analogously, the theory of pairs of abellan groups is undecidable (cf.
17.15). o

Corollary 17.7 Let K be any field. Then the theory of triples (U; W, f)
consisting of a K-vectorspace U, a subspace W and an endomorphism f of U,
is undecidable.

Proof To the pair of K[X]-modules (M; N) associate the triple (MK; NK, X), and note that
NX 5 N characterises the triples so obtained, to see that this follows immediately from 17.6.

This can, however, be derived in a simpler fashion (without appealing to
W b 17.6). What I do first is to show that the theory of representations of the

Pe U quiver opposite is undecidable, by interpreting in it the theory of
a
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vectorspaces with two specified endomorphisms. So, given a vectorspace U and endomorphisms
x and y, we will build a 0-representation from them, in such a way that (V, X, y) may be
definably recovered.

171

Consider the 0-representation defined by the diagram
shown, where each Ui(') is a copy of U and the action
of a and b are as shown ("i" is the identity morphism).
Let us see how to recover the original space and
endomorphisms.
For the copy of 1/, we take U2/U3 - this is definable as
ima2 /ima3 (so we are working with elements of Teq).
Now, take vEU2: v has "coordinates" (0,0,v2,
v3) v4,v5) say (with respect to the given decomposition
of W). Then vab=(v2x,v3y,v4). Now, there exists
wEW such that wb=vab and wa2b=0: let us
compute the coordinates of w= (wo,w1,...,w5). We
have wb = (wo+w3x,w,+w4y,w5) and
wa2b=(w1x,w2y,w3): hence w3=0, so
wb=(wo,w1+w4y,w5) andtherefore wo=v2x. Then
woe= and so there is induced, by
VF--+W02, a function on U2/U3 which takes v + im a3
to vx + im a3. So we have recovered the x-action.

Again: let uE im a2 have coordinates as before. Then
ua2b=(0,o,0,0,v2,v3)b=(0,v2y,v3). Then there exists wEima such that wb=va2b
and wab=0. Suppose that w=(O,w1,...,w5). Then wab=(w2x,w3y,w4) and so w4=0.
Therefore wb=(w3x,w,+w4y,w5)=(w3x,w,,w5): so w1=v2y. Then
wo= (O,O,v2y,w2,w3,w4): so there is induced, by vi-* wa a function on U2 /U3 which is
the recovered y-action.

Therefore we have undecidability of the theory of A-representations. What we want, for
the theorem, is undecidability of the A'-representations, where A' is as A, but with the
arrow "b" reversed (for the A-representations with the connecting arrow monic are exactly the
triples in the statement of the theorem). We reverse the arrow by replacing the A-
representation M = (W, U, a, b), as above, by the A'-representation M'= (W , U' = ker b, a, j ),
where j is the canonical inclusion of kerb into W (this is a simple example of a tilting
functor). We can certainly axiomatise the A'-representations so obtained; so we must check
that the original representation M may be definably recovered from M'.

But this is easy: "U" is recovered as W/U' and then "b" is recovered as the projection
from Al to hl/U' (we may note that "b" in the original diagram is epi). (That is, Al is a sort
in Te4 and b is the corresponding function "fE" in the notation of §1o.T.)

Thus the theorem is proved. o

Corollary 17.8 [Bau76a; Cor4] Let K be a field. Then the theory of modules over
R = KEY, Y : Y2 = 0] is undecidable: in particular, the theory of K[X, Y]-modules is
undecidable.

Proof The theory of R-modules is bi-interpretable with the theory of pairs of K[X]-modules
as follows. To the R-module M, associate the pair (kerY, imY) of K[X]-modules. Conversely,
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given the pair (M; N), M>N, of K[X]-modules, define the corresponding K[X, Y]-module to
have underlying K[X]-structure that of the direct sum M ® N and define the action of Y to be
zero on the first component and to embed the second component identically in the first. a

The indeterminate "X" may be replaced by a prime (cf. 17.19 below). As a consequence of
his proof of 17.6, Baur showed that the theory of 7129[x: x2=0]-modules is undecidable
[Bau76a; Cor3]: in fact one may do better that this. For a proof, I refer to [Pr8?; 4.11].

Proposition 17.9 The theory of 7123[x: x2=0]-modules is undecidable. a

With these examples of undecidable theories to hand, it may be shown that, within various
classes, wild representation type implies undecidability of the theory of the representations.

1. Quivers
(cf. §13.3).

1

C
0

0.0

There is a list of minimal wild quivers: they are 1-5 and 6 in the diagram below

2 3 4

I I I

(2, 1,1,1)

(3,2,2)

5

(4, 3,1)

6

(5,N)

7

The first three correspond to the theory of K(X,Y)-modules, triples (U; W, f) and the 5-
subspace problem respectively: these were seen above to be undecidable (17.3, 17.7, 17.5). It
may be shown that the category of representations of each of the remaining quivers embeds the
category of representations of the first quiver. I give one example below (I treat it as a poset:
any representation of the poset gives a representation of the quiver); for the others see
[Pr85a; Partl] (also see [Br74a; Prop2]). These embeddings actually provide
interpretations, in the sense that the original triple (U,41,f) may be definably recovered; so
we deduce that the path algebra of each of these quivers has undecidable theory of modules. Hence
the path algebra of any wild quiver without relations has undecidable theory of modules.

2. Posets The list of minimal wild posets is just the list above, of minimal wild diagrams,
but with t deleted and with 6 added. Given the above, it has only to be shown that the theory of
the representations of the poset (N,5) is undecidable. For that, see [PreSa; Part1] (or
consider it as an exercise). Then one may conclude that the category of representations of any
wild poset is undecidable.

(3,2,2)
0

/ I \
11 21 31

I I

12 22

I

13

32

o1/ ®U®U

1/11 1/ ®1/®0 1/21 =0®1/ 91/ 1/31 = +((v,v,fv))

1/ 12=1/®0®0 1/ 22=((o, v,fv))

1/ 13=iv e0®0

1/32 = A
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Given a "triple" the representation M of this poset is specified as shown, where A
is the diagonal submodule ((v,v,v)) and "(*)" means generated by the set of all .

Note that U11n1/21=0 U 0.
The domain of "f" is defined to be 1/12.
Let x= (v,0,0) be a member of U12. Then the representation M satisfies
3yEU42 (x+y E 1131): say y = (0,Since in 1/31 the first and second coordinates are
equal, it must be that y = (0,v,fv).
Then M satisfies 3zEU11(y+zE1/3E): say z=(w,w',0), soy+z=(w,w'+v,fv). In
U32 all three coordinates are equal: so w=fv and w'+v=fv. That is, z= (fv,fv-v,0).
Then M satisfies 3z'EU12, z"E1/11n1/21 (z= z'+z"). Clearly z' _ (fv,0,0).
Thus we may define (by pp formulas) (fv,0,0) from (v,0,0). That is: the action of v on

is definable. Of course, "W" is definable - being 1/13. Thus (1/, 41, f) may be
definably recovered from M. Also, the class of representations of (3, 2, 2) in which the above
process does lead to a "triple" are finitely axiomatisable. Thus the theory of representations of
(3, 2, 2) interprets that of triples so, by 17.7, is undecidable.

3. Local algebras Suppose that K is an algebraically closed field and let A be a complete
local K-algebra ( "complete" in the topology which has, as a neighbourhood basis of 0, the
powers of the Jacobson radical - so any local artinian K-algebra is of this sort).

Ringel [Ri75] showed that, modulo the conjecture (_) below, A is of wild representation
type iff it has, as a factor ring, at least one of the following algebras.
R=K[X,Y,Z]/(Y,Y,Z)2; 8=K(x,y: x2=y3=xy=y2x=0); BOP;

x2=y3=y2x=xy-ayx=0) (am 0); D=K(x,y: x2-y2=yx=0).
Ringel's proofs that these algebras all are of wild representation type show, with some
modification, that the theory of modules over each of them is undecidable ([Po86; Prop 11).
That this is so does not depend on the field K being algebraically closed: that assumption is used
to show that this is a complete list of the "minimal" wild complete local K-algebras. In fact, for
that, one needs only that R contains a solution to a certain quadratic polynomial (cf. 4. below),
so, modulo the problem of deciding whether tensoring up with a quadratic extension of the
original field preserves (un)decidability, the undecidability result may be extended to arbitrary
base fields.

The conjecture (*) is the following: the algebras K(x, y : x2-(yx)ny = 0 = y2-(xy)nx)
(77,> 1) - "quaternionic" - and K(x,y: x2-(yx)77y=0=y2) (n3l) - "semidihedral" - are of
tame representation type.

Bondarenko and Drozd [BD77] prove this for the second type of algebra (and, as a
consequence, for certain cases of the first). However, no detailed proofs or explicit lists of the
finite-dimensional indecomposables have yet appeared (although there is work in progress on
this - see [C-B87b]). The representation type of these algebras is no better than tame of
infinite growth and their modules are not obviously of string and band type, so a proof of
decidability of the theory of modules over such an algebra seems a long way off.

4. Commutative finite-dimensional algebras Drozd [Dro72] showed that if R is a
complete commutative local algebra over an algebraically closed field K then either R has, as
a factor ring, at least one of the two wild algebras A and C1 (from the list above), or R is a
factor ring of (the completion of) the infinite-dimensional "dihedral" algebra K[X,Y]/(XY) or
the algebra K[x, y : X2=0=y2] (these are discussed in §3 below). Each of the two minimal
wild commutative algebras has undecidable theory of modules. Hence a commutative local
algebra (over an algebraically closed field, but see §3 below) which is of wild representation
type has undecidable theory of modules (see [P086]). This undecidability may be extended to



Chapter 17: Decidability and undecidability 342

commutative local artinian rings by using 17.19 below. It may also be extended to commutative
artinian rings by localising ([Po86; 11(i)]) - see §17.3(5,6) below.

17.3 Decidability

The proofs of decidability that I give here all depend on the result of Ziegler which says,
roughly, that if the space Z(R) of indecomposables is explicitly known then the theory of R-
modules is decidable. The discussion of §1 indicates that we may as well assume that we are
dealing with rings which satisfy the condition (D) introduced there.

We may discuss the decidability question in the context of any recursively axiomatised (not
necessarily complete) theory, T, of R-modules, which satisfies T=T"*o. Since T is
recursively axiomatised, the set of all consequences of the axioms (i.e. T) is a recursively
enumerable set. So, given a sentence a to decide, we may set off generating T. If GET then we
will find this out eventually. If, however, 6(T then we will never discover this from the
enumeration of T, since at any given time, all we know is that a has not been generated as yet.
Observe that 6(T iff some model of T satisfies -ia. If therefore, we have an algorithm which
generates the sentences true in some model of T then, combining this algorithm with that which
generates T, we will obtain a decision procedure for T.

This then, will be our goal: given T=T'o closed under direct summands, recursively
axiomatised, to find out whether there is an algorithm which enumerates those sentences 6 in
the language of R-modules which are true in some model of T.

Note first that 6 is true in a model of T iff it is true in a model which is a direct sum of
indecomposable pure-injectives (this is by 4.36). Now, 6 is equivalent in T to a boolean
combination, t, of invariants sentences: so, if the set of all such t true in some model of T
is recursively enumerable, then so is the set of all their consequences (i.e., the set of all such
(5). Observe that it is not necessary to be able effectively to determine t from 6 (although in
[Mon75] (for abelian groups) and [Wei85], [Wei83a] it is shown that this is, in fact,
possible).

The next point is that if a boolean combination of invariants conditions is satisfied in a
direct sum, then it is satisfied in some finite sub-sum (exercise - see [Pr85a] for details of
this and various other points which are not fully treated here). So our problem is reduced to the
following one: enumerate axioms for the set of all those boolean combinations of invariants
conditions which are satisfied in some finite direct sum of indecomposable pure-injective
summands of models of T.

Consider a boolean combination, 6, of invariants conditions. If a is satisfied in some R-
module, then we wish to discover this fact. One may express 6 as a disj unction of sentences,
each of which is a conjunction of invariants conditions. Since a disjunction is satisfied iff one of
its disjuncts is satisfied, it may be assumed that a has the latter form. Therefore 6 is a
conjunction of statements of the form "Inv(-,tp,v) E [m,n)" where m is an integer _>1, n is
an integer 1 or oo' and [m,n)=( rE7Z:mSr<n). Clearly, these reductions are effective.

If all invariants of members of Z(T) are 1 or oo, then we need not deal directly with
points of the space Z(T), but may work instead at the level of open subsets. If, however, there
is an indecomposable N which satisfies A/* A/ then one may have to descend to the level of
points. The disadvantage of working at the level of points is that we have to suppose that Z(T)
is countable.

If we remain at the level of topology then we may proceed as follows.
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Let us first suppose that all invariants of indecomposable pure-injectives are 1 or "oo".
Then a reduces to the form A i 'ti A A j p j where each ti, resp. pp has the form
Inv(-,ipi,ipi)=1, resp. Let a' be the conjunction of all the 'ti. Then a'
defines a closed subset, C, of Z(T). Clearly then, there will be a module satisfying a iff there
is, for each j, some point in the intersection (tp j/y, j) n C.

Say that a subset of Z(T) is basic constructible if it is a finite boolean combination of
basic open sets (i.e., those of the form (Lp/v) ). We have just seen, under the all invariants
infinite" hypothesis, that a sentence is satisfied in some module iff the corresponding basic
constructible set is non-empty. Therefore, if we can recursively enumerate every non-empty
finite boolean combination of sets in the standard basis, then it follows that T is decidable. In
fact, and this will be more useful, it will be enough if we can effectively enumerate a "basis for
the constructible sets" - that is, a set X of basic constructible sets, such that every non-empty
basic constructible set contains a non-empty member of X.

Theorem 17.10 Let R be a ring which satisfies condition (D) such that all
invariants of R-modules are "1" or "oo" (for example, let R be an algebra over some
infinite field). Suppose that a basis for the non-empty basic constructible sets of
Z(T) may be recursively enumerated in the sense that there is an enumeration,
of pp formulas such that the set of all finite sequences (io1,i02,...,i771i772,f)
where f E 2n+1 and the constructible set O j (-)fj(tpii /ipii2) is non-empty, is
recursively enumerable, and such that every non-empty basic constructible set
contains such a subset. Then the theory of R-modules is decidable. a

What if not all invariants of members of Z(T) are 1 or oo? Let a as above be a
conjunction of conditions of the form "Inv(-, tp, p) E [m,n)" (where n may be "oo"). The
situation now is considerably more complicated. For instance, suppose that we wish to find a
module satisfying the conditions Inv(-,tp,yi) = k A Inv(-,tp',xp')>m. If there is some
indecomposable N with Inv(N,ip, p)=1 A Inv(-,tp',w')>1 then the two conditions may be
treated separately. Otherwise, it might still be that Inv(N, ip,ip) divides k, and then there are
various possibilities. But then there might be other conjunctions of a to take care of, and it
may be impossible to do this without altering the values of these invariants. Nevertheless, one
sees that satisfaction of a does break down into a finite number of possibilities. So one obtains
the following result, still at the level of topology (I state it just for the theory of R-modules).

Theorem 17.11 [Zg84; after 9.4] Let R be a ring which is recursively presented and
has decidable word problem. Suppose that there is a recursive enumeration of all
those conditions of the form Ai Inv(-,ipi,ipj)E [m,n), which are satisfied by some
indecomposable pure-injective R-module; here (Lpi)i is a recursive enumeration of
the pp formulas and m, n > 1, m* oo. Then the theory of R-modules is decidable. a

Another possibility for obtaining decidability is the following; though it could only be
applied to a ring with countably many indecomposable pure-injectives (so would exclude even
quite "small" rings such as the non-domestic tame algebras discussed in Chapter 13). Since the
arguments apply equally well in any closed subset of ZR, one obtains relative versions for
theories whose models are closed under direct summands.

Theorem 17.12 [Zg84; 9.4] Let R be a recursively presented ring with decidable
word problem. Suppose that there is a recursive enumeration of the points {Ni)i
of Z(T) and a recursive enumeration of a basis ((Lpj/yij)) for the topology
(equivalently, for each i, a recursive enumeration of a neighbourhood basis for
Ni) such that the question "Ni E (tpj/y,j)" is effectively answerable and, in the case
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that not all invariants are 1 or oo, the question "Inv(#i,tpj,ii)=k" must be
effectively answerable. Then the theory of R-modules is decidable. a

The result follows easily from 17.11. Observe that, under the hypotheses of each result, the
ring satisfies condition (D) (those axioms of T* of the form "Inv(-) = 1" are recursively
enumerable, being part of the common theory of all R-modules, and the hypotheses of 17.11 and
17.12 imply that those of the form "Inv(-) > 1" are recursively enumerable).

I now list various decidable theories of modules (mainly by describing rings over which the
theory common to all modules is decidable). In general, I give only an indication of proofs. For,
as the above theorem indicates, the decidability results are consequences of the classification of
the indecomposable pure-injectives. These classifications often involve considerable work and
it would not be appropriate to give the details in this chapter (some are given or outlined
elsewhere in the notes).

1 The ring of integers and Dedekind domains Szmielew [Sz55] showed that the theory
of abelian groups is decidable. Her proof is a rather involved explicit elimination of quantifiers
which provides a decision procedure. This was the first non-trivial case of a ring being shown
to have decidable theory of modules. By the early 70's more powerful tools were available, and
Eklof and Fisher [EF72] were able to give a more "conceptual" proof of her result, at the same
time as generalising it to certain Dedekind domains. They used the structure theory for the
pure-injective modules in an essential way, although it should be pointed out that neither Baur's
proof of pp-elimination of quantifiers, nor Ziegler's topology was available to them at that time
(also, if one is content simply to quote the structure theorem for pure-injective abelian groups
- see [Kap69] - then their proof is thereby simplified). They proved the following result.

Theorem 17.13 [Sz55; 4.22], [EF72; 5.4] Let R be a recursively presented
Dedekind ring with decidable word problem. Suppose that there is an effective listing
(by giving generators) of the distinct maximal ideals, {Pi}i, of R. Suppose that
the cardinality ("oo" or a finite integer) of R/Pi is computable from i. Then the
theory of R-modules is decidable.

Proof The result follows without difficulty from the (explicit!) description of the space zR
and 17.12 above. a

Corollary 17.14 [EF72; 5.4] Let K be a recursive field with decidable word
problem and a splitting algorithm. Then the theory of K[X]-modules is decidable. a

The field K has a splitting algorithm ([FrSh56; 94], [Rab60; Defn9]) if there is an
algorithm which, when presented with any element of K[X], will determine its irreducible
factors: examples are: finite fields; Qd; any countable algebraically closed field. It is left as an
exercise to show that this is sufficient for determination of the structure of ZR.

Other examples of rings where 17.13 applies are rings of integers in certain finite
extensions of 0 (see [EF72; after 5.4]).

2 Pairs of torsionfree modules Kozlov and Kokorin [KoKo69] proved that the theory of
pairs (in the sense of 17.6) of torsionfree abelian groups is decidable. This contrasts with the
undecidability of the theory of pairs of arbitrary abelian groups (17.6). The results above,
together with his classification of indecomposable pure-injective pairs of torsionfree modules
over a Dedekind domain ([Zg84; §5]; of. after 2.7112) allowed Ziegler to obtain the following
generalisation. For more on this, see [Sch80?]. Also see [Sch82].

Theorem 17.15 [Zg84; 9.10] Let R be a recursive Dedekind ring satisfying the
conditions of 17.13. Then the theory of pairs of torsionfree R-modules is decidable. a
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3 Tame hereditary algebras Let K be a recursive field with decidable word problem and
let A be any extended Dynkin quiver. The classification of the indecomposable pure-injectives
over the path algebra KEA], as well as the description of the topology, was indicated in §13.3.
From that, it follows that if the space ZK[X] is effectively given in either of the ways
described at the beginning of this section, then so is 4[0]: one may check that the morphisms
of spaces induced by the functors from K[X]-m,odules to K[0]-modules are effective (for detail
see [Pr85a]). Therefore we have the following, where the case A=D4 is due to Baur (he
raised the problem in [Bau75a]).

Theorem 17.16 [Bau80], [Pr58a] Let K be a recursive field such that the theory
of KEY]-modules is decidable. Let A be a quiver without relations, the underlying
diagram of which is extended Dynkin. Then the theory of modules over the path
algebra KEA] is decidable. o
This result may be extended in various ways. For example, by use of tilting and the

appropriate version of 17.1, one has the following.

Corollary 17.17 [Pr85a] Let K be a recursive field such that the theory of K[X]-
modules is decidable. Let A be a quiver without relations, the underlying diagram
of which is extended Dynkin. Suppose that M is an effectively given preprojective
or preinjective module and let S be the corresponding tame concealed algebra (see
[Ri84]). Then the theory of S-modules is decidable. o
Another corollary is obtained by using the fact that, if K is algebraically closed, then

every finite-dimensional hereditary K-algebra is Morita equivalent to the path algebra of a
quiver (see, e.g., [Gab80; §4]). The projective which induces the Morita equivalence contains
just one copy of each indecomposable (projective) direct summand of the algebra, and can be
found effectively. Therefore, by 17.1, one obtains a second corollary.

Corollary 17.18 [Pr85a] Let K be a recursive algebraically closed field such that
the theory of K[X]-modules is decidable. Let R be a recursively given hereditary
finite-dimensional K-algebra of tame or finite representation type. Then the theory
of R-modules is decidable. o

4 Local artinian rings I will show first that the decidability question for modules over
local artinian rings reduces to that for modules over algebras finite-dimensional over a field.

Suppose that R is "local" in the weak sense that the factor R/J is a simple ring. Then
R=(eR)n for some n, where eR is the unique (so faithful) indecomposable projective. Let S
be End(eR): so S is a ring Morita equivalent to R. Assuming that R satisifes condition (D),
it follows by 17.1 that there is an "effective Morita equivalence" between VZR and IFS. Thus
the theory of R-modules is decidable iff that of S-modules is so. The nice point about S is that
its unique maximal two-sided ideal is also its unique maximal right ideal: it is local in the
strong sense (our usual sense) that, modulo its radical, it is a division ring.

Therefore, consider a local artinian ring R and let us make life simple by assuming that
R/J is actually a field (rather than just a division ring). If the characteristic of R is zero
then the map which takes 1K to 1R extends to a K-linear morphism from K to R; thus R is
a K-algebra. If the characteristic of R (i.e., the least positive integer n such that 1R.n=0)
is finite, then we proceed as follows. The first point to note is that the characteristic of R is a
prime power; for if the primes p and q both divide char(R) then both lie in J(R). But,
since they are relatively prime, the identity element of R is a linear combination of them and
so is in J(R) - contradiction.



Chapter 17: Decidability and undecidability 346

Therefore, let R be an artinian ring of characteristic pn such that R/J is a field K (of
characteristic p). I show that the theory of R-modules is bi-interpretable with the theory of
modules over a certain K-algebra which may be thought of as the "algebra version of R" (the
equivalence of the representation type is "folklore"). This algebra is defined as follows. Let
xo,...,xk be a K-basis of J/J2 where xo = p. Then, as a ring, R is generated by
1, xi,..., xt and so every element of R may be written as a (non-commutative) polynomial in
p, x1,..., xt with coefficients in K. Since R is artinian, it has a finite presentation by some
ideal 1. Let R' be the K-algebra K(yo,..., yt)/1', where I' is the ideal corresponding to I
(replace xi by yi in the polynomial expressions for the generators of I).

A couple of examples may make this clearer. Let R be the ring 714. Then the radical is
generated by 2, so R' is the 712-algebra 712[y : y2=0]. If R is the ring 71p,[x: x2=0= p2x],
then R' isthe71 -algebra 71p[x,y:x2=0=y3=y2x].

Theorem 17.19 (cf. [Bau75a; Thm2]) Let R be an artinian ring which is such that
R/J is a field K. Let R' be the corresponding K-algebra as defined above. Then
the theory of R-modules is bi-interpretable with the theory of R'-modules. In
particular, the theory of R-modules is decidable iff the theory of R'-modules is
decidable_

Proof Let M be an R-module and let l be minimal such that MJ1=0. Consider the strictly
descending chain M = MJo > MJ1 > ... > MJ1-1 > 0=MJl and the corresponding sum of K-
vectorspaces U = M/MJ ®MJ/MJ2 ®... ® MJ1-2/MJl-1 ® MJ1-1. Define an R'-action on U
by: (m+MJk).yi = mxi+MJk+1 (mEMJk-1). This is well-defined since MJk.xi = MJk1
and since any zero-relation between the yi holds also between the xi. Thus M is converted
into an R'-module, which I denote by R'(M). All that has been lost in going from M to R'(M)
is the link between addition and multiplication by p (so this is not a functor).

How may (a copy of) M be recovered from R'(M)? Let N be any R'-module; split it as
U' = N/NJ ® #J/#J2 ®... $ NJ1-2/NJ1-1 ® NJl-1, just as above. Observe that there is,
for each k, a function fk: NJk/NJk+1 4(Jk+1/4(Jk+2 which is given by the action of
yo. Let m be a K-basis of N/NJ: also let r be a K-basis of the ideal of R' generated by the
yo,..., yt Define an abelian group M to have generators m, "mr', fom, f1fom,...

and to have relations all the following, as well as those holding in yt).
If m is in m and s 5 char(R)= pn, then write s = ao + «1p + ... + an-1pn-1, where the «J
are in 71p; put in ms = aom + o 1fom + ... + al-2f i-2...f1fom as a relation. Also put in the
relations which correspond to using the same rule to compute sums of generators (i.e., whenever
a sum of integers becomes greater than or equal to p, expand it just as s was expanded above).
To make this an R-module, note that each yi defines a "degree 1" morphism of the graded space
U'; so use these functions to define the x1-action on M. Write this module as R(M').

It is fairly clear that MH R'(M) r-+ R(R'(M)) recovers M, and similarly in the other
direction. Given any sentence, a, in the language of R-modules, let a' be the sentence in the
language of R'-modules in which elements of R are replaced by the corresponding elements of
R' (after writing each equation in a in "simplest form"). Then one may see that an R-module
M satisfies a iff R'(M) satisfies a'. Thus the result follows. n

So, we have reduced the decision problem for modules over local artinian rings with R/J a
(matrix ring over a) field, to that for modules over finite-dimensional algebras.

I don't see any obstruction to extending 17.19 to the case where one has non-trivial
idempotents (and a division ring in place of the field): such an extension would reduce the
decision problem for modules over artinian rings to that for modules over finite-dimensional
algebras. But I haven't checked it.
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5. Commutative artinian rings (This subsection is based on [P086].) Let R be
commutative artinian. Then R is a finite direct product of local rings. By the Feferman-Vaught
theorem (see §1) the theory of R-modules is decidable iff the theory of modules over each of
these local rings is decidable.

So we may suppose that R is a local commutative artinian ring, with factor field K (say).
Drozd's result [Dro72], already discussed in §17.2(4), implies that if K is an

algebraically closed field and if R is a local artinian K-algebra then either R has a factor ring
of the form K[X,Y,Z]/(X,Y,Z)2 or K[x, y : x3 = y2 =x2y=0] and so is wild or R is a
factor ring of the Gelfand-Ponomarev algebra K[x, y : xy=o] or the algebra
K[x, y : x2 = 0= y2]. If one widens the scene to allow non-algebraically closed fields, then (cf.
[Po66]) one sees the following possibilities: R is wild and has as a factor ring at least one of
K[X,Y,Z]/(X,Y,Z)2, K[x,y:x3=y2=x2y=0]; R is tame and is a factor ring of one of the
Gelfand-Ponomarev algebras GPn m = K[x, y : xn= ym=xy=0] (these are non-domestic for
n+m35), or is a factor ring of the domestic algebra K[x,y:x2=y2=0] (note that GP22 is
a factor ring of this); or there is a quadratic extension field L of K such that R®KL has

one
of the above forms.

One may see this from Drozd's proof and more detailed arguments may be seen in [Ri75],
where Ringel actually establishes a similar classification for non-commutative local K-algebras
(K algebraically closed) - see §17.2(3). I illustrate below how the quadratic field extension
comes into the picture.

What can one deduce about decidability for modules over these algebras? Let us start with
the wild case.

Algebras of the form K[X,Y,Z]/(X,Y,Z)2 have undecidable theory of modules (see
§17.2(3)). If R®KL has a quotient of this form, where L is a quadratic extension of K, then
dimKJ(R)/J2(R)-> 3, hence R also has a quotient of this form, so has undecidable theory of
modules. Suppose, for the other case, that R is such that R®KL has a factor ring of the form
C1 = K[x, y : x3 = y2 =x2y =0]; we have to work a bit harder here.

Since the radical of C1 has cube zero, one quickly reduces to the case where J(R)3=o. We
may also, by the above, suppose that dimKJ(R)/J2(R) = 2: say x and y form a K-basis of
J/J2. If dim J2 = 3 then R is simply the algebra K[X,Y]/(X,Y)3, which has a factor ring
of type C1. If dim J2 _< 2 then, passing over the trivial cases, one has (say)
x2 + ax y + py2 = 0 for some a,p E K. Let L be a splitting field for this polynomial. So,
either L=K or [L:K] = 2. There is no problem in the first case, so suppose the second. If the
factors, x' and y', of this polynomial in R®KL were distinct, then we would have
R®KL = L[x', y' : x'3 = y'3 = 0 = x'y'] - an algebra of the form GP,,, - contradicting the
assumption on R. So the polynomial must have a repeated root, y', say (then
R®KL = L[x,y': x3=y'2=x2y'=0]). I do not know how to lift the undecidability of R®KL
back to R. But, of course, this case can arise only if the characteristic of K is 2 (and, if K is
finite, then the polynomial must split in R). Therefore we conclude the following.

Theorem 17.20 [P086; Thm 11] Suppose that R is a local commutative K-algebra
which is wild in the sense above. Suppose also that charK * 2 or that K is finite.
Then the theory of R-modules is undecidable. o

Next, suppose that R has the form K[x, y : x2 = y2 = 0] (the question of field extensions
does not arise in this case). Now, every module over this algebra is the direct sum of a module
over GP2 2 and a number of copies of the (self-injective) algebra itself. Hence the theory of
R-modules is decidable iff that of GP2 2-modules is decidable. But the latter theory is
interpretable (see [Po86; Prop9(b)]j within the theory of modules over K[D4] which
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(17.16) is decidable. Since (exercise) the only domestic quotients of the Gelfand-Ponomarev
algebra are the two algebras just considered, one has the following.

Theorem 17.21 [Po86; Corlo] Let R be a commutative artinian ring which is
recursive, has decidable word problem and satisfies condition (D). Suppose that each
local direct factor ring of R is, or corresponds to in the sense of 17.19, a K-
algebra of finite or domestic representation type over some field K (which may
vary). Then the theory of R-modules is decidable. n

Thus the remaining problem is the decidability of the theory of modules over a Gelfand-
Ponomarev algebra. Such an algebra is of "string and band" type, and it is conjectured to have
decidable theory of modules (cf. §13.3). If tensoring with a quadratic extension of the base field
only has the effect of splitting the band modules with polynomial corresponding to the field
extension, then the problem of decidability over commutative artinian rings will thereby be
reduced to that of modules over the Gelfand-Ponomarev quiver.

6. Localisation Let R be a commutative ring, and let P be a prime ideal of R. In order to
transfer decidability results between R and its localisations we may use Garavaglia's result
2.715, but also we need the category of R(p)-modules to be a finitely axiomatisable subclass of
the class of R-modules. Finite axiomatisability of that class is a strong requirement (c.f.
[JV79]) but it is satisfied if R is artinian (exercise; see [Po86; Prop4]). One may check
that if R is an artinian recursive ring with decidable word problem and satisfies condition (D)
then one may effectively list the prime ideals of R.

7. p-valuated groups Schmitt proves the decidability of the theory of tamely p-valuated
groups - see [Sch86].

17.4 Summary

This short section simply summarises, under various headings, the results of the previous
two. Throughout the section it is assumed that the ring R is recursive, has decidable word
problem and satisfies condition (D).

Algebras For path algebras over quivers without relations, one has a complete result.

Theorem 17.22 Let R be the path algebra of a quiver without relations. Then the
theory of R-modules is decidable iff R is of tame or finite representation type.
If R is a hereditary K-algebra where K is an algebraically closed field, then the
theory of R-modules is decidable iff R is of tame or finite representation type. n
The obvious outstanding question is: what happens if R is a tame non-domestic algebra?

Since the question of decidability has been reduced to the question of classifiability of the
indecomposable pure-injectives, the comments in §13.3 are relevant. Apart from that question,
one may ask whether there is a general proof that domestic representation type implies
decidability. Perhaps more easy to solve is the problem of showing that in general wild
representation type implies undecidability. One may also ask whether certain "small"
subcategories of mK(X y) have decidable theories (for example, the category of all direct
sums of modules which are of length less than some finite bound). It should be mentioned in this
connection that, for a finite-dimensional algebra, it appears that the theory of finitely presented
moduleso coincides with the theory of all modules only if the ring is of finite representation
type: this is conjectured in [PoPr8?] and some progress is made there towards validating the
conjecture.
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Finite rings The result 17.19 shows that the decidability problem for modules over finite
recursive rings is no more difficult than that for finite-dimensional algebras, at least in the
local case. I can see no reason to think that the case of finite algebras is any easier than the case
of arbitrary algebras. (For background on finite rings, see [McD74].)

Commutative artinian algebras Reduction to the case of local algebras was made. The key
to the general result (wild = undecidable) seems to be the classification of the infinite-
dimensional indecomposables over the Gelfand-Ponomarev quiver.

Artinian rings It seems likely that this case is equivalent to that of finite-dimensional
algebras. Over non-algebraically closed fields, one must consider species in the senseof [DR76].

Posets It has been shown that wild posets are undecidable. The tame case is similar to that for
algebras.

Commutative regular rings A criterion for decidability of the theory of modules over a
commutative regular ring is given in [PoPr8?; 3.1]. This has the following corollary.

Theorem 17.23 Let R be a commutative regular ring with decidable word problem.
The theory of R-modules is decidable if it is decidable whether or not, for any given
idempotent eER and prime power pn, there exists a maximal ideal of R
containing 1-e and with RII =71p, - the finite field with pn elements. o

The result is proved by considering the meaning of boolean combinations of invariants conditions
in terms of the topology on the spectrum of the ring.

Congruence-modular varieties The question of which rings have decidable theory of
modules has wider implications. Burris and McKenzie [BuMc8l] showed that the decision
problem for a locally finite conguence-modular variety of finite type reduces to that of the
theory of modules over an associated finite ring (these varieties are those defined in a language
with only finitely many function symbols, whose every member is locally finite (i.e., finitely
generated substructures are finite) with lattice of congruences modular - modules over a finite
ring are examples).

For details of the construction of the ring associated to the variety and for the proof of the
reduction of the decision problem for the algebras in the variety to the modules over the
associated ring, see [BuMce1; §§10,11] (if R is a finite ring then the ring associated to the
variety 7118 is indeed just R).

Finally, a word or two about complexity. I have not in these notes kept track of which
decision procedures are primitive recursive and which are not. L. Monk showed in his thesis
[Mon75] that the decision procedure for the theory of abelian groups is primitive recursive
and this was extended to modules over Dedekind domains by Eklof and Fisher [EF72] and to
wider classes of rings, indeed to abelian structures, by Weispfenning [Wei85], [Wei63a]
(all modulo the presentation of the language). The descriptions of the space ZR for R the path
algebra of an extended Dynkin quiver are very explicit and it appears (though I haven't checked
it) that the decision procedure is primitive recursive.
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PROBLEMS PAGE

I finish by specifying what I see as the main current problem areas.

The first is the apparent connection between model-theoretic complexity and the complexity
of the finite-dimensional representation theory. Since infinite-dimensional pure-injectives
seem to connect to (families of) finite-dimensional ones, there might well be some significant
payoff, even for the finite-dimensional representation theory. In any case, the problem seems
to me to be an interesting one and certainly there would be consequences regarding decidability
of the theory of modules. I make some specific conjectures.
1. The split, finite or tame type versus wild type, corresponds exactly to that between

decidable and undecidable theory of modules (for suitably recursive rings).
-2. If an algebra is of domestic type then the Cantor-Bendixson rank of the space of

indecomposable pure-injectives is 2.
3. If an algebra is of tame non-domestic type then the Cantor-Bendixson rank of the space of

indecomposables is "oo", but the width of the largest theory of modules is not "oo": in
particular, there are no continuous pure-injectives.

4. If an algebra is tame of finite growth then there are enough regular types in Teq, but if the
algebra is tame of infinite growth then there are not (this is not really a conjecture;
rather, an assertion to be tested).

The second is Vaught's Conjecture for modules (see §7.2). The proof of this for U-rank 1 is
far from simple and uses very sophisticated ideas. I would be surprised if the general case could
avoid these ideas (though the specifics of the case might allow one to be more direct) and I would
hope that a solution would deepen our understanding of what happens within the pure-injective
hull of a module.

Rather more vaguely, the notion that pp-types generalise right ideals has been only lightly
exploited. The lattice of pp-types contains much more information than the lattice of right
ideals: it does, however, follow that it will be that much more difficult to obtain information
about it. But surely the applicability of this point of view is not confined to modules over
artinian rings.

A serious investigation of continuous pure-injectives might be profitable

Finally, these notes have, very much, been about module theory, rather than ring theory:
almost invariably we have worked over a fixed ring (an exception is the use of localisation in
§22). There should be some investigation of how to transfer information about pp-types and
pure-injectives between rings.
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EXAMPLES INDEX

For any given example, the references are mainly to places where the example is
developed, rather than merely used to illustrate a point. References are to examples unless
otherwise indicated. In this list, I don't normally distinguish between a theory and its closure
under products.

R=71, M=71poo: 1.2/1; 2.1/6(iv); 2.4/1; 2.4/2(11); 4.6/1; 6.4/4; 9.4/1; 10.7/3.
R=71, M=71(p): 2.1/6(ii); 2.2/2; 2.2/4; 2.3/2; 2.4/2(i); Exercise 2.5/1; Exercise 2.5/5;

3.1/1; 4.1/1; 4.1/2; Exercise 4.2/3; 4.6/1; 5.1/3; 5.2/7; 6.2/1; 6.3/1; 6.4/4; 9.4/1;
10.7/2.

R=71, M=71: 2.1/5; 2.2/1; Exercise 2.5/5.
R=71, M=712 °; 2.1/4.
R=71, M=714' o: 2.2/5; 4.1/1; 4.1/2; 6.2/2; 10.7/1.
R=71, M=(712(D714)K: 2.1/6(1); 2.2/3; 2.3/1; 2.4/2(iii); 6.1/1; 6.2/2; 10.7/1.
R=71, M=712&®714: 4.5/1; 4.6/4; 5.1/2; 5.2/3.
R=71, M=713'&- (D719: 5.1/3-
R =71, M=716'": 2.1/2; 2.1/6(i); 6.2/4.
R=71, M= ®77 717 and similar; 1.1/2; 3.1/2; Exercise7.1/1.
R=71, M=Qd; 2.1/60ii); 4.C/1.
R=71(p), M=R: 3.2/1.
R=K[X], M=R: 3.1/1.
R=K[X]/(X)2, M=R: 2.1/6(v).
R=K[X]/(X2+1), M=R: 11.2/4; p.270.
R=K[X,Y]/(X,Y)2, M=R: 2.1/6(vi); Exercise 2.4/5; 4.1/1; 4.6/1; 4.C/1; 6.4/3; 9.3/1;

15.3/3; 16.1/2.
R=K[Xn:nEw]/(X77 :nEw)2, M=R: 2.1/6(vii); 6.4/4; 9.2/1; 15.3/2.
R semisimple artinian, T*(R): 1.2/2; 2.1/3; 2.1/6(viii); 11.2/1.
R=71, T*(R): after 2.7111; 4.7/1.
R=714, T*(R): 11.2/1.

R commutative regular, T*(R): 4.7/3;4.7/5;16.1/3.
R=K[A2], T*(R): 11.2/3;11.4/1;13.2/1.
R = K[A3], T*(R): 13.2/1.
R commutative noetherian, theory of injectives: 4.7/2; 16.1/1.
R not coherent theory of injectives: 15.3/4.
R=71, U. abelian groups: Exercise 3.1/6; 5.2/6.
"Canonical example of small theory": 7.2/2; 7.2/3; 7.2/4.
Piron's example: Exercise 4.6/4; 7.2/6.
Other small theories: 7.2/5; 7.2/7.
Right artinian, M=R not t.t: 14.2/1.

R valuation ring; M=R: 9.1/1; 10.1/1; 10.V/1; 10.V/2.
Full ring of linear transformations modulo socle, M=R: 6.2/3; 16.2/1.
Regular with two indecomposable injectives: 16.2/3.
Other regular rings: 16.2/2.


